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ABSTRACT

Objective: To investigate the presence of neutrophil extracellular traps (NETs) in vivo
by analysing intestinal sections from experimentally Eimeria bovis- and naturally Eimeria
arloingi-infected animals.
Methods: Intestinal samples of Eimeria arloingi- and Eimeria bovis-infected animals
were analysed by using immunohistochemical and fluorescence approach by using
monoclonal antibodies.
Results: Classical NET components were confirmed by co-localization of extracellular
DNA being decorated with neutrophil elastase and histones in Eimeria-infected tissue
samples. Here, extrusion of NETs was exclusively detected in intestinal poly-
morphonuclear neutrophils infiltrating Eimeria-infected sites. In vivo NETs were either
found in close proximity or in direct contact to different Eimeria stages suggesting a
stage-independent process. NETs were also found within the gut lumen driven by
polymorphonuclear neutrophils that were contacting released oocysts.
Conclusions: We postulate that NETs might play an important role in innate defence
reactions in coccidiosis therefore significantly altering the outcome of infection.
1. Introduction

Coccidiosis is a protozoan disease caused by different species
of the genus Eimeria which causes considerable animal health
problems and economic losses in the ruminant industry world-
wide due to severe clinical enteritis and/or typhlocolitis [1–7].
Ruminant Eimeria infections with pathogenic species, such as
Eimeria bovis (E. bovis) in cattle or Eimeria arloingi
(E. arloingi) in goats, commonly induce clinical disease only
in young animals, since homologous reinfections generally are
under immunological control [8]. However, relatively little is
known on early host innate immune reactions against Eimeria
infections contributing to protection of animals through the
interaction with cells of the cellular adaptive immune response
[9–11]. In this context, polymorphonuclear neutrophils (PMN)
play a key role since they are the most abundant cells in the
blood and the first ones to be recruited to the site of infection
[12–14]. PMN own several effector mechanisms to combat and
eventually kill pathogens, such as phagocytosis, reactive
oxygen species production, the release of antimicrobial
peptides/proteins and the formation of neutrophil extracellular
traps (NETs) [12,14,15]. NETs are generally released after PMN
cell death and are primarily situated in the extracellular space
[16]. The formation of NETs (NETosis) is a NADPH oxidase
(NOX)-dependent mechanism [15,17–22], which leads to the
extrusion of a mixture of nuclear and cytoplasmic granule
contents leading to the formation of DNA-rich web-like struc-
tures being decorated with histones (H1, H2A/H2B, H3, H4) and
granular effector molecules, such as neutrophil elastase (NE),
lactoferrin, pentraxin, myeloperoxidase (MPO) and others
[14,16,19]. Unlike NOX-dependent NETosis, NOX-independent
NETosis is accompanied by a substantially lower level of
ERK activation and rather moderate level of Akt activation,
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whereas the activation of p38 is similar in both pathways [23].
Irrespective of NOX-dependency, pathogens may either be
immobilized within sticky DNA fibres or be killed via the local
high concentration of effector molecules. Interestingly, Yipp
et al. recently demonstrated that PMN, which undergo NETosis
without cell lysis are still viable and retain their ability to
phagocytise bacteria [24]. In agreement with these findings, PMN
also seem to be able to release NETs of mitochondrial origin
which are of smaller size than the ones originating from
classical NETosis [25]. So far, NET formation was described to
be induced by different protozoan parasites in vitro, such as
Plasmodium falciparum [26], Leishmania spp. [27], E. bovis
[22,28], Toxoplasma gondii (T. gondii) [29–31], E. arloingi [5],
Besnoitia besnoiti (B. besnoiti) [20], and Cryptosporidium
parvum [32]. In addition, monocyte-derived extracellular traps
(ETs) have recently been reported to be formed in response to
tachyzoites of B. besnoiti and T. gondii in vitro [29–31]. Recent
analyses on Eimeria-induced NETosis confirmed its
dependency on NOX, NE and MPO activities [5,22,28]. More
detailed investigations on molecular mechanisms of E. bovis-
triggered NETosis have demonstrated that this cell death
pathway is CD11b-, ERK1/2-, p38-, mitogen-activated protein
kinase- and Ca++-dependent [22].

There is a vast amount of data on the in vivo role of NETs in
various bacterial infections [12,33], in metabolic [34,35],
reproductive [36,37] and autoimmune disorders [38–40], and in
cancer progression [41,42]. However, in vivo data on NETs
regarding parasitic diseases are scarce. The first evidence of
parasite-induced NETs in vivo came from Plasmodium falcipa-
rum-infected children [26]. Detailed analyses of cutaneous
Leishmania lesions from human patients in Brazil also proved
the in vivo existence of Leishmania-triggered NETs as
demonstrated by the simultaneous presence of extracellular
DNA and histones [27]. Abi Abdallah et al. provided first
indications on the in vivo relevance of NETs against T. gondii
in a murine model of infection [30].

