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1. Introduction

   Iron is a component of many metalloproteins and plays a 
crucial role in a range of vital biochemical activities, such 

as oxygen sensing and transport, electron transfer, and 
catalysis[1]. When present in excess, cellular iron overload 
leads to toxicity and cell death via free radical formation 
and lipid peroxidation[2]. Non-transferrin bound iron (NTBI), 
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Objective: To evaluate the iron-chelating properties and free-radical scavenging activities of 
1-(N-acetyl-6-aminohexyl)-3-hydroxy-2-methylpyridin-4-one (CM1) treatment in chronic 
iron-loaded β-thalassemic (BKO) mice. 
Methods: The BKO mice were fed with a ferrocene-rich diet and were orally administered with 
CM1 [50 mg/(kg.day)] for 6 months. Blood levels of non-transferrin bound iron, labile plasma iron, 
ferritin (Ft) and malondialdehyde were determined. 
Results: The BKO mice were fed with an iron diet for 8 months which resulted in iron overload. 
Interestingly, the mice showed a decrease in the non-transferrin bound iron, labile plasma iron 
and malondialdehyde levels, but not the Ft levels after continuous CM1 treatment. 
Conclusions: CM1 could be an effective oral iron chelator that can reduce iron overload and lipid 
peroxidation in chronic iron overload β-thalassemic mice. 
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and labile plasma iron (LPI) are toxic forms of the iron that 
appear in plasma when the transferrin saturation increases. 
Changes in the labile iron pool (LIP) can be considered a 
cytosolic equivalent of plasma NTBI influence on intracellular 
ferritin (Ft) levels[3]. Thus, elevated levels of the LIP lead to an 
increased accumulation of Ft iron and in extreme cases to the 
formation of hemosiderin[4]. Iron chelation therapy is required 
to prevent iron-mediated injury to cells and to reduce the 
levels of NTBI, LPI, LIP and plasma Ft[5,6]. 
   At present, the treatment of iron overload diseases 
especially in β-thalassemia patients commonly involves 
the administration of deferiprone (DFP), desferioxamine (DFO) 
and deferasirox (DFX)[7-9]. Effectiveness, cost, compliance, 
quality of life and side effects of the chelators are all 
relevant considerations. Many adverse effects of these 
chelators include: nausea, vomiting, gastrointestinal tract 
disturbance, leukocytopenia, thrombocytopenia, arthopathy, 
zinc deficiency and agranulocytosis from DFP, skin redness, 
local irritation, mild pain at the applied sites from DFO, 
renal toxicity, Fanconi syndrome, formation of rashes and 
gastrointestinal tract disturbance from DFX[10]. 
   We have been studying the properties of a specific novel 
orally active iron chelator, 1-(N-acetyl-6-aminohexyl)-
3-hydroxy-2-methylpyridin-4-one (CM1). Our previous 
studies have illustrated that the CM1 (MW=256, Kpart=0.53) is 
an effective bidentate chelator and is slightly more lipophilic 
than the DFP (MW=139, Kpart=0.11)[11]. Preliminary results have 
established that CM1 is relative non-toxic in acute studies 
and can reduce the levels of malondialdehyde (MDA), LIP and 
reactive oxygen species in both mouse primary hepatocytes 
and human hepatocellular carcinoma (HepG2) cells[12,13]. 
Furthermore, CM1 was found not to be toxic to the peripheral 
blood mononuclear cells and liver cells of β-thalassemia 
mice under normal and iron overload conditions after 240 d 
exposure[14]. Srichairatanakool et al.[15] reported that CM1 
removed excess iron in the blood compartment and tissues 
of iron loaded wild type C57BL/6 mice. These preliminary 
studies have now been extended to include β-thalassemic 
mice.

2. Materials and methods

2.1. Animals

   The heterozygous β-thalassemia knockout (BKO, muβth-3/+) 
mice strain C57BL/6 aged between 6-10 weeks and having a 
body weight (20±5) g were kindly supplied by the Thalassemia 
Research Center, Institute of Molecular Biosciences, 
Mahidol University, Thailand[16]. The animals were housed 
in polyethylene cages and maintained in a clean air-
conditioned room under the controlled conditions of 12-h 
day/12-h night cycle at (25±3) °C and at 40%-70% humidity. 
The study protocol that was used has been approved by the 

Animal Ethical Committee of the Medical Faculty, Chiang 
Mai University, Thailand (Reference Number -3/2554).

