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1. Introduction

   The term polycyclic aromatic hydrocarbon (PAH) refers 
to a ubiquitous group of several hundred chemically-related, 
environmentally persistent organic compounds having various 
structures and varied toxicity. Most of them are formed by a process 
of thermal decomposition (pyrolysis) and subsequent recombination 
(pyrosynthesis) of organic molecules. PAHs enter the environment 
through various routes and are usually found as a mixture containing 

two or more of these compounds, e.g., soot[1]. However, some PAHs 
are manufactured, and these pure PAHs usually exist as colorless, 
white or pale yellow solids. PAHs affect organisms through 
various toxic actions. The mechanism of toxicity is considered to 
be interference with the normal function of cellular membranes 
as well as with enzyme systems associated with the membrane[2]. 
They have been shown to cause carcinogenic and mutagenic effects 
and are potent immunosuppressants[3]. Their effects have been 
documented with respect to immune system development, humoral 
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Polycyclic aromatic hydrocarbons (PAHs) are a group of compounds consisting of two or 
more fused aromatic rings. Most of them are formed during incomplete combustion of organic 
materials such as wood and fossil fuels, petroleum products, and coal. The composition of 
PAH mixtures varies with the source and is also affected by selective weathering effects in the 
environment. PAHs are ubiquitous pollutants frequently found in a variety of environments 
such as fresh water and marine sediments, the atmosphere, and ice. Due to their widespread 
distribution, the environmental pollution due to PAHs has aroused global concern. Many 
PAHs and their epoxides are highly toxic, mutagenic and/or carcinogenic to microorganisms 
as well as to higher forms of life including humans. The main aim of this review is to provide 
contemporary information on PAH sources, route of exposure, worldwide emission rate, and 
adverse effects on humans, especially with reference to cancer.
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immunity, and host resistance. The most extensively studied PAHs 
are 7,12-dimethylbenzo anthracene (DMBA) and benzo(a)pyrene 
(BaP). PAHs have two or more single or fused aromatic rings with 
a pair of carbon atoms shared between rings in their molecules. The 
term “PAH” refers to compounds consisting of only carbon and 
hydrogen atoms. PAHs containing up to six fused aromatic rings 
are often referred to as “small” PAHs and those containing more 
than six aromatic rings are called “large” PAHs. The majority of 
research on PAHs has been conducted on the small PAHs due to 
the availability of samples of them[4]. The general characteristics of 
PAHs are high melting and boiling points (therefore making them 
solid), low vapor pressure, and very low aqueous solubility, the latter 
two tending to decrease with increasing molecular weight. Whereas 
their resistance to oxidation and reduction increases with higher 
molecular weight. PAHs are highly lipophilic and therefore very 
soluble in organic solvents. PAHs also manifest various properties 
such as light sensitivity, heat resistance, conductivity, emittability, 
and resistance to corrosion, as well as have a variety of physiological 
actions. PAHs possess very characteristic UV absorbance spectra. 
Each ring structure has a unique UV spectrum, and thus each isomer 
has a different UV absorbance spectrum. This characteristic is 
especially useful in the identification of PAHs. Most PAHs are also 
fluorescent, emitting characteristic wavelengths of light when they 
are excited (when the molecules absorb light). Aqueous solubility 
decreases with each additional ring. The simplest PAHs, as defined 
by the International Union of Pure and Applied Chemistry (IUPAC), 
are phenanthrene and anthracene, both of which contain three fused 
aromatic rings. Smaller cyclic molecules, such as benzene, are not 
PAHs. Naphthalene, which consists of two coplanar six-membered 
rings sharing an edge, is another aromatic hydrocarbon[5]. By formal 
convention, it is not a true PAH, though naphthalene is referred to 
as a bicyclic aromatic hydrocarbon. Although the health effects of 
individual PAHs are not exactly alike, 17 PAHs have been identified 
as being of greatest concern with regard to potential exposure and 
adverse health effects on humans and are thus considered as a group 
(profile issued by the Agency for Toxic Substances and Disease 
Registry, ATSDR). The primary purpose of this review is to provide 
public health officials with information about the carcinogenicity of 
PAHs, including its mechanisms. Also addressed are the sources of 
PAHs, routes of exposure to them and evaluations of toxicological 
studies and epidemiological investigations. Recommendations for 
the protection of human health and the environment against PAHs 
are also given.