The aim of the current study was to show in vivo evidence on
NETosis in response to Eimeria infections. Typical NET struc-
tures were found in gut tissue sections of both E. bovis- and
E. arloingi-infected animals indicating that this effector mech-
anism naturally occurs during primary Eimeria infections.
However, the actual efficacy of this effector mechanism in vivo
remains to be elucidated in Eimeria-infected animals.

2. Materials and methods

2.1. Intestinal samples of E. arloingi- and E. bovis-
infected animals

A two-month-old Serpentina goat kid of the province of
Alentejo, Portugal, which died due to a severe natural
E. arloingi infection served as donor for intestinal samples [5]. In
the case of E. bovis, intestinal gut samples originating from
experimentally E. bovis- (strain H) infected calves, which were
published before [8], were used. Caprine and bovine intestinal
gut samples (jejunum, ileum, caecum, colon) were withdrawn
for immediate fixation [4% formaldehyde in phosphate-
buffered saline (PBS), 24 h] and embedded in paraffin accord-
ing to procedures described by Sühwold et al. [8]. Then 3–5 mm
cross-sections of formalin-fixed tissues were deparaffinized ac-
cording to standard histological procedures. Thereafter, the
samples were exposed to descendant concentrations of iso-
propanol (90%, 80%, 70%, and 50%, 3 min each) and re-
hydrated in distilled water (3 min). The samples were incu-
bated in haematoxylin solution (Sigma–Aldrich) for 90 s, then
washed 5 times in bi-distilled water and placed for 5 min in tap
water. Afterwards, the samples were washed in bi-distilled water
again, stained with eosin staining solution (Sigma–Aldrich, 30 s)
and washed again twice in bi-distilled water. Finally, the sam-
ples were dehydrated in ascending isopropanol concentrations
(70%, 80% and 90%, 30 s each), incubated twice in isopropanol
(100%, 2 min) and twice in xylol (100%, 2 min). Finally, all
samples were mounted with Pertex™ (Leica Biosystems) for
further investigations.

2.2. Immunohistochemical detection of NETs

For the immunohistochemical detection of NETs, paraffin-
fixed sections were deparaffinized as previously described. For
antigen-demasking, a heating treatment was performed. There-
fore, slides were cooked in a steamer in 10 mmol/L Tris base
(Sigma–Aldrich) and 1 mmol/L ethylene diamine tetraacetic
acid solution (pH 9.0) (Sigma–Aldrich), for 15 min for caprine
samples and 30 min for bovine samples. Thereafter, the samples
were allowed to cool down for 20 min at room temperature and
then washed thrice in PBS for 2 min. To inhibit endogenous
peroxidase activity the sections were exposed to 1% H2O2

(Sigma–Aldrich, 30 min, room temperature), then washed thrice
in PBS (2 min). Unspecific protein binding was excluded by
treatment with 1% bovine serum albumin (BSA) (Sigma–
Aldrich) and 0.1% sodium azide in PBS (Sigma–Aldrich) for
30 min at room temperature. Afterwards, the samples were
incubated in primary antibody solution [anti-histone H3 (D1H2)
XP® rabbit monoclonal antibody, No. 4499 (Cell Signaling);
overnight, 4 �C, 1:100 dilution in blocking solution]. The
samples were washed thrice in PBS and exposed to the sec-
ondary antibody [goat anti-rabbit immunoglobulin G (H + L)
secondary antibody, horseradish peroxidase conjugate (Life
Technologies); 1:50 in PBS, 1 h, room temperature]. For signal
development the samples were exposed to 3.30-dia-
minobenzidine (Sigma–Aldrich, 125 mg/mL, 10 min, room
temperature) and then washed thrice with PBS. Counterstaining
was performed in haematoxylin staining solution (Sigma–
Aldrich, 1:5 in distilled water, 90 s). Thereafter the samples were
washed (5 min, distilled water) and dehydrated in ascending
isopropanol concentrations (50%, 70%, 80% and 90%, 30 min
each), isopropanol 100% (2 × 2 min) and xylene (100%,
2 × 2 min). The samples were mounted in Pertex™ (Leica
Biosystems). In order to test for unspecific NET formation a rat
ileum tissue section was equally processed in parallel. Visuali-
zation was achieved and documented by using an inverted
Olympus BX51® microscope equipped with a digital camera and
an analySIS® software (Olympus).