2.2. Iron overload in mice and chelation treatment

   The mice were fed a normal pellet diet (N diet) and an 
N diet supplemented with 0.2% (w/w) ferrocene (Fe diet) to 
induce iron overload, over 240 d[17]. The iron-loaded mice 
were randomly subdivided into 5 groups. The study group 
was fed with the Fe diet along with treatments of deionized 
water placebo, DFP [50 mg/(kg.day)] and CM1 [50 and 100 
mg/(kg.day)] orally for 180 d (5 mice in each group)[18]. The 
control group was fed with N diet throughout the study. Blood 
samples were collected from the tail vein and collected into 
Na-heparin tubes. Plasma was separated immediately and 
kept frozen -20 °C for further analysis. 

2.3. Quantification of plasma NTBI

   Plasma NTBI was quantified based on nitrilotriacetic acid 
(NTA) chelation/HPLC technique with slight modifications[19]. 
Briefly, plasma was incubated with a weak chelator; NTA 
solution (80 mmol/L, at final concentration, pH 7.0) for 30 
min at room temperature to produce the Fe3+-(NTA)2 complex 
from NTBI. Subsequently, the complex was filtered through a 
membrane (Nano-Sep®, 10-kDa cutoff, polysulfone type; Pall 
Life Sciences, Ann Arbor, MI, USA) at 12 000 r/min for 60 min 
and analyzed using a non-metallic HPLC system. NTBI was 
fractionated on a glass analytical column (ChromSep-ODS1, 
100 mm伊3.0 mm, 5 μm), eluted with a mobile phase solvent (3 
mmol/L CP22 in 20% acetonitrile/MOPS pH 7.0) at a flow rate 
of 1.0 mL/min and the optical density (OD) was monitored 
at 450 nm using a flow cell detector (SpecMonitor 2300; LDC 
Milton-Roy Inc., Riviera Beach, FL, USA). Data analysis was 
conducted with BDS software (BarSpec Ltd., Rehovot, Israel). 
NTBI concentration represented by Fe3+-(CP22)3 peak area was 
calculated with a calibration curve constructed from Fe3+-
(NTA)2 in 80 mmol/L NTA (0-32 μmol/L). 

2.4. Quantification of LPI 

   In principle, redox-active LPI can convert non-fluorescent 
dihydrorhodamine (DHR) to oxidized form rhodamine (R), 
resulting in an increase of fluorescence intensity (FI)[20]. 
In the assay, plasma was incubated with/without 5 mmol/L 
DFP at 37 °C for 30 min and then the DHR solution containing 
ascorbic acid was added. Kinetics of increasing FI was 
followed immediately for 40 min, with readings every 2 min 
at 37 °C using a 96-well plate spectrofluorometer (λexcitation 

485 nm, λemission 538 nm). The slope of the FI was plotted 
against a reaction time of between 15-40 min. A calibration 
curve was constructed from the standard ferrous ammonium 
sulfate solution (0-20 μmol/L). Difference in rate of DHR 
oxidation represents a component of redox active LPI. The 
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LPI concentration was calculated from the calibration curve 
relating the differences in slope with/without DFP versus the 
standard iron concentration as described[15].

2.5. Measurement of plasma ferritin concentration 

   Ft concentration was determined by sandwich ELISA method 
as described by the manufacturer (Abnova, United Kingdom). 
Briefly, plasma was reacted with the solid phase-immobilized 
anti-Ft antibodies at room temperature for 60 min. After the 
removal of unbound proteins by being washed four times, 
anti-Ft antibodies conjugated with horseradish peroxidase 
was added to the plasma solution to form a complex with 
the previously bound Ft and it was then incubated at room 
temperature for 10 min. Following the washing, the enzyme 
bound to the immunosorbent was assayed by the addition of 
a chromogenic substrate, 3,3’,5,5’-tetramethylbenzidine and 
incubated in the dark for 10 min. The quantity of the bound 
enzyme was proportional to the concentration of Ft in the 
sample. Thus, the absorbance was determined at 450 nm.

2.6. Assessment of plasma lipid peroxidation
 
   MDA was adopted as an index of lipid peroxidation and was 
determined in plasma using the HPLC-based thiobarbituric 
acid reactive substance (TBARS) method[21]. Plasma was mixed 
with the reaction mixture; 10% (w/v) trichloroacetic acid 
containing 50 mg/L butylated hydroxytoluene and heated at 
90 °C for 30 min. After centrifugation (10 000 r/mim, 10 min), 
the supernatant was mixed with the chromogenic solution 
containing 0.44 mol/L H3PO4 and 0.6% (w/v) thiobarbituric 
acid (TBA). The mixture was heated to 90 °C for 30 min to 
produce a pink-colored product represented as TBARS. In the 
HPLC analysis[21] the product was subsequently fractionated 
on the column (ZORBAX Eclipse XDB-C18, 150 mm伊4.6 mm, 
5 μm, Agilent Technologies), eluted with a mobile-phase 
solvent of 50 mmol/L KH2PO4 pH 7.0 : methanol (65:35, v/v) 
at a flow rate of 1.0 mL/min and detected at 532 nm. Finally, 
TBARS concentrations were determined from the standard 
curve constructed by varied concentrations of 1,1,3,3-
tetramethoxypropane (0-100 μmol/L). 

