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1. Introduction
 
  A number of observations focus on the kinins as potential 
mediators in endogenous cardiovascular protective 
mechanisms. This is due to the fact that kallikrein - kinin 
system (KKS) components are localized in the heart and 
in the vascular tissues [1-6].  Kinins are released during 
ischaemia [7], and cause beneficial cardiac effects [8].  
Bradykinin (BK) antagonists worsen ischeamia-induced 
effects [9], and BK can contribute to the cardioprotective 
effects of preconditioning [10].  On the other hand, 
the reduction in cardiac infarct size by BK, after 
preconditioning in rabbits was prevented by a BK antagonist 
(Hoe 140) treatment [10].  BK at a dose that has no effect on 
blood pressure (BP) can prevent left ventricular hypertrophy 
(LVH) in rats with hypertension caused by aortic banding 
[11].  Reduction in peripheral and cardiac KKS components 
may also be the cause of developing high BP in human 
and experimental animals [12-15]. In the present review, the 
current concept on the role of kinins in cardiovascular is 

presented.

2. The kinin system 

  The kinins are pharmacologically active polypeptides, 
which are released in the tissues and body fluids as a result 
if the enzymatic action of kallikreins on kininogens.  The 
kinin family includes BK (Arg-Pro-Pro-gly-Phe-Ser-Pro-
Phe-Arg), kallidin (Lys- -Arg-Pro-Pro-Gly-Phe-Ser-Pro-
Phe-Arg) and methionyl-lysyl-BK (Met-Lys-Arg-Pro-
Pro-Gly-Phe-Arg).  Kallidin and methionyl-lysyl-BK are 
converted into BK by aminopeptidases present in plasma 
and urine [16].  Kinins are rapidly (<15 sec) inactivated by 
circulating kininases [17].
  Kininogens are multifunctional proteins derived mainly 
from alpha -2 globulin.  In humans, the two forms of 
kininogens are; high molecular weight kininogen (HMWK) 
and low molecular weight kininogen (LMWK) [18].
  These kininogens vary from each others in molecular 
weight, susceptibility to plasma and tissue kallikreins and 
in their physiological properties [19].  They are synthesized in 
the liver and circulate in the plasma and other body fluids.  
In addition, there is a T-kininogen in the rat plasma, which 
is considered to be an acute phase reactant of inflammation 
[20].  This kininogen releases T-kinin by the enzymatic 
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action of T- kallikrein in rats [21].  Tissue kallikrein is found 
in various organs such as the kidney, heart and synovial 
tissue [22;23;1;2;3].  These kallikreins differ from one another 
in molecular weight, biological function, physicochemical 
and immunological properties [24].  The tissue kallikrein is 
synthesized in the cells as a precursor and converted into 
active form by the cleavage of an amino terminal peptide [25].  
Active tissue kallikrein acts on LMWK to release kallidin.  
The plasma kallikrein is found in circulation in an inactive 
form, which is known as prekallikrein or Fletcher factor. [26].  
This inactive prekallikrein is converted to active kallikrein 
by activated hageman factor (XIIa) [27].  In addition, plasma 
kallikrein is able to convert inactive factor XII to XIIa by 
positive feedback reaction.  The plasma prekallikrein and 
HMWK are present together in a complex form [27].  Factor 
XIIa and factor XI circulate with HMWK in bound form 
[29].  In this way, factor XI can be converted into XIa for 
the participation in the intrinsic coagulation cascade [30].  
In immunological reactions, the tissue proteoglycone and 
mast cell heparin might act as an initiating surface for 
initial activation of the Hageman factor [31].  It seems that 
the kinins may be generated in parallel with the formation 
of thrombin at inflammatory sites, since inactive plasma 
kallikrein can be activated by coagulant Hageman factor.  
The tissue kallikrein multigene family comprises a closely 
related cluster of genes that vary in number between the 
different mammalian species: 24 genes have been identified 
in the mouse, 20 in the rat, 3 in humans and 3 in the hamster 
[24].  
  Several restriction fragment length polymorphisms (RFLP) 
has been mapped in tissue kallikrein gene and their 
regulatory regions in spontaneously hypertensive rats (SHR) 
[32].  These findings may reflect a possible difference in the 
tissue kallikrein gene locus between SHR and normotensive 
Wistar-Kyoto rats (WKYR). A tissue kallikrein RFLP has 
been indicated to cosegregate with high BP in the F2 
offspring of SHR and normotensive Brown Norway rats 
crosses [33].  This finding strongly suggests a possibility 
of SHR.  The kininases, kinin inactivating enzymes, are 
present in the plasma, endothelial cells and in the tissues 
to regulate the physiological functions of the kinins in 
the body. These are known as kininase I, Kininase II or 
angiotensin converting enzyme (ACE) and enkaphalinase.  
In plasma, kininase I cleaves the C-terminal arginine of BK 
to form des-Arg9-BK [34].  Kininase II causes inactivation 
of BK by releasing pentapeptide (Arg-Pro-Pro-Gly-Phe0 
and tripeptide (Ser-Pro-Phe) fragments.  Figure 1 shows the 
kinin formation, activation and inhibition pathways.
                                              