2.3. Fluorescence-based detection of NETs

Fluorescence-based detection of NETs was performed ac-
cording to von Köckritz-Blickwede et al. with some slight
modifications [17]. Briefly, the samples were deparaffinized in
xylene (Fisher Scientific, 3 × 10 min), 100% alcohol (Fisher
Scientific, 2 × 5 min), 95% alcohol (2 × 5 min) and 70%
alcohol (2 × 5 min). Thereafter, the samples were washed with



Figure 2. Haematoxylin-eosin staining of E. arloingi-infected intestinal
tissue.
A and B: Leucocyte infiltration contacting E. arloingi macrogamont stages
(arrows); C: Leucocyte infiltration contacting E. arloingi oocysts stages
(arrows); D: E. arloingi macromeront being surrounded by leucocyte
infiltration (arrows). Mm: Macromeront; Oo: Oocysts; Ma: Macrogamonts.
Scale bars = 20 mm.
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PBS (3 × 10 dips) and heated in a microwave (2 × 5 min in
citrate buffer, pH 6.0, Dako, S2369). Afterwards, the samples
were cooled for 20 min at room temperature, washed thrice
with PBS and blocked with 2% BSA–PBS + foetal calf serum
(Sigma–Aldrich, 45 min, room temperature). The samples
were then exposed to primary antibody solution (rabbit anti-
human NE, 1:500; AB68672, Abcam, 3 h, 4 �C, humidity
chamber, 2% BSA–PBS). To avoid drying-out, the cross sec-
tions were covered with parafilm. Then the samples were
washed four times with PBS and incubated in secondary anti-
body solution (Invitrogen, Alexa Fluor® 488 conjugated goat
anti-rabbit antibodies, 1:500, 30 min, room temperature, hu-
midity chamber, covered with parafilm). After four washings
with PBS, the samples were mounted either in ProlongGold®

with 40,6-diamidino-2-phenylindole (DAPI) staining or in Pro-
longGold® after staining with Sytox Orange® (Invitrogen,
1:1000, 5 min, room temperature, in the dark). The visualization
of extracellular DNA and NE-positive signals was achieved
using an inverted Olympus IX81® fluorescence microscope.

3. Results

Haematoxylin-eosin-stained sections of E. bovis- and
E. arloingi-infected intestinal tissue samples showed a strong
leukocytic mucosal infiltration, mainly composed of PMN,
monocytes and eosinophils, into parasitised areas of the
jejunum, ileum and caecum/colon. Some mucosal leucocytes
were found in direct contact with the surface of infected host
cells carrying different Eimeria stages such as oocysts
(Figures 1A and 2C), macrogamonts (Figures 1B,C and 2A,B)
and also at the periphery of developing macromeronts
(Figure 2D). These features demonstrate that these immune cells
are capable to effectively transmigrate into affected intestinal
mucosa in vivo. Accordingly, the histopathology of both Eimeria
infections exhibited a dramatic damage due to a high parasitic
load alongside with a striking epithelial destruction and
detachment (dysentery). PMN were even found within the in-
testinal lumen in close contact with extracellular E. bovis oo-
cysts (Figure 1D).
Figure 1. Haematoxylin-eosin staining of E. bovis-infected intestinal tis-
sue.
A: Intestinal leucocyte contacting E. bovis oocysts (arrow). B and C: In-
testinal leucocyte contacting E. bovis macrogamonts (arrows). D: Intestinal
leucocyte contacting an E. bovis oocyst in lumen (arrow). Oo: Oocysts; Ma:
Macrogamonts. Scale bars = 20 mm.
In addition, the co-localization of mucosal extracellular DNA
with histones (H1, H2A, H2B, H3, H4) (Figure 3) and NE
(Figure 4) in Eimeria-induced NETs corroborated the classical
characteristics of NETs in vivo. Furthermore, sections from the
jejunum revealed a strong influx of PMN into Eimeria-infected
areas with some of them releasing NETs as seen by the co-
localization of H3 and extracellular nucleic acids derived from
dead PMN (Figure 5), making this feature distinguishable from
non-NET-releasing PMN which retain their typical cellular
morphology. According to this, a recent study supports the use
of immunostaining with citrullinated histone-3 antibodies to
identify NETs in tissue sections showing that nuclear NETs
extensions display orientations in different planes, in contrast to
the ones observed in nuclear crush smears [43]. In both Eimeria
species infections, single PMN were found releasing H3-positive
NET structures in close proximity to Eimeria stages (Figure 6B).
Diffused as well as small NET types were extruded by caprine
PMN infiltrating mucosal areas of E. arloingi replication.
Overall, in vivo NET-associated results clearly confirm previous
Figure 3. Co-localization of extracellular DNA and histones in E. arloingi-
triggered NET structures in infected intestinal tissue.
Intestinal tissue (jejunum) sections from E. arloingi-infected animals were
used for immunofluorescence analysis in order to identify NETs by
(monoclonal) antibody-based detection of histones (H1, H2A, H2B, H3 and
H4, in green). DNA was stained with Sytox orange (in red). A: Anti-histone
staining of H1, H2A, H2B, H3 and H4; B: Sytox orange staining of DNA;
C: Overlay of A and B. White arrows indicate NET structures being
extruded from PMN. Scale bars = 20 mm.