2.7. Statistical analysis

   Data were presented as mean±SEM. Statistical significance 
was determined using One-way analysis of variance (ANOVA), 
in which P<0.05 was considered significant.

3. Results 

3.1. Plasma NTBI concentration

   Low levels of NTBI were detected in the plasma of N 

diet-fed BKO mice (2.1±0.78) µmol/L. In contrast, the NTBI 
concentration was significantly increased in the plasma 
of the BKO mice fed with Fe diet for 240 d (28.9±4.33) µmol/
L, indicating iron overload (Figure 1). As expected, the 
increase of NTBI concentration was reduced as a result of 
treatment with DFP (50 mg/kg) and CM1 (50 mg/kg) (P<0.005). 
Surprisingly, the levels of plasma NTBI in the mice after 
intervention with CM1 (100 mg/kg) were found to be higher 
than the value resulting with 50 mg/kg.  
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Figure 1. Plasma NTBI concentrations of the BKO mice fed with N 
diet, Fe diet, and the Fe diet following intervention with DFP (50 mg/
kg) and CM1 (50 and 100 mg/kg) for 6 months. 
Data were expressed as mean±SEM (n=5). *P<0.05 compared with 
the N diet group; #P<0.005 compared with the Fe diet group on the 
intervention.

3.2. Plasma LPI level

   Plasma LPI was not detected in N diet-fed BKO mice 
(Figure 2). However, the Fe diet induced the formation of 
LPI in plasma of mice, when mice were fed with the high Fe 
diet, generating a value of 15 μmol/L after 8 months. After 
chelation with DFP and CM1 at concentration of 50 mg/kg for 6 
months, both chelators were found to be effective in lowering 
the plasma LPI levels in Fe-fed BKO mice [(10.20±1.21) and 
(10.30±3.71) μmol/L, respectively]. There was no significant 
difference in the LPI levels for the different doses of CM1.
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Figure 2. Plasma LPI concentrations of the BKO mice fed with N 
diet, Fe diet, and the Fe diet following intervention with DFP (50 mg/
kg) and CM1 (50 and 100 mg/kg) for 6 months. 
Data were expressed as mean±SEM (n=5). 
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3.3. Plasma ferritin (Ft) content

   The plasma Ft content of BKO mice fed with Fe diet over 
240 d [(16.90±0.18) µg/mL] was found to be significantly 
higher than that of the N diet-fed BKO mice [(1.90±0.46) µg/
mL]. However, the concentration of plasma Ft remained 
unchanged after six months of intervention with both DFP 
(50 mg/kg) and CM1 (50 and 100 mg/kg) (Table 1). 

Table 1 
Plasma Ft concentrations of BKO mice.
Groups     Ft concentrations (µg/mL)

N diet  1.89±0.46
Fe diet 16.98±0.18*

Fe diet/DFP (50 mg/kg) 16.84±0.05*

Fe diet/CM1 (50 mg/kg) 16.83±0.16*

Fe diet/CM1 (100 mg/kg) 16.59±0.20*

BKO mice fed with N diet, Fe diet, and Fe diet following intervention 
with 50 mg/kg of DFP (50 mg/kg) and CM1 (50 and 100 mg/kg) for 6 
months. Data were expressed as mean±SEM (n=5). *P<0.05 compared 
with the N diet group.

3.4. Plasma MDA concentration

   Coincidently with the increase of NTBI, LPI and Ft levels 
in the plasma, long-term feeding with Fe diet mice led to 
a marked increase in plasma MDA concentration [(3.70±1.70) 
μmol/L] as compared with N diet-fed mice [(0.80±0.04) 
μmol/L] (Figure 3). DFP and CM1 treatments (50 mg/kg) over 
180 d reduced the increase of plasma MDA. Interestingly, 
CM1 (100 mg/kg) was again found to be less effective than 50 
mg/kg.
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Figure 3. Plasma MDA concentrations of BKO mice fed with N diet, Fe diet, 
and Fe diet following intervention with DFP (50 mg/kg) and CM1 (50 and 100 
mg/kg) for 6 months. 
Data were expressed as mean±SEM (n=5). 

Fe diet

4. Discussion

   Iron is an essential cofactor in a variety of cellular 
processes. However, iron in excess is toxic because of 

its propensity to induce the formation of dangerous free 
radicals, leading to mitochondrial dysfunctions and cell 
death via oxidative damage of biomolecules and lipid 
peroxidation[22-24]. Enhanced lipid peroxidation and 
hepatocellular injury have been proposed as an initial 
step by which iron causes cellular injury[25,26]. NTBI is 
the circulating forms of iron that are not tightly bound to 
plasma transferrin of thalassemia and sickle cell anemia 
patients[27,28]. LPI represents a component of NTBI that is 
redox-active and capable of permeating into organs and 
inducing tissue iron overload[29]. NTBI is cleared rapidly 
from plasma by the liver via the transmembrane protein 
Zrt- and Irt-like protein 14 (Zip14)[30] and is likely to 
play an important role in hepatocyte iron loading in 
hereditary hemochromatosis and other iron overload 
conditions especially in β-thalassemia. Both NTBI and 
LPI appear primarily in heavily transfused β-thalassemia 
patients[5,31,32]. 
   In order to investigate problems associated with 
iron overload tissue, several animal models have been 
developed. Thus duodenal iron absorption by β-thalassemic 
mice are found to be modestly increased due to low 
hepcidin level and enhanced mucosal iron uptake, leading 
to a sustained iron overload[33-35]. Liver 25-amino acid 
hepcidin controls influx of dietary iron from duodenum to 
plasma and efflux of heme-derived iron from macrophages 
through degradation of the cellular iron exporter called 
ferroportin[36]. Interestingly, patients with myelodysplastic 
syndrome and iron overload showed an increase in serum 
levels of hepcidin related to their iron and oxidative stress 
status after 3-month treatment with DFX[37]. In addition, 
serum level of growth differentiation factor 15 which 
involves in hepcidin regulation can be induced in normal 
subjects after iron chelation treatment[38]. Another useful 
animal model is that of ferrocene-loaded rats, which has 
been used to examine the efficacy of iron chelators[39,40]. 
   In this study we decided to iron load β-thalassemic 
mice with ferrocene. Long-term ferrocene administration 
induced iron overload in our experimental mice as 
determined by the significant increase of NTBI, LPI and 
Ft levels in the plasma. The iron loaded mice behaved 
normally for the duration of the study and showed the 
same weight gain as control animals. Chelation treatment 
with either DFP or CM1 led to the reduction of NTBI and LPI 
levels in β-thalassemic mice. At the higher concentration 
of 100 mg/kg, CM1 was found to be less effective than when 
present at a concentration of 50 mg/kg. This is surprising, 
but may be related to the toxicity of CM1 at the higher dose. 
Both DFP and CM1 were found to be effective at reducing 
MDA concentrations and this activity is almost certainly 
associated with their iron chelating ability. Interestingly, 
CM1 again was found to be more effective at 50 mg/kg than 
at 100 mg/kg. In contrast to the findings related to NTBI, 
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serum Ft levels were found to be unaffected by the presence 
of chelators. This finding reflects the observation that in 
some cases in β-thalassemia patients treated with iron 
chelators, the plasma Ft levels are largely unchanged or are 
only reduced after prolonged iron chelator treatment. 
   In conclusions, CM1 is an effective orally iron chelator 
and demonstrates marked iron chelating properties under 
biological conditions. It also reduces iron-induced lipid 
peroxidation in chronic iron overloaded β-thalassemic 
mice. Whether these beneficial effects can be translated 
to the treatment of thalassemia patients remains to be 
established. 
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Comments 

Background
   Iron overload leads to toxicity and cell death as free 
iron can be induced by Fenton reaction to form free 
radicals. Current clinical drugs for treating iron overload 
in β-thalassaemia include DFP, DFX and DFO, all having 
various side effects.
  
Research frontiers
   The present research work describes that the iron chelator 
CM1 can effectively reduce non-transferrin-bound iron, LPI 
and MDA level in the plasma of iron overloaded mice, but 
not ferritin content.

Related reports
   The data presented in this article showed that CM1 (100 
mg/kg) has no effect on the reduction of NTBI, LPI and MDA 
of plasma in iron overload mice whereas in other papers, 
increase of CM1 dose leads to a gradual iron removal in 
mouse primary hepatocytes and human hepatocellular 

carcinoma cells (Kulprachakarn et al. 2013).

Innovations and breakthroughs
   Data has showed that CM1 at 50 mg/kg is effective to 
reduce NTBI, LPI and MDA level in the plasma of iron 
overload but not at 100 mg/kg. At both doses, CM1 does not 
change serum ferritin level.
  
Applications
   The article describes that CM1 is an effective iron chelator 
to remove iron in β-thalassaemia mice and reduce iron-
induced lipid peroxidation. Combined with other studies on 
CM1, the compound may be applicable to β-thalassaemia 
patients.    

Peer review
   This manuscript has evaluated that CM1 on the iron 
removal capacity and lipid peroxidation in long-term 
iron loaded β-thalassaemia mice before translating the 
compound to the β-thalassaemia patients, which is very 
common in southeast Asia. The results are interesting.
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