2. Sources

2.1. Industrial emissions

   PAH emissions from industries are produced by the burning of 
fuels such as gas, oil, and coal. PAHs can also be emitted during the 
processing of raw materials such as primary aluminum. Additional 
sources of PAHs include emissions from industrial activities such 
as the production of primary aluminum, coke, petrochemicals, and 
rubber tires, as well as the manufacturing of cement, bitumen, and 
asphalt. Wood preservation, commercial heat and power generation, 
and waste incineration are yet other sources. Inomata et al. studied 
emissions of PAHs from the pyrolysis of scrap tires[6]. Total PAH 
emissions from a scrap tire plant via pyrolysis were 42.3 g/day with 
an emission factor (EF) of 4 mg/kg. To study the thermal degradation 
of organic materials, Lee and Vu investigated PAH emissions from 
pyrolysis products[7]. EFs of PAHs from thermal decomposition 
of organic materials ranged from (0.40±0.13) mg/g for cellulose to 

(9.0±0.5) mg/g for tires. Estrellan and Iino reported that EFs for joss 
paper furnaces average 71.0 mg/g[8]. With the application of devices 
such as adsorption towers for the control of air pollution, removal 
efficiencies of total PAHs are 42.5% and 11.7% for particulate 
and gaseous PAHs, respectively[9]. Mu et al. reported emissions of 
PAHs from various industrial stacks: blast furnace, basic oxygen 
furnace, coke oven, electric arc furnace, heavy oil plant, power 
plant, and cement plant[10]. The coke oven, electric arc furnace, 
and heavy oil combustor were shown to produce large amounts of 
high molecular weight PAH emissions. EFs of PAHs from these 
industrial stacks ranged from 0.08 to 3.97 mg/kg feedstock, whereas 
those for BaP ranged from 1.87 to 15.5 µg/g feedstock. The highest 
EFs of total PAHs and BaP were found for the combustion of heavy 
oils. Recently, PAH emissions from waste incineration have been 
investigated in many studies. According to the Italia Agency for 
Environmental Protection, total EFs of PAHs range from 91 to 
414 µg/g of waste burned in incinerators of municipal and industrial 
waste facilities. PAHs are mainly emitted from exhaust fumes of 
vehicles, including automobiles, railways, ships, aircrafts, and other 
motor vehicles. PAH emissions from mobile sources are associated 
with the use of diesel fuel, coal, gasoline, oils, and lubricant oil.

2.2. Agricultural sources

   Open burning of brushwood, straw, moorland heather, and stubble 
are agricultural sources of PAHs. All of these activities involve 
burning organic materials under suboptimum combustion conditions. 
Thus, it is expected that a significant amount of PAHs would be 
produced from the open burning of biomass. In fact, EFs of PAHs 
from wood combustion range from 16.4 to 1282 mg/kg wood[11]. 
PAH concentrations released from wood combustion depend on 
wood type, kiln type, and combustion temperature.

2.3. Air

   The background levels of some representative PAHs present in 
the air are reported to be 0.02-1.2 ng/m3 in rural areas and 0.15-
19.3 ng/m3 in urban areas[12]. Cigarette smoking and environmental 
tobacco smoke are other sources of airborne PAHs. Smoking a single 
cigarette can yield an intake of 20–40 ng of benzo (a) pyrene[13]. 
Smoking one pack of unfiltered cigarettes per day yields 0.7 µg/day 
BaP exposure; whereas in the case of filtered cigarettes, the value is 
0.4 µg/day[14]. The main sources of PAHs are related to combustion 
processes (domestic solid fuel burning, motor vehicles, etc.) and the 
use of solvents and aerosols.