Figure 4. Co-localization of extracellular DNA and NE in E. arloingi-
triggered NET structures in infected intestinal tissue.
Intestinal tissue (jejunum) sections from E. arloingi infected animals were
used for immunofluorescence analysis in order to identify NETs by
(polyclonal) antibody-based detection of NE (in green) in combination with
DAPI staining (in blue) to identify nuclear and extracellular DNA. A:
DAPI-stained DNA; B: NE staining; C: Overlay of A and B. White arrows
indicate NET structures. Scale bars = 20 mm.

Figure 5. Histone detection in E. bovis- (A) and E. arloingi-infected (B)
intestinal samples. NETs were identified by combining haematoxylin
staining (in blue) with the (monoclonal) antibody-based detection of histone
H3 [Cell Signaling, 1:100 (in brown)]. Red arrows indicate PMN releasing
NET structures; yellow arrow shows inactive PMN. Scale bars = 20 mm.

Figure 6. Histone detection in E. arloingi-infected intestinal samples.
A: PMN contacting E. arloingi macrogamont (arrow); B: PMN releasing
NETs in close proximity to macrogamonts of E. arloingi (arrow). NETs
were identified by combining haematoxylin staining (in blue) with the
(monoclonal) antibody-based detection of histone H3 [Cell Signaling,
1:100 (in brown)]. Ma: Macromeront. Scale bars = 20 mm.
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in vitro data on E. bovis- [10–22] and E. arloingi-triggered NET
release [5], and their role as novel effector mechanism against
these apicomplexan parasites.

4. Discussion

Early innate leucocyte-mediated reactions against bovine and
caprine Eimeria parasites have scarcely been investigated in the
past, although the first encounter between parasites and innate
immune cells should be decisive for the subsequent outcome of
infection [5,22]. PMN appear to play a pivotal role in ruminant
Eimeria-triggered early host innate defence in vivo since this
leucocyte population was identified in parasitized intestine of
E. bovis- [44], Eimeria ninakohlyakimovae- [45] and
E. arloingi-infected animals [5]. Detailed molecular
investigations have revealed that PMN do not only interact
directly with viable E. bovis stages and antigens, but also
serve as an early source of immunomodulatory molecules,
such as chemokine (C–C motif) ligand 3 and tumour necrosis
factor a [10], which support monocyte/macrophage infiltration
and activation [46]. PMN were also shown to adhere to
E. bovis-infected endothelium under physiological flow
conditions [47], and their phagocytic and oxidative burst
activities were found enhanced in response to sporozoites of
E. bovis in vitro and ex vivo [10]. Furthermore, E. bovis- and
E. arloingi-triggered NETosis was reported as additional PMN
effector mechanism in vitro [5,22,28].

The current in vivo data indicate NETosis as a generally
occurring effector mechanism against Eimeria parasites. Co-
localization studies on intestinal extracellular DNA being
decorated with both histones and NE confirmed the presence of
NETs in Eimeria-infected mucosa. Here, different patterns of
NETs were observed as particularly seen in NE-positive staining
which showed rather diffuse than spread form of NETs. Dif-
ferential types of NETs have already been described in Hae-
monchus contortus-triggered NETosis [48]. Interestingly, in vivo
NET release occurred irrespective of the Eimeria species and
was also independent of the parasitic stages, i.e. merozoites I
and oocysts, as previously demonstrated elsewhere [5,22]. In
agreement, different E. bovis and E. arloingi stages (i.e.
sporozoites, merozoites I and oocysts) were previously
identified as potent NET inducers in vitro [5,22,28]. Moreover,
it was demonstrated that Eimeria-induced NETosis is neither
stage-, species- nor host-specific process [22]. The evidence of
NET release in vivo in close proximity to parasitized areas
containing intracellular Eimeria stages as well as NETs
sticking to extracellular oocysts in the lumen of the intestine
suggest NETosis as early host effector mechanism as
previously postulated elsewhere [5,32].