2.1. Kinin receptors and antagonists

  Kinins exert their pharmacological actions through the 
activation of two receptor types, B1 and B2, which have been 
cloned and belong to the seven transmembrane G-protiens 
coupled receptor family [35].  The kinin B1 receptor displays 
high affinity and selectivity for kinin metabolites lacking 

the C-terminal arginine residue, such as des-Arg9-BK.  
The B1 receptor is rarely expressed in normal tissue, but 
seems to be up regulated in pathological states associated 
with inflammation and tissue injury [35].  This may indicate 
an important area of research within the study of KKS.  B1 
receptor activation may produce stimulation of smooth 
muscle, increased cell proliferation and collagen synthesis 
[36].  In addition, it may also the cause release of nitric oxide 
(NO) and prostacyclin (PGI2) from bovine endothelial cells 
[37].  Kinin stimulate the release if tumor necrosis factor 
and interleukin from macrophages through activating B1 
receptors [38].  The kinin B2 receptors may participate in 
pathological conditions, such as pain [39], inflammation 
[40;41], bronchoconstriction [42], hypertension [43] and cardiac 
arrhythmias induced in rats [44;45].  The B2 receptor is 
thought to mediate contractions of rat uterus, guinea-pig 
ileum and tracheal smooth muscles [46].  Kinins act on kinin 
B2 receptors to release conjointly NO and PGI2 from the 
endothelial cells in vitro [37].  B2 receptors exhibit higher 
affinity for BK and kallidin.  Farmer et al. [47] suggested 
that the large airways contain a novel B3 receptor, which 
may produce BK-induced bronchoconstriction.  These 
investigators noted that several B2 receptor antagonists such 
as D-Arg (Hyp3,D-Phe-7)-BK and D-Arg(Hyp3, Thi5,8,D-
Phe7)-BK as well as B1 antagonist (des-Arg9 (Leu8)-BK) 
did not block the BK-induced contraction of guinea-pig 
tracheal smooth muscle preparations.  The presence of a 
kinin B3 receptor has also been proposed in the opossum 
esophageal longitudinal smooth muscle [48].  This receptor 
has been characterized by rapid desensitization, causes 
contraction of longitudinal smooth muscle via PG release 
and is activated by kinin B2 receptor antagonists (Phe8-D-
Phe7-BK and D-Phe7-hyp8-BK).  Furthermore, Saha et al. 
[49] proposed the presence of a B4 receptor in the opossum 
esophageal longitudinal smooth muscle.  This receptor 
shows no tachyphylaxis; its action does not involve PG, 
and is activated by kinin B2 receptor antagonists (Thi5, 
8-D-Phe7 and B6572).  The development of kinin receptor 
antagonists has been pursued for more than two decades 
[50;51].  The kinin B1 receptor antagonist was first introduced 
as des-Arg9-(leu8)-BK by Regoli and Barabe [50]. The 
‘second generation’ of B2 receptor antagonist came with 
the introduction of hoe-140(D-Arg-Arg-Pro-Hyp-Gly-
Thi-Ser-D-Tic-Ag; Icatibant) [52] and CP-0127 (D-Arg-
Arg-Pro-Hyp-Gly-Thi-Cys-DPhe-Leu-Arg; bradycor) 
[53].  The ‘third generation’ of BK antagonist, B9430 (d-Arg-
Arg-pro-Hyp-Gly-Igl-Ser-Digl-Oic-Arg) is known to 
be an extremely potent and long lasting at both B1 and B2 
receptors [54].  The development of this compound not only 
demonstrates that a polypharmaceutic approach covering 
both receptor types is possible, but also that the structures 
of the B1 and B2 receptors are sufficiently similar to be 
antagonized by a single drug.  This fact was not appreciated 
until recently.  Most recently, bradyzide, a potent non-
peptide B2 BK receptor with long lasting oral activity in 
animal models of inflammatory hyperalgesia has been 
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described [55].  These BK receptor antagonists may prove to 
be therapeutically applicable in pathological states, which 
are caused by hyperactivity of kinins.