2.4. Water

   PAHs can leach from soil into water. Water contamination also 
occurs from industrial effluents and accidental spills during oil 
shipment at sea[15]. Concentrations of B(a)p in drinking water are 
generally lower than those in untreated water and about 100-fold 
lower than the standard value for drinking water designated by the 
U.S. Environmental Protection Agency (EPA) [EPA’s maximum 
contaminant level for B(a)p in drinking water is 0.2 parts per billion].

2.5. Soil

   Soil contains measurable amounts of PAHs, primarily from 
airborne fallout. Documented levels of PAHs in soil near oil 
refineries have been reported to be as high as 200000 µg/kg of dried 
soil. Levels in soil samples obtained near cities and areas with heavy 
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traffic are typically less than 2000 µg/kg[16].

2.6. Foodstuffs

   In non-occupational settings, up to 70% of PAH exposure for 
a nonsmoking person can be associated with their diet. PAH 
concentrations in foodstuffs vary. Charring meat or barbecuing food 
over a charcoal, wood, or other type of fire greatly increases the 
concentration of PAHs. For example, the PAH level for charred meat 
can be as high as 10–20 µg/kg[17]. Charbroiled and smoked meats 
and fish contain more PAHs than do their uncooked counterparts, 
with up to 2.0 µg/kg of B(a)p detected in smoked fish. Tea, roasted 
peanuts, coffee, refined vegetable oil, cereals, spinach, and many 
other foodstuffs contain PAHs (Figure 1). Some crops, such as 
wheat, rye, and lentils, may synthesize PAHs or absorb them from 
water, air or soil[18].

Biofuel Wild fire Consumed product use

Traffic oil Domestic coal Coke production

Petrol refineries Waste incineration Others

58%

5%
4%

2%2% 1%

7%

17%

Figure 1. Environmental sources of PAHs.

2.7. Other sources

   Some PAHs are found in medicines, dyes, plastics, pesticides, and 
wood preservatives. Because these hydrocarbons are highly lipophilic 
in nature, PAHs in the environment are found primarily in soil, 
sediment, and oily substances, as opposed to being in water or air. 
However, they are also a component of concern in particulate matter 
suspended in the air[19]. The EPA has identified 1408 hazardous 
waste sites as the most serious in the U.S. These sites make up the 
National Priorities List (NPL) and are the sites targeted for long-term 
federal clean-up activities. PAHs have been found in at least 600 of 
the sites on the NPL. However, the number of NPL sites evaluated 
for PAHs is not known. As the EPA evaluates more sites, the number 
of sites at which PAHs are found may increase. This information 
is important because exposure to PAHs may cause harmful health 
effects and because these sites are potential or actual sources of 
human exposure to PAHs. The National Institute for Occupational 
Safety and Health (NIOSH) has determined that PAHs are a “potential 
occupational carcinogen”. Although the health effects of individual 
PAHs are not exactly alike, the following 17 PAHs are profiled as a 
group of those detrimental to health: acenaphthene, acenaphthylene, 
anthracene, benz[a]anthracene, BaP benzo[e]pyrene, benzo[b]
fluoranthene, benzo[g,h,i]perylene, benzo[j]fluoranthene, benzo[k]
fluoranthene, chrysene, dibenz[a,h]anthracene, fluoranthene, 
fluorene, indeno[1,2,3-c,d]pyrene, phenanthrene, and pyrene.

2.8. Routes of exposure

   PAH exposure through air, water, soil, and food sources occurs 
on a regular basis for most people. Routes of exposure include 
ingestion, inhalation, and dermal contact in both occupational and 

non-occupational settings. Some exposures may involve more than 
one route simultaneously, affecting the total absorbed dose (such as 
dermal and inhalation exposures from contaminated air). All non-
workplace sources of exposure, such as diet, smoking, and burning 
of coal and wood, should be taken into consideration[20].

2.9. PAH emission worldwide 

   The total global atmospheric emissions of PAH16 in 2004 were 
estimated to be 520 giga grams per year (Gg y-1) and a full list of 
the emissions from individual countries in 2004 is presented in 
the supporting information, along with socioeconomic parameters 
including area, population, and gross domestic product. The annual 
PAH emission from Asian countries in that year was 290 Gg y-1, 
contributing 55% of the global total. China and India were the top 
two PAH-emitting countries, emitting 114 Gg y-1 and 90 Gg y-1, 
respectively. Africa, North America, Europe, South America, and 
Oceania contributed 18.8%, 8.0%, 9.5%, 6.0%, and 1.5% of the 
total global PAH emissions, respectively (Figure 2). The United 
States was the third largest emitter of PAHs at 32 Gg y-1. The PAH 
emissions from Nigeria, Indonesia, Brazil, Pakistan, Democratic 
Republic of the Congo, and Russia ranked 4th to 9th on a global 
basis; and the total PAH emissions from the top nine countries 
accounted for over 60% of the global PAH emissions in 2004. Figure 
3 compares the calculated PAH emission rates for the United States, 
the United Kingdom, countries of the former USSR, and a number 
of European countries with those reported in the literature[21].

56%
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Asia Africa North America

OceaniaEurope South America
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Figure 2. PAH emission from all over world.
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2010).

Cz
ec

h 
Re

pu
bl

ic

U
ni

te
d 

K
in

gd
om

Bu
lg

ar
ia

N
or

w
ay

N
et

he
rla

nd
s

G
er

m
an

y
Sw

itz
er

la
nd

Cy
pr

us
A

us
tri

a
Ire

la
nd

H
un

ga
ry

Ro
m

an
ia

Fr
an

ce
Be

lg
iu

m
Sl

ov
ak

ia
Sp

ai
n

Sl
ov

en
ia

Sw
ed

en
Li

th
ua

ni
a

Po
la

nd
Fi

nl
an

d
Po

rtu
ga

l
La

tv
ia

Ita
ly

Es
to

ni
a

Ic
el

an
d

D
en

m
ar

k

150

100

50

0

-50

-100

-150



Thamaraiselvan Rengarajan et al./Asian Pac J Trop Biomed 2015; 5(3): 182-189 185

3. Adverse effects of PAHs

3.1. Acute health effects

   The effects on human health depend mainly on the length and route 
of exposure, the amount or concentration of PAHs one is exposed 
to, and of course the innate toxicity of the PAHs[22]. A variety of  
other factors can also impact health, including subjective factors 
such as pre-existing health status and age. The ability of PAHs to 
induce short-term health effects in humans is not clear. Occupational 
exposure to high levels of pollutant mixtures containing PAHs results 
in symptoms such as eye irritation, nausea, vomiting, diarrhea, and 
confusion[23]. However, it is not known which components of the 
mixture were responsible for these effects; and other compounds 
commonly found with PAHs may be the cause of these symptoms. 
Mixtures of PAHs are also known to cause skin irritation and 
inflammation. Anthracene, B(a)p, and naphthalene are direct skin 
irritants; and the former two are reported to be skin sensitizers, i.e., 
to cause an allergic skin response in animals and humans[24].

3.2. Chronic health effects

   Health effects from chronic or long-term exposure to PAHs may 
include decreased immune function, cataracts, kidney and liver 
damage (e.g., jaundice), breathing problems, asthma-like symptoms, 
lung function abnormalities; and repeated contact with the skin 
may induce redness and skin inflammation[25]. Naphthalene, a 
specific PAH, can cause the breakdown of red blood cells if inhaled 
or ingested in large amounts. With exposure to PAHs, the harmful 
effects that may occur largely depend on the way in which the 
individual is exposed.