Similar in vivo NET-related studies have been performed in
other apicomplexan parasites such as T. gondii [49]. Here, in vivo
NETs were confirmed by using immunohistochemistry analysis
in T. gondii-infected mice lung tissue observing the extracellular
DNA release co-localized with MPO molecules [30].
Nonetheless, in this former in vivo murine study neither direct
contact of T. gondii-tachyzoites with NETs nor NETs-
entrapped parasites were demonstrated [30]. These in vivo
results coincide well with our findings where hardly any
parasites were found entrapped by NETs. Taking into account
that in vivo immunohistochemistry NET-related analyses of
ruminant Eimeria-infected gut tissue sections might be a
disadvantage due to the large size of the animals, it might be
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easier in the future to obtain evidence of parasites entrapped in
NETs in Eimeria-infected rodent models, such as Eimeria fal-
ciformis or Eimeria vermiformis [50].

Referring to oocyst-induced NETosis, it appears noteworthy
that in the case of E. arloingi oocysts (which are equipped with a
micropyle), a blockage of sporozoite release by NETs was
postulated [5]. In agreement, oocyst-induced NETosis was also
reported for Cryptosporidium parvum where these stages were
almost completely covered by NET structures [32]. Besides the
interference with the E. arloingi excystation process, NETs
were also released towards unsporulated oocysts in the gut
lumen. However, so far it remains to be elucidated whether
they are affected or even destroyed by the local high
concentrations of antimicrobial peptides/proteases, such as NE,
MPO, pentraxin, lactoferrin and gelatinase [14].

Not only PMN but also eosinophils and monocytes have been
reported to play a crucial role in E. bovis-, Eimeria nina-
kohlyakimovae- and E. arloingi-induced coccidiosis [5,44–46].
Interestingly, ETs have recently also been reported to be
released by other immune cells than PMN [29]. Thus, ETs can
also be generated by macrophages [51,52], eosinophils [53,54],
mast cells [55,56], basophils [57,58] and monocytes [21,31].
Independent of the leucocyte type, all ETs contain a vast
amount of potent antimicrobial components and thus are able
to interact with trapped pathogens [39]. Referring to parasite-
driven formation of ETs, monocyte-derived ETs have recently
been reported to be formed after exposure to B. besnoiti and
T. gondii tachyzoites leading to parasite entrapment [21,31]. It is
noteworthy that Taubert et al. also reported enhanced monocytic
activities throughout experimental E. bovis infection although
the detection of formation of ETs was not part of the study [46].

Regarding potential detrimental effects of NETs on Eimeria
sp., extra- and intra-cellular stages have to be considered
differently. Extracellular stages of Eimeria sp., such as sporo-
zoites or merozoites in search of an adequate host cell, are un-
likely to be killed by NETs, but were proven to be immobilized
and hampered from host cell invasion [5,22,28]. However,
intracellular stages can hardly be attacked by NET structures.
Nevertheless, the function of NETs may here be attributed to
other leucocyte recruitment (e.g. macrophages, cytotoxic CD8+

cells) to the pathogen's site to deliver more effective
parasitocidal actions. Alternatively, the local high
concentration of NET-related antimicrobial molecules might
additionally damage the cell membrane of infected cells, thereby
exposing parasitic stages directly to NETs. Consistently to this
assumption, in heavily Eimeria-infected mucosa, NETs were
often observed sticking to epithelial host cells carrying intra-
cellular stages. Actually the first ever published data on parasite-
induced NETs also reported in vivo NETs entrapping Plasmo-
dium falciparum-infected host cells (erythrocytes) within blood
vessels [26]. Given that E. bovis-infected host cells express
parasite-derived antigens (EbHSAg) on their surface mem-
brane [59], these molecules might be recognized by PMN-
derived pathogen recognition receptors, such as Toll-like re-
ceptors. In this context, we demonstrated the presence of mRNA
transcripts of TLR1, TLR2, TLR4, TLR6, TLR7 and TLR10
genes in bovine PMN [60], and further characterized their pivotal
role in the activation process of PMN after specific TLR-ligand
binding [61]. In the human system there is some evidence on
TLR4-dependent platelet–neutrophil interactions leading to the
formation of NETs in plasma from severely septic patients [62].
Overall, future functional experiments have to clarify whether
NETs may exhibit any detrimental effect on intracellular
stages of Eimeria sp.
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