Figure 1. The mode of kinin formation.

2.2. Mode of the kinins action

  Interaction between the kinins and their specific receptors 
can lead to activation of several second-messenger 
systems.  The kinin receptor stimulation in the intact cells 
or in tissues appear to initiate the second -messenger 
pathways, such as arachidonic acid products and the 
activation of calcium -sensitive systems [56].  The elevation 
of cellular inositol phosphates by BK involves G-protein 
coupled activation of phospholipase A2 and C that are 
used in the synthesis of eicosanoids [57].  It is of interest 
that indomethacin, a cyclooxygenase inhibitor, was able 
to cause potentiation of BK-induced contractions of both 
isolated oestrous rat uterus and guinea-pig tracheal smooth 
muscle preparations [58;59].  These findings may suggest that 
there could be non-eicosanoid pathways for the cellular 
and molecular actions of BK.  Furthermore, it is known that 
BK significantly stimulates phosphoinositide hydrolysis 
in guinea-pig ileum longitudinal muscle that may result 
in elevation of cytosolic calcium ion levels to induce 
contractile responses [60].  Schini et al. [61] demonstrated that 
the kinin B2 receptor stimulation causes production of cyclic 
guanosine monophosphate (cyclic GMP) in cultured porcine 
aortic endothelial cells.  The formation of cyclic GMP may 
be an important step for the biological actions as well as 
release of NO evoked by BK in the endothelial cells and in 
the vascular smooth muscles.

