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Abstract 
A closed form solution to the unsteady boundary layer flow of visco-elastic fluid (Walter’s 

Liquid B Model) past a stretching plate has been obtained. Using the obtained velocity components 
 and , the heat transfer problem has been studied. The behaviour of velocity components and 

temperature field has been studied though the graphs drawn for various randomly chosen values of 
time duration and visco-elasticity. Boundary layer thickness, skin friction and the Nusselt number 
have also been obtained and studied through graphs. 

Keywords: walters liquid B model, stretching plate, boundary layer equations, nusselt 
number. 

 
Introduction 
Due to the number of applications in the industrial manufacturing, the problem of boundary 

layer flow past a stretching sheet has been considered as one of the interested problems during few 
decades. There are number of examples where this problem has significant applications such as hot 
rolling, wire drawing, glass-fibre production and paper production. The role of heat transfer comes 
in to the picture in the process of drawing the artificial fibres from the polymer solution that 
emerges from the orifice with a speed which increases from almost zero at the orifice up to a 
plateau at which it remains constant. In this case, the moving fibre is of technical interest because 
it is governed by the rate of cooling at which it is cooled for the quality of yarn. A number of 
researches are available that follow the pioneering classical work of Sakiadis [1], F.K. Tsou et al. [2] 
and Crane [3].  Number of scholars such as A. Naseem [4], N. Ahmad [5] [6], D. Kelly, K. Vijravelu, 
L. Andrews [7], N. Ahmad and K. Marwah [8], A. M. Subhas and A Joshi [9], Sidhdheshar and 
Mahabaleswar [10], M. Subhas Abel, P. G. Siddheshwar, Mahantesh M. Nandappaanavar [11] and 
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N. Ahmad, M. Mishra [12] studied the visco-elastic fluid flow past a stretching plate in various 
variants.  

In the present paper, the flow of Visco-elastic Fluid (Walters Liquid B model) has been 
considered to study the convectional heat transfer within boundary layer induced by the stretching 
character of the plate in quiescent fluid. A closed form solution has been obtained and the results 
have been drawn with the help of graphs. 

 
Method 
Let x-axis be along the stretching plate and y-axis be the normal to the stretching plate. 

The flow has been created due the stretching character of the plate. Assuming u  and v  as 
horizontal and normal components of velocity field, the boundary layer equation governing the 
flow of Walters Liquid B model be: 
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where   is density,   is kinematic viscosity, and *

0K  is visco-elasticity of the fluid. 

The relevant boundary conditions are:  
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Defining the dimensionless variables by 
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and  in the momentum equation , we get 

  )9(2)1( 2

0000

2

00 fffffKbftaffbfbfa 

 



Russian Journal of Mathematical Research. Series A, 2016, Vol.(4), Is. 2 

48 

Observing the boundary conditions for stretching plate, we assume )exp()( ryyf   where 

, is a function of . From the expressions of  and , we put a condition 

 

 
Boundary Layer Thickness 

In the present case, a plate is stretching with     x
ta
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stream velocity. Therefore, the boundary layer thickness may be defined as the value of ordinate 

such that
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. Hence, the boundary layer thickness is   
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where  at  
 
and 1000  taKb . 

 
Skin Friction 
The wall shear stress at the stretching plate is given by  
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Thus, the skin friction is  
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where  is Reynolds number. 

 
Heat Transfer 
The thermal boundary layer problem is governed by 
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The solution of the equation (16) is  
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Nusselt Number 
The Nusselt number is defined as 
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Results and Discussion  

 
Fig. 1(a). Component of velocity  versus for different time slot ,  when keeping  

constant.  

 
 
Fig. 1(b). Component of velocity  versus  for different values of visco-elastic parameter  with 
keeping time constant. 

 
In the course of analysis this studies, we come across the following results: 
Figure 1(a) is a graph of  versus  at different instant of time. It has been observed that the 

velocity component  increases as time increases but at the upper end of the boundary layer 
velocity component attains zero value. This pattern exists due visco-elastic nature of fluid. 
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Figure 1(b) is a graph plotted for u against y for different values of visco-elastic parameter  at an 
instant of time t. The velocity component  attains the maximum value at the stretching plate and 
the fluid comes to the rest at the end of boundary layer. It is noted that the action of visco-elasticity 
eases within  and we observe that as visco-elasticity  increases,  decreases. 

 
 
Fig. 2(a). A velocity component  versus  for various time slots with keeping constant . 
 

 
 
Fig. 2(b). A velocity component  versus for various values of visco-elasticity  with keeping 
constant . 

 
Figures 2(a) and 2(b) are for vertical component  of velocity . In this case the 

magnitude of  increases as time  increases but according to figure 2 (b), the magnitude decreases 

as visco-elastic parameter 0K  increases. 
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Fig. 3. Left panel is the graph of boundary layer thickness  versus visco-elastic parameter  at 
different time slot  while right panel is the graph of boundary layer thickness  versus time  for 
different value of visco-elasticity.  

 
In Figure 3; left panel, shows the boundary layer thickness and it is about 10. As time t 

progresses, the boundary layer thickness gets suppressed. This fact agrees with the boundary layer 
behaviour, i.e. the boundary layer thickness decreases as time of the flow increases while it 
increases if the velocity increases tremendously within short span of time. According to the Figure 
3; right panel, the boundary layer thickness decreases with the increase of visco-elastic 

parameter 0K . 

 
Fig. 4. Skin friