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Abstract

A set of knots is called n-independent if for arbitrary data at those knots, there is a (not
necessary unique) polynomial of total degree at most n that matches the given information. For an
arbitrary n-independent knot set ¥ in R* we are interested with n-fundamental polynomials which
have simplest possible form. In the present paper we bring necessary and sufficient conditions for
the set X of cardinality not exceeding 3n + 1, such that all its knots have n-fundamental
polynomials in form of products of linear factors. We bring also necessary and sufficient conditions
for n-independence of non-coplanar knot sets in R? of the mentioned cardinality .
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Introduction
Let IT; be the space of polynomials of three variables and total degree at most n:

H?‘! = Z ﬂ,i}-kxi}-‘-"zk : ﬂ‘i_;l'k ER
it+jtk=n

We have that
. 3 n+3

N :=dimlII; = 3 )

In case of two variables the corresponding space we denote by IT,,.

Denote by IT,(L) the set of restrictions of polynomials I3 on a plane L in R®. Notice that if
the plane L is not perpendicular to the X¥ coordinate plane then we may assume that polynomial
p € I1, (L) is given by an equation g{x,v) = 0, where g € II,. Indeed, in this case L is given by an
equation z=ax +by+c and we have for the restriction of pE Hi on L:
pli = plx,y,ax + by + o) = qlxy).

Consider a set of distinct knots (points) in R?

X = {ALAZJ' "J‘qs} :

The problem of finding a polynomial ¢ € I15, which satisfies the conditions

pld;)=¢c, i=12,..,5 (1.1)
is called interpolation problem. A polynomial p € IT3 is called an n-fundamental polynomial
for a knot 4, € X_, if
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p(‘qz} = aiki i = 1121 vy 3y
where § is the Kronecker symbol. We denote this fundamental polynomial by py = P41 x, = Pix. a-
Sometimes we call fundamental also a polynomial that vanishes at all knots of X but one, since it is
a nonzero constant times a fundamental polynomial.

Definition 1.1. A set of knots X is called n-independent, if each its knot has a fundamental
polynomial. Otherwise, X is called n-dependent.

Fundamental polynomials are linearly independent. Therefore a necessary condition of n-
independence is #¥ = N. Having fundamental polynomials of all knots of X we get a solution of
interpolation prot;lem (1.1), by using the Lagrange formula:

- Zl e (1.2)

Thus we get that the knot set X is n -independent if and only if the interpolating problem
(1.1) is solvable, meaning that for any data {-51, €3, e, Cs.} there exists a (not necessarily unique)
polynomial p € I3, satisfying the conditions(1.1).

In view of the Lagrange formula (1.2), it is important to find the simplest possible
fundamental polynomials, to which this paper is devoted. Namely, we are interested with
fundamental polynomials that are products of linear factors.

Let us bring some results on n —independence of knot sets in the plane we shall use in the
sequel. Let us start with the following simple but important result of Severi:

Theorem 1.2 ([3]). Any set of knots X, with #X = n + 1, is n-independent.

Indeed, for each knot 4 € X here we can find n -fundamental polynomial which is a product
of k lines with, with & = #% — 1 = n. We require just that each of these lines passes through a knot
of X\\{A} and does not pass through A.

We shall use the same letter, say p, to denote the polynomial g € IT, \I1; and the algebraic
curve given by the equation p(x,¥) = 0. We do the same for the polynomial p € TI3\IT3 and
algebraic surface p(x,v,z) = 0.

Next two results extend the Severi theorem to the cases of sets with no more than 2n + 1 and
3n knots, respectively. To present them it is convenient to introduce the following three conditions.

Suppose that X is a knot set in R?and A € X is a knot.

1) We say that X satisfies the condition {(n}; if non + 2 knots of X are collinear.

We say that X satisfies the condition {n); 4 if non + 1 knots of X'{A}are collinear together
with A.

2) We say that X satisfies the condition {n}; if no 2n +2 knots of X are lying in a conic
(reducible or irreducible).

In the corresponding condition concerned with the knot 4 we distinguish reducible and
irreducible conics. Namely, we say that X satisfies the condition {n), 4 if the following two
conditions hold:

1) no2n+1 knots of X\{A} are lying on an irreducible conic together with A4,

it) ifn + 1 knots of X\{A} are collinear and are lying in a line & then non knots of X\ a are
collinear together with A,

3) We say that X, satisfies the condition (n); if #% <X 3n or #X = 3n and there are no curves
¥ €113 and a,, € I1,, such thaty N o=,, = X.

If the knot set X is in R® (or in R*)then we say that the above mentioned conditions are
satisfied if they are satisfied for each knot set X n L, where L is any plane in B?.

Theorem 1.3 ([1]). Any knot set X, with #X = 2n + 1, is n -independent, if and only if the
condition (n), is satisfied.

Next theorem concerns the n-independence of at most 3n knots.

Theorem 1.4 ([2]). Let X be a set of knots in R*, with #X = 3n. Then the set X is n-
independent if and only if the conditions {n});,{n};, {n); hold.

The following is a generalization of this result to the case of R,

Theorem 1.5 ([4]). Let X be a set of knots in R*, with #X < 3n. Then the set X is n-
independent if and only if the conditions {n}),,{n},, {n); hold.
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Next three well-known lemmas concern the factorization of polynomials vanishing at some
points of lines, reducible and irreducible conics, respectively (see e.g., [2], Corollaries 3.3 and 3.4).

Lemma 1.6 ([2]). Suppose that « is a line. Then for any polynomial p € I1,, vanishing at
n + 1 points of @ we have that p = aq, where q € I1,,_4.

Lemma 1.7 ([2]). Suppose that «;, i = 1,2 are two lines. Then for any polynomial p € I1,
vanishing at n + 1 points of ay and n points of a,\a; we have that p = a4 a2q, where g € I1,,_5.

Lemma 1.8 ([2]). Suppose that § is an irreducible conic. Then for any polynomial p € T1,,
vanishing at 2n + 1 points of § we have that p = g, where g € I1,,_,.

Following theorem is a special case of the Cayley-Bacharach theorem (see e.g., [1]).

Theorem 1.9. ([1]). Let y €113 and o, € I1,, be curves such that y N g,, = X and #X = 3n.
Then any curve of degree n containing all but one knot of X, contains all knots of X.

Next result from [5] concerns the factorization of fundamental polynomials into linear
factors.

Theorem 1.10 ([5]). Let X be an n -independent set of knots with #X = 2n + 1. Then for
each knot of X there is an n -fundamental polynomial, which is a product of lines. Moreover, this
statement is not true in general for n —independent knot sets X, with #X = 2n+ 2 andn = 2.

We have this result also in a wider setting:

Proposition 1.11 ([5]). Let X be a set of nodes with #X = 2n+ 1 and A € X. Then the
following three statements are equivalent:

1) the knot A has an n-fundamental polynomial,

it) the knot A has an n-fundamental polynomial, which is a product of linear factors,

ii)) non + 1 nodes of X\[A} are collinear together with the node A.

Below we consider the possibility of factorization of fundamental polynomials into factors of
degree at most 2.

Theorem 1.12 ([5]). Let X be an n-independent set of nodes with #X = 2n + [” ;’2] + 1.

Then for each node of X there is an n-fundamental polynomial, which is a product of lines and
conics. Moreover, this statement is not true in general for n-independent node sets X with
#X22n+ ["/5] + 1 and n=3.

The first statement of Theorem follows from the following result which covers more wider
setting.

Proposition 1.13 ([5]). Let X be a set of knots with #X = 2n+ [” H"2] +1 and A€ X.
Then the following three statements are equivalent:

1) the knot A has an n - fundamental polynomial,

it) the knot 4 has an n - fundamental polynomial, which is a product of lines and conics,

iii) for the knot A the conditions {(n); 4,{n),4 hold.

1. On factorization of bivariate fundamental polynomials

In this section we prove the following interesting in itself proposition which in the Section 4
will be used to establish a result on n-independence of knot sets in R2.

Theorem 2.1. Let X be a set of knots in R* with #X = 3n — k, where k,n = 1. Suppose that
the conditions (n},,{n}, hold. Then the knot set X is n-independent and a fundamental polynomial
of each knot in X can be written in form of products of k lines and a curve of degree n —k:
Pax = ol b1, VA EX,

The statement of Theorem readily follows from the following more general proposition.

Proposition 2.2. Let X be a set of knots in R* with #X = 3n — k, where k,n>1and A € X.
Suppose that the conditions {1}y 4,({n), 4 hold. Then there exists a fundamental polynomial of A of
formpy 5y = @gery ..é._1q, where a; € BI; are lines and g € BIL,—,.

Proof. The cases n = 1,2 are evident. Let us prove the case n = 3:

First assume that k = 1. In this case we have 8 knots in X. Therefore #X = 2n + [ jz] + 1.

Thus according to Proposition 1.13 4 has a fundamental polynomial which is a product of lines and
conics. Since n is odd there is a line factor.

For the cases k=2 we have #X = 1+ 2n and hence according to Proposition 1.11 the knot 4
has a fundamental polynomial which is a product of lines.
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Thus we may assume from now on that n=4.

Let us now use induction on n + k. Assume that the statement is true for all natural numbers
n"and k', such that n"+ ¥ = n + k— 1, and prove it for n" = n and k' = k. Notice that it is enough
to find a line @y, A&ay,, passing through two knots of X such that conditions {n — 1), 4,{n —1};4
hold for the knot set X" := X\ a,.

Indeed, after the choice of such a line we will have at most 3(n—1) —(k—1)=3n—k— 2
knots in X', Therefore in view of induction assumption there exists a fundamental polynomial of
form ps 5 -1 = @1 .. @x_1q, where a; € BI]; and g € I1,,_;. Hence we get a desired fundamental
polynomial p; y = apty .. tp_14.

Notice that if there is a line & passing through n + 1 knots of X\{A4}, then it can be taken as a
desired line. Thus we may assume from now on that any line not passing through 4, passes through
at most n knots of X.

Now assume that the set X satisfies the conditions {n — 1}; 4,{n — 1}, .

Then is easily seen that in this case as a desired line we can take any line @, A&, passing
through two knots of X.

The remaining cases we consider in three steps.

Step 1. Suppose that there is an irreducible conic B passing through 4 and at least 2n —1
other knots of X. Notice that there can be at most one such conic. Indeed, if there are two such
conics, then we will have at least 1+ 2(2n — 1) — 3 = 4n — 4 knots in X, where 3 stands for the
possible intersection knots of the two conics different from 4. On the other hand
dn — 4>#X = 3n — I; if n>4, where k=1,

Note that according to the condition {n); . the conic B contains at most 2n knots of X
different from A.

Now suppose that the condition {(n — 1), 4 is not satisfied - there is a line &, passing through
A and n other knots. Then let us verify that the following three conditions are satisfied: the line a4
and the conic B intersect at two knots of X, the conic B contains exactly 2n — 1 knots of X\\{A} and
k = 1. Indeed, in this case we have that X contains at least 1+ n +(2n —1) —1 = 3n — 1 knots,
where the last ‘—1’ in the left hand side of the equality means that the line and the conic, besides 4,
intersect also at another knot B.

It is easily seen that in this case as a desired line we can take a line passing through B and a
knot from B, different from A.

Finally suppose that the part ii) of the condition {n — 1}, 4 is not satisfied. Therefore there is a
line w, Aea, passing through exactly n knots of X. Then we can verify that & intersects B at at least
one knot of X and all the knots of X, except possibly a knot, lie in & U B. Indeed, as in the previous
case we have that X contains at least 1 + n + (2n — 1) — 1 = 3n — 1 knots, where the last ‘—1’ in the
left hand side of the equality means that & and [ intersect at a knot in X.

It is easily seen that here « is a desired line .

Step 2. Suppose that there is a line @, Aza, passing through exactly n knots, and a line
oy, A E ay, passing through at least n — 1 knots of X\ a@. Let us consider two cases.

First suppose that a4 passes through 4 and n other knots of X'. Note that outside of these
two lines there are at most n — 2 knots. Therefore if there is a second line ', 4#a’, passing through
n knots, then it intersects the lines & and &, at two different knots. Therefore in this case ' is a
desired line. If there is no second line «', then it is easily seen that we can take as a desired line a; a
line passing through one knot from &« and another from «,, different from A.

Next suppose that @, passes through A and exactly n — 1 other knots of i\@. Note that the
conditions {n —1}; 4 and {n — 1}, 4 are satisfied, since there are at most n — 1 knots outside of the
lines &, a@4. Therefore it is easily seen that e is a desired line.

Step 3. Suppose that there is a line &, passing through 4 and n other knots of X. Notice that
there can be at most two such lines. In this case it is easily seen that as a desired line @, A zap, we
can take any line that intersects each of the considered lines at a knot different from A.
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Note that Proposition 1.11 is a special case of Proposition 3.2 where we take k = n — 1.

Note also that for knot sets of cardinality 2n + 2 we get from Proposition 3.2 that each knot
has a fundamental polynomial in the form of product of n — 2 lines and a conic, which improves
Proposition 1.13 in this case.

2. On factorization of trivariate fundamental polynomials

Let us start this section by proving Theorem 1.4 in a more general setting.

Proposition 3.1. Let X be a set of knots in R* with #X = 3n. Thenaknot A € X hasann -
Jundamental polynomial if and only if the conditions {n)y 4,{n)s4, (n)3 hold.

Proof. Let us start with the 'only if' part of Proposition. Suppose that the knot 4 has an n-
fundamental polynomial and let us prove that the conditions {n}; 4,{n};4, {n)3 hold.

First we show that the condition {n}, 4 is satisfied. Indeed, suppose by way of contradiction
that a line passes through 4 and n + 1 other nodes of X. Then the fundamental polynomial p;
vanishes at those n + 1 nodes. Therefore, by Lemma 1.6, it vanishes at all the points of the line
including 4, which is a contradiction.

Next we show that the condition(n}, 4 takes place. Indeed, suppose by way of contradiction
that a line & passes through n + 1 nodes of X and another line &, passes through 4 and n nodes of
X\as. Then the fundamental polynomial p; » vanishes at these n + 1 and n nodes. Therefore, by
Lemma 1.7, it vanishes at all the points of the lines & and @, including A4, which is a contradiction.
Now assume on the contrary that an irreducible conic § passes through 4 and 2n + 1 other nodes of
X. Then the fundamental polynomial p; 5 vanishes at those 2n + 1 nodes and therefore, by Lemma
1.8, it vanishes at all the points of §, including 4, which is a contradiction.

Finally we show that {n}); is satisfied. Indeed, suppose by way of contradiction that #X = 3n,
and there are curves y € I1; and o, € IT,, such that ¥ N o, = X. Then the fundamental polynomial
Pax vanishes at all 3n —1 knots of X different from 4. Therefore according to Theorem 1.9 it
vanishes at all the points of X, including 4, which is a contradiction.

Now let us prove the 'if part. It is enough to verify that the conditions {(n}; and (n}; of
Theorem 1.4 are satisfied. Let us do this in two steps.

Step 1. Suppose there are n + 1 knots, belonging to a line a and Aza: Then we take as a
fundamental polynomial of A: pjy, = @piy .1, where X' = X\a. Here the existence of the
fundamental polynomial p; x-,,—, follows from Proposition 1.11, since #¥' = 2n—1=2(n—-1) +1
and according to the condition {n}, 4 no n knots of X" are collinear together with A.

Step 2. Suppose there are 2n + 2 knots, belonging to an irreducible conic § and 4 . Then we
take the fundamental polynomial in the form:pyy, = BPix -2 where X’'=X\§. Here the
existence of the fundamental polynomial pj y,,_» follows from Theorem 1.2, since #X' = n — 2.

Notice that, in view of Step 1, we may assume that there is no line passing through n + 1
knots and not passing through A. Then, according to the condition {n}, 4, there is no line passing
through 4 and n + 1 other knots. Therefore there is no reducible conic (pair of lines) passing
through 2n + 2 knots.

Now in view of Steps 1, 2 and the conditions {n}; 4,{n};.4,(n)3, we may assume that non + 2
knots of X are collinear and no 2n + 2 knots of X belong to a conic(reducible or irreducible).
Therefore in view of condition {n}; and Theorem 1.4 X is n-independent.

Next we present a main result of the paper.

Theorem 3.2. Let X be a set of knots in R® with #X = 3n+1and A € X. Then the knot A
has an n -fundamental polynomial, which is a product of linear factors, if and only if the
condition {n}); 4 and the following condition hold:

1) if at least 2n + 1 knots of X\[A} are lying in a plane L, passing through A, then all
the knots of X n L, different from A lie in n lines not passing through A.

Proof. Without lose of generality we can assume that #X = 3n + 1. Indeed, it suffices to
verify that if #X¥< 3n + 1 then we can add a knot F to X such that the set X' = X U {E} satisfies the
conditions {n}; 4 and i) with X replaced by X". For this purpose we can consider all the lines passing
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through any two knots of X and all the planes passing through any three non-collinear knots of X.
Note that both these sets are finite. Then it is easily seen that as a desired knot E one can choose
any knot which does not belong to the considered lines and planes.

Let us start with the 'only if' part. Suppose that the knot 4 has an n -fundamental polynomial,
which is a product of linear factors: p; x = Ly L; ... L.

Then a line passing through A intersects each plane L;, i = 1,2,...,n, in at most one point.
Therefore there is no line passing through 4 and n + 1 other knots of X, since all the knots of X lie
in the planes Ly, L,, ..., L,,. Thus the condition (n}, 4 is satisfied.

Next suppose that L is a plane passing through 4 and at least 2n + 1 other knots of X.
Then the planes L4, Lo, ..., L,, will intersect L in at most n lines not passing through A. Thus all the
knots of X n L different from A4 lie in these lines. Therefore the condition {n}); 4 holds.

Now we will prove the 'if' part in the following three steps.

Step 1. First consider the case when there are at least 2n knots of X\{A} that belong to a plane
L, together with A. Let us show that all these knots lie in n lines in L, not passing through A.
Indeed, if the number of these knots is greater than 2n then this follows from the condition i) of
Theorem. On the other hand if there are exactly 2n knots in the plane L, then this follows from
Proposition 1.11. Here we take into account the condition {n}; 4 of Theorem. Then notice that in this
case there are at most n knots outside of the plane L, i.e., #{X\L,) = n. Thus we can take p; y as a
product of n planes each passing through one of the mentioned = lines and a knot from outside L.
Note that if there are less than n knots outside of L4, then we can take any other point from R3\L,.

Step 2. Now consider the case when there is a plane L, passing through 4 and exactly 2n — 1
other knots. Therefore there are exactly n + 1 knots in X"\ L4. We want to choose three non-collinear
knots: a knot from L, different from 4 and two knots from outside of L, such that the plane L
passing through them is not passing through 4, and for the remaining knots in L, there are no n
knots collinear together with A. Note that after we chose such three knots we will have for the knot
set X":= X\L, that #¥ " = 3(n — 1) + 1 and the following conditions are satisfied:

1) there are at most 2(n — 1) + 1 knots in L,
2) no n knots are collinear together with A4,
3) there are at most n — 1 knots outside of L.

Thus in the same way as in the Step 1, by using Proposition 1.11, we can construct a
fundamental polynomial of 4 with respect to X": p3 5 in form of product of planes. Finally notice
that we can take py x = Lpg »-

Now let us describe the choice of the mentioned three knots. Notice that in view of Step 1 we
may assume that there is at most one line passing through 4 and n other knots, because otherwise
we would have a plane passing through 4 and at least 2n other knots. Let us consider two cases.

First suppose that there is such a line 1, in L. In this case we chose the first knot E any knot
from [, different from A. The other two knots € and D we chose such that the knots 4, E,Cand D are
not coplanar. This will not be possible only if all the n + 1 knots of X\\L; belong to a plane L' that
passes through I,. This case was considered in Step 1, since there are 2n + 1 knots in the plane L’
different from A.

Next suppose that there is no such a line I, in L,. It is easily seen that in this case as three
knots mentioned above we can take any three knots such that they are not coplanar together with A.

Step 3. Now we may assume that no 2n — 1 knots of X\{4]} belong to a plane together with A.
In this case we will use induction on n.

In the case n = 1 we have 4 knots in X. If they are not coplanar then we will take p; x = L,
where L is the plane passing through the 3 knots different from 4. Otherwise if the 4 knots are
coplanar then according to the condition i) of Theorem the 3 knots different from 4 are lying in a
line. Therefore as a plane L we can take any plane passing through that line and not passing
through 4.

Now suppose that Theorem is true for n — 1 and let us prove it for n. Notice that it is enough
to find a plane L passing through 3 knots of X which is not passing through 4, and for X" := X\\L the
conditions {n}), 4 and i) of Theorem hold with n — 1. Indeed, then we will take p; y = Lp, ;- where
in view of induction hypothesis, p; 5 is a product of n — 1 planes. Now let us describe the choice of
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the mentioned three knots. The condition i) of Theorem holds for the set X" with n — 1, since there
are no 2(n—1) + 1 = 2n — 1 knots of X coplanar together with 4. Thus to complete the proof it
remains to note that if there is a line I, passing through 4 and n other knots (recall that there can
be at most one such line) then we can take one of these three knots any knot from [, different from
A. Notice that the choice of the mentioned three knots will not be possible only if the whole set X
lies in a plane — a case considered in Step 1.

Independence of 3n + 1 knots in R?

The following theorem improves Theorem 1.5 in the case of R®.

Theorem 4.1. Let X be a set of non-coplanar knots in R?* with #% = 3n + 1. Then X is n-
independent if and only if the conditions {n}),,{n},, {n}; hold.

Notice that this theorem readily follows from the following result which covers more wider
setting.

Proposition 4.2. Let X be a set of non-coplanar knots in R?* with #% = 3n + 1. Then a
knot A € X has an n-fundamental polynomial if and only if the conditions (n} 4,{n}; .4, (n)3 hold.

First let us prove the following lemma.

Lemma 4.3. Let L be a plane in R* and q be a curve of degree n in L: q € I1,,(L). Then for
any point B outside of L, there exists a surface p € I passing through B, such that p|, = gq.

Proof. Without lose of generality assume that the curve in L is given by an equation
q(x,v) = 0. Then we can take the surface p in form: p(x,v,z) = g{x,v) + cL(x, v, z), where the
constant ¢ is chosen such that p(4) = 0.

Now let us turn to

Proof of Proposition 4.2. The 'only if' part is obvious. Let us prove the 'if' part. If there is no
plane passing through 4 and at least 2n + 1 other knots, then Proposition follows from Theorem
3.2. Thus assume that there is a plane L passing through 4 and at least 2n + 1 other knots. Assume
that there are k + 1 knots outsideof L: 1 =k +1 =n— 1.

First suppose that k = 0. Denote by E the knot outside of L. According to Proposition 3.1
Ahas a fundamental polynomial g = p, € IT, (L), with respect to the set ¥ = X n L. Thus, in view

of Lemma 4.3, we can take p; y = p, where p € I13 is a surface, such that p|, = g and p(B) = 0.

Next suppose that k=1, then according to Proposition 2.2, we have for the fundamental
polynomial pj;, € IT,(L): piy = @gay ... @x—1q, where a; € IL; (L), ¢ € I1,_,(L). So here we can take
Pax = Loly ..Lx_1p, where L; is a plane passing through the line &; and a knot from outside of L,
while p is a surface passing through g and the last knot from outside, given in Lemma 4.3.

The following corollary readily follows from Theorems 4.1 and 1.4 .
Corollary 4.4. Let X be a set of knots in B* with #% = 3n + 1. Then X is n -independent if
and only if for any plane L the set X n L is n-independent.
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YK 51

O ¢daxropuzanuu QpyHaaMeHTATbHBIX MHOTOYJICHOB
ABYX U TPeX nepeMeHHbIX

Baarn Kapenosuu Bappanan

EpeBaHckuil rocy/lapcTBeHHBIN YHUBEPCUTET, APMEHUA
A. ManyxksaH Y. 1, 0025 1. EpeBan

AnHoTanmusa. MHOKECTBO y3JI0B Ha3bIBAETCA - HE3aBUCHUMBIM, €CJIM JIJIA TIPOU3BOJIBHBIX
3HAUEHUH B ITHX y3JaX CyIecTByeT (He 00sA3aTeSIbHO €IMHCTBEHHBIH) HHTEPIIOJIAIMOHHBIA
MHOTOWIEH CyMMAapHOU CTENEeHW He BbIle 1. /[ MpOu3BOJIBHOTO 1-HE3aBUCHMOTO MHOKECTBA
yanoB X u3 R?® MBI paccMmaTpuBaeM 3ajaduy IIOCTPOEHHsA (yHAAMEHTAJbHBIX MHOTOYJIEHOB,
UMEIOIUX TMpocTeiyo ¢opMmy. B Hacrosimed cratbe MbI NPUBOAUM HEOOXOUMBbIE U
JIOCTaTOYHbIE YCJIOBUS /I MHOJKECTBAa X MOIITHOCTH, He IpeBBbIaIed 3n + 1, Tak, 4ToObI
KaKIbIN y3ea umes - GyHJaMeHTAITLHBIA MHOTOUIEH, SIBJISIONIUICS IIPOU3BEAEHNEM JIMHEMHBIX
MHOKHUTeel. [[pUuBoAUTCA Tak:Ke HEOOXOAUMbIE U JIOCTATOUHbBIE YCJIOBUS JJIs - HE3aBUCHMOCTH
HEeKOMIIJIAHAPHBIMUX MHOKECTB y3710B U3 R? oTMeueHHOMH MOITHOCTH.

KiaroueBble cjIioBa: WHTEPHOJIANUS ¢ MHOTOWIeHAMU, (QYyH/IaMEeHTaJIbHBIA MHOTOYJIEH,
11 - HE3aBUCUMBIE y3JIbl.
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