3. The kinin system in cardiovascular disorders

3.1. Hypertension

  Hypertension is a major risk factor for the development 
of cardiovascular diseases, such as coronary heart disease, 
congestive heart failure and peripheral vascular and 
renal diseases [13].  There is ample evidence documenting 
the role of KKS in pathogenesis of hypertension [15].  The 
pharmacological action of BK in the regulation of systemic 
BP was vasodilatation in most areas of the circulation, a 
reduction of total peripheral vascular resistance and a 
regulation of sodium excretion from the kidney [62;63].  When 
BK is injected into the renal artery, it causes diuresis 
and natriuresis by increasing renal blood flow [64].  These 
actions of BK have been attributed to PG release in the 
renal circulation [65].  The role of KKS in hypertension was 
established by Morgolius and co-investigators [66;67] with the 
observations that urinary kallikrein excretion is significantly 
reduced in hypertensive patients and hypertensive rats.  
This led to the suggestion that reduced urinary kallikrein 
excretion might result from a defect in kinin generation 
in hypertensive situations.  Research on the systemic 
changes in the KKS has provided further insight regarding 
the mechanisms of various hypertensive conditions.  In 
this connection, it is known that kininogen levels and a 
kinin-potentiating factor are reduced in essential and 
malignment hypertension [68;69;70].  It may be possible that 
the deficiency in plasma HMWK is due to decreased in 
liver synthesis in individuals who develop hypertension 
after mild exercise [71].  It can be proposed that a deficient 
KKS might be a significant factor in the pathophysiology of 
hypertension.  In this connection, it is suggested that the 
role of renal KKS is to excrete excess of sodium.  Therefore, 
a reduction in the generation of renal KKS may be the cause 
of the development of hypertension as a result of sodium 
accumulation in the body [72;73].  Thus, the development of 
a compound having renal kallkrein-like activity may serve 
the purpose of excreting excessive sodium from the kidney.  
This action may be useful for the treatment of hypertension.  
Also, it has been demonstrated that transgenic mice over-
expressing renal tissue kallikrein were hypotensive and that 
the administration of aprotinin, a tissue kallikrein inhibitor, 
restored the BP in the transgenic mice [74].  The suppression 
of the hypotensive responses of ACE inhibitors by aprotinin 
in SHR has been documented [75].  These findings highlight 
a role of tissue kallikrein in the regulation of BP.  Recently, 
it has been proposed that tissue kallikrein gene delivery into 
various hypertensive models exhibits protection, such as a 
reduction in high BP, attenuation of cardiac hypertrophy, 
inhibition of renal damage and stenosis [76].  These findings 
may indicate the prospect of this kallikrein gene therapy 
for cardiovascular and renal pathology.  Kininase II (ACE) 
inhibitors are currently used in the treatment of both 
clinical and experimental hypertension [77;78;79].  Kininase II 
inhibitors could lower BP by inhibiting the biodegradation 
of kinin as well as blocking the formation of angiotension 
II (Ang II) at the renal site.  A calcium - channel blocker, 
nifedipine used to treat in patients with essential 
hypertension can normalize the reduced urinary kallikrein 
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excretion [80].  Our previous investigations demonstrated 
differential sensitivity for the genetically Dahl-salt-
sensitive (DSS) hypertensive and genetically Dahl-salt-
resistant (DSR) normotensive rats to the hypotensive action 
on nifedipine [79].  This might reflect a significantly more 
important function of diminished renal KKS activity in 
DSS hypertensive as compared with the DSR normotensive 
rats.  It is unknown whether a similar situation may exist 
in genetically predisposed humans with hypertension.  
Furthermore, Smith et al. [81] have proposed that women with 
reduced activity of the renal KKS combined with increased 
sympathetic drive may be at increased risk of developing 
pregnancy-induced hypertension.  It is a generally accepted 
view that the BK-induced BP lowering effect is mediated by 
the kinin B2 receptor, but B1 might also be involved under 
special situations [36].  It has been demonstrated that the 
B2 receptor antagonist (B5630) can abolish the hypotensive 
effects of BK as well as captopril, an ACE inhibitor [43]. 
This led to the proposal that the hypotensive action o ACE 
inhibitors might be due to the activation of the kinin B2 
receptor [82].  The accumulation of BK after treatment with 
ACE inhibitors with subsequent release of NO, PGs and PGI2 
could account for the additional mediators released by these 
drugs in hypertensive patients.  However, the use of BK 
antagonist can abolish the effectiveness of anti-hypertensive 
drugs; therefore, these drugs must be contraindicated in 
patients with hypertension.

3.2. Cardiac failure and ischemia

  Cardiac failure and ischaemia are the leading cause of 
death in the developed and many developing countries 
[83].  These conditions are considered as the new emerging 
epidemic of the third millennium [83].  The role of kinins 
in the heart did not receive much attention, despite the 
fact that it was shown earlier [84] that local and systemic 
administration of BK can increase coronary blood flow and 
improve myocardial metabolism. It is well known that ACE 
inhibitors limit ventricular dilatation, delay the progression 
of clinical symptom, and improve mortality rate.  This 
beneficial action appears to be related to the reduced 
formation of Ang II, which results in a decreased growth 
response and attenuated pressure load [84].  In addition, the 
ability of ACE inhibitors to prevent kinins from enzymatic 
breakdown represents a relevant mechanism contributing to 
cardioprotection [85].  This concept fueled a series of studies 
demonstrating the presence of a local KKS in the heart [1;2;4].  
The bindings of kinins to endothelial B2 receptors leads to 
the release of NO and PGI2, exerting vasodialtor, ischaemic, 
anti-proliferative effects and preserving myocardial stores 
of energy-rich phosphates and glycogen [86].  Kinins 
contribute to the maintenance of cardiovascular homeostasis 
by opposing the vasoconstrictor activity of Ang II [87].  
Circumstantial evidence also suggests that a dysfunctional 
KKS may contribute to the pathogenesis of heart failure.  
In fact, reduced local kinin generation and blunted NO 