3.3. Teratogenicity

   Embryotoxic effects of PAHs have been described in experimental 
animals exposed to PAHs such as benzo(a)anthracene, BaP, 
and naphthalene. Laboratory studies conducted on mice have 
demonstrated that ingestion of high levels of BaP during pregnancy 
results in birth defects and a decreased body weight in the 
offspring[26]. It is not known whether these effects can occur in 
humans. However, the Center for Children’s Environmental Health 
reports studies demonstrate that exposure to PAH pollution during 
pregnancy is related to adverse birth outcomes including low birth 
weight, premature delivery, and heart malformations. High prenatal 
exposure to PAH is also associated with a lower IQ at age three, 
increased behavioral problems at ages six and eight, and childhood 
asthma[27].

3.4. Immunotoxicity

   PAHs have also been reported to suppress immune reactions in 
rodents. The precise mechanisms of PAH-induced immunotoxicity 
are still not clear; however, it appears that immunosuppression may 
be involved in the mechanisms by which PAHs induce cancer[28].

3.5. Genotoxicity

   Genotoxic effects of some PAHs have been demonstrated in both 
rodents and in vitro tests using mammalian (including human) 
cell lines. Most PAHs are not genotoxic by themselves and must 
be metabolized to their diol epoxides, which then react with DNA 
to induce genotoxic damage. Genotoxicity plays an important 

role in the carcinogenicity process and maybe in some forms of 
developmental toxicity as well[29].

3.6. Carcinogenicity

   Although unmetabolized PAHs can have toxic effects, a major 
concern is the ability of their reactive metabolites, such as epoxides 
and dihydrodiols, to bind to cellular proteins and DNA. The 
resulting biochemical disruptions and cell damage lead to mutations, 
developmental malformations, tumors, and cancer[30]. Evidence 
indicates that mixtures of PAHs are carcinogenic to humans, which 
come primarily from occupational studies on workers exposed to 
mixtures containing PAHs, and these long-term studies have shown 
an increased risk of predominantly skin and lung, but also bladder 
and gastrointestinal cancers[31]. However, it is not clear from these 
studies whether exposure to PAHs was the main cause, as these 
workers had been simultaneously exposed to other cancer-causing 
agents (e.g., aromatic amines). Animals exposed to high levels of 
certain PAHs over long periods in laboratory studies develop lung 
cancer from inhalation, stomach cancer from ingesting PAHs in food, 
and skin cancer from skin contact. BaP is the most common PAH 
to cause cancer in animals, and this compound is notable for being 
the first chemical carcinogen to have been discovered. Based on 
the available evidence, both the International Agency for Research 
on Cancer[32] and the US EPA (1984)[33] classified a number of 
PAHs as carcinogenic to animals and some PAH-rich mixtures as 
carcinogenic to humans. The EPA has classified the following seven 
PAH compounds as being probable human carcinogens: benz(a)
anthracene, BaP, benzo(b)fluoranthene, benzo(k)fluoranthene, 
chrysene, dibenz(ah)anthracene, and indeno(1,2,3-cd)pyrene.

3.7. Cancer

   PAHs are ubiquitous environmental agents commonly believed 
to contribute significantly to the development of human cancers. 
Like many other carcinogens, these hydrocarbons are metabolized 
enzymatically to various metabolites, of which some are reactive. 
In the large group of enzymes involved in the metabolism of 
carcinogens[34], cytochrome P450 enzymes CYP 1A1, 1A2, 1B1, 
and 3A4 are the most important enzymes in the metabolism of 
PAHs[35]. PAHs undergo metabolic activation to diol-epoxides, 
which bind covalently to DNA. The DNA binding of activated 
PAHs is considered to be essential for the carcinogenic effect[36,37]. 
DNA adducts have been found in various human tissues[38]. In 
epidemiological studies, a positive correlation between the level of 
PAH exposure and the number of PAH-DNA adducts has been found, 
including that between coke oven exposure and PAH-DNA adducts 
in blood cells[39] and that between cigarette smoking and PAH-
DNA adducts also in blood cells[40]. A refined repair system has 
evolved to eliminate DNA adducts from the genome. PAH adducts 
are eliminated by nucleotide excision repair[41]. If the adducts are 
left unrepaired, they may cause permanent mutations[42]. If these 
mutations are situated at critical sites, including tumor suppressor 
genes or oncogenes, they may lead to cellular transformation and 
the development of tumors. In some cases, specific mutations found 
in the Tp53 gene, the most commonly mutated gene in human 
cancers, are associated with exposure to certain carcinogens[43]. 
For example, the PAHs in cigarette smoke bind preferentially to 
the Tp53 gene sites called “hotspot” codons, where most smoking-
associated mutations are also found[44]. Such studies give support 
to the link between DNA adducts and the cancer risk in humans 
(Figure 4).
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Figure 4. PAH harmful effects on humans.
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3.8. BaP 

   According to the International Agency for Research on Cancer 
(IARC), there is sufficient evidence to show that BaP is carcinogenic 
in laboratory animals, and probably also in humans. Rajendran 
et al. reported that BaP has the potential to cause lung cancer in 
experimental animals[45]. The ability of BaP to induce tumors upon 
local administration is well documented[46]. BaP is metabolically 
activated, and the ultimate carcinogenic product is formed via a 
three-step process. The first step includes the formation of (7R,8S)-
epoxy-7,8-dihydrobenzo(a)pyrene (B(a)P-7,8-oxide), catalyzed 
by cytochrome P450 enzymes[42]. The second step, catalyzed by 
epoxide hydrolase, is the conversion to (7R,8R)-dihydroxy-7,8-
dihydrobenzo(a)pyrene (B (a)P-7,8-diol). Finally, cytochrome P450 
enzymes catalyze the reaction, producing four possible isomers of 
7,8-dio1-9,l0-epoxide. Quantitatively the most important of them 
is (7R,8S)-dihydroxy-(9S,10R)-epoxy-7,8,9,10-tetrahydrobenzo(a)
pyrene (BPDE). BPDE, which is the ultimate carcinogen, binds to 
DNA at guanine residues[36,47] and produces BPDE-DNA adducts. 
BaP induces cytochrome P4501A1 (CYP1A1) by binding to the aryl 
hydrocarbon receptor in the cytosol[48,49] (Figure 5). Upon being 

bound, the transformed receptor is translocated to the nucleus where 
it dimerizes with aryl hydrocarbon receptor nuclear translocator. 
This dimer then binds to xenobiotic response elements located 
in the promoter region of certain genes. This process increases 
the transcription of certain genes, notably CYP1A1, resulting in 
increased production of the CYP1A1 protein[48] and is similar to 
the induction of CYP1A1 by certain polychlorinated biphenyls 
and dioxins. Seemingly, CYP1A1 activity in the intestinal mucosa 
prevents major amounts of ingested B(a)P from entering the portal 
blood and systemic circulation[50]. Intestinal, but not hepatic, 
expression of CYP1A1 depends on Toll-like receptor 2[51].

3.9. DMBA 

   PAHs have been shown to increase the risk for breast cancer 
through a variety of mechanisms. DMBA, one of them, is commonly 
found in our environment and can be isolated from diesel exhaust, 
barbequed meat, tobacco smoke, overheated cooking oil, etc[52]. 
DMBA has the potential to cause breast cancer in experimental 
rats[53]. Reactive oxygen species are potentially dangerous by-
products of cellular metabolism and also the predominant reason 
for many oxidative stress-mediated diseases generated by various 
environmental contaminants among which DMBA is an important 
one. DMBA is a fat-soluble compound, and because of this property 
it accumulates and persists in the adipose tissue of the mammary 
gland, thus increasing the exposure of mammary epithelium to 
this chemical carcinogen[54]. DMBA, like BaP, is also an indirect- 
acting carcinogen, requiring metabolic activation to yield its ultimate 
carcinogenic form[55]. DMBA is oxidized to DMBA-3-4-epoxide by 
phase I enzymes, especially CYP[56].

3.10. Metabolic activation of DMBA 

   Epoxide hydrolase, another phase I enzyme, then converts the 
epoxide to DMBA-3,4 diol, the proximate carcinogen. Subsequent 
oxidation by CYP leads to the formation of DMBA-3,4-diol-
1,2-epoxide, the ultimate carcinogen[57] (Figure 6), which then 
reacts with DNA to form the adducts that are responsible for its 
mutagenicity and carcinogenicity. According to the International 
Agency for Research on Cancer (IARC) and the U.S. EPA, 
anthracene, benzo(g,h,i)perylene, benzo(e)pyrene, chrysene, 
fluoranthene, fluorene, phenanthrene, and pyrene are not classifiable 
as to their carcinogenicity in humans and are considered potentially 
to act as immunosuppressants. Although there are still technical, 
financial, as well as management difficulties in technique 
development and popularization, the potential for reducing PAH 
emissions is enormous.

Figure 6. Metabolic activation of DMBA.
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4. Conclusions

   In conclusion, the concentrations and fate of PAHs in 
the environment were reviewed. The partitioning of these 
compounds in the atmosphere was also evaluated, with 
reference to the historical trends in PAH emissions. In addition, 
the main anthropogenic sources of PAHs were discussed. 
Domest ic  coal  combust ion,  coal- fi red power  s ta t ions , 
industrial processes, and vehicles were indicated to make 
major contributions to contemporary national-regional PAH 
emissions, although the relative proportions attributed to these 
sources would vary for different PAH compounds and among 
countries. The information presented here indicates that large 
uncertainties still exist in terms of atmospheric sources, loads, 
fates, and degradation rates of PAHs and that further data 
enabling a more accurate general model for evaluations are 
needed. Companies are urged to develop strategies aimed at 
minimizing the content of PAHs in industrial exhaust gases and 
products that exceed legal requirements, thereby reducing PAH 
contamination as much as possible.

Conflict of interest statement

   We declare that we have no conflict of interest.

Acknowledgement

   T h i s  w o r k  w a s  s u p p o r t e d  b y  U G C - N o n  n e t  p l a n 

(Grant  No.  No:co/Tara /UGC-Non-Net /UGC-XII  P lan/
Pharamacology&ET/2014/706 dated 28th march 2014).

Comments 

Background
   PAHs are a group of compounds consisting of two or 
more fused aromatic rings. Most of them are formed during 
incomplete combustion of organic materials such as wood 
and fossil fuels, petroleum products, and coal. Due to their 
widespread distribution, the environmental pollution caused by 
PAHs has aroused global concern.

Research frontiers
   The present review article explains the toxic effects of PAHs. 
Many PAHs and their epoxides are highly toxic, mutagenic 
and/or carcinogenic to all living organisms.

Related reports
   The sources  of  PAHs such as  indust r ia l  emiss ions , 
agricultural sources, air, water, soil, foodstuffs and other 
sources were reviewed.  

Innovations and breakthroughs
   In this present article, authors have reviewed the sources, 
emissions and the adverse effects of PAHs. The sources of 
PAHs and their epoxides emission create cancer and other 
adverse effects to living organisms worldwide.

Figure 5. Metabolic activation of BaP[49].
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Applications
   From this review article, it has been found that PAHs is toxic, 

mutagenic and carcinogenic. It is urged to develop strategies aimed 

to minimizing the content of PAHs in industrial and agricultural 

products thereby reducing PAHs accumulation in the environment.

Peer review
   This review is a valuable work in which authors have explained 

the sources and the emissions of PAHs. PAHs and their epoxides 

emission create cancer and other adverse effects to living organisms. 

Authors have explained that PAHs is toxic, mutagenic and 

carcinogenic. It is urged to develop strategies aimed to minimizing 

the content of PAHs in environment.
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