formation have been reported in micro vessels of failing 
human hearts [88].  Furthermore, in dogs with pacing-induced 
congestive heart failure, selective blockade of B2 receptors 
by Hoe 140 reduces coronary blood flow and contractility 
and increases left ventricular end diastolic pressure [89].  
Thus, the reduced activity of the cardiac KKS may facilitate 
the development of cardiac failure.  On the other hand, 
kinins are continuously released during cardiac hypoxia 
and ischaemia [8; 90].  They act as cardioprotective agents 
in perfusion and participate in the process of ischeamic 
preconditioning [7; 10].  There is evidence to suggest that 
BK infusion into coronary artery reduces significantly the 
severity of ischeamia-induced arrhythmia in anaesthetized 
dogs [90].  Studies undertaken in rats, dogs, and humans 
revealed that kinins are released under the conditions of 
ischaemia and myocardial infarction [91-94].  This process 
may be indicator of the role of kinin in protecting the heart 
at the time of myocardial infarction.  This raised local kinin 
release might be able to exert a protective effect on the heart 
by activating signal transduction pathways generating NO 
and PGI2.  Coronary artery ligation for shorter and longer 
duration in SHR and WKY rats showed that administration 
of BK could increase the survival time of these rats [44,45].  
This effect of BK was reverted by pretreatment with a 
specific B2 receptor antagonist [45].  In conclusion, these 
results support the hypothesis that KKS might be regarded 
as prime mediator in protecting the heart in ischeamic 
conditions.  However, extensive investigations on the 
molecular biology and gene mapping of KKS in the heart 
during health and cardiovascular diseases can provide 
many questions to be answered regarding the significance 
of KKS in cardiovascular pathophysiology.  This may allow 
us to develop KKS based therapeutics for the cardiovascular 
diseases.

3.3. Left ventricular hypertrophy

Left Ventricular hypertrophy (LVH) is regarded as an 
independent risk factor in hypertensive patients [3].  BK can 
counter the development of LVH in rats with hypertension 
produced by aortic banding [11].  This anti-hypertrophic 
effect of BK was abolilshed by treatment with B2 receptor 
antagonist and NO synthetase inhibitor.  Thus, the BK 
has a role in protecting the heart against developing LVH 
by releasing NO in this model of hypertension induced 
by aortic banding.  In this regard, we have for the first 
time demonstrated that a lack of the cardiac KKS could 
be responsible for the induction of LVH in SHR and SHR 
with diabetes [2-4].  Therefore, it is suggested that the 
reduced cardiac tissue kallikrein and cardiac kininogen 
may be responsible for reduced BK generation in the heart.  
Therefore, deficient components of the KKS in the heart 
may be the cause of myocardial dysfunction in maintaining 
High BP and cardiac LVH.  It is highly desired to develop 
the stable compounds of KKS to evaluate their efficacy and 
potency in the cardiac failure, cardiac ischeamia as well 
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as myocardial infarction. Recently, we have shown that, in 
hypertensive rats, BP reduction and regression of LVH with 
captopril treatment might be due to enhanced renal tissue 
kallikrein activity [95]. This may further support the view that 
tissue kallkrein may act as cardioprotective agent. It has 
been recently proposed that kinins
have modulatory effects in preventing myocardium 
ischaemia [96]. It is of interest to note that Madeddu and 
co-workers [97] described the cardiac hypertrophy and 
microvascular deficit in kinin B2 receptor knockout mice 
[98].

4. Conclusion

  The evidence presented in this review suggests 
that the KKS has greater role to play in the various 
pathophysiological processes of cardiovascular system, 
such as hypertension, cardiac failure and ischaemia, LVH 
and endotoxemia.  There is activation of BK activity in 
endotoxemia.  Under this situation, the inhibition of KKS 
activities by the application of the kallikrein inhibitors, B1 
and /or B2 receptor antagonists may be able to reverse the 
pathological consequences.  It is of interest to state that 
there is the possibility of the up-regulation of the B1 and 
B2 receptors in these pathological conditions.  On the other 
hand, it seems that there is deficient activity of the KKS 
in the pathological conditions of the hypertension, cardiac 
ischeamia and development pf LVH.  These pathological 
states may be due to genetic abnormality of the KKS or 
down-regulation of BK receptors.  These diseases may be 
treated with the application of tissue kallilkrein and / or use 
of specific BK receptor agonists. Furthermore, the mode of 
cardioprotective effect of ACE inhibitors might be mediated 
via KKS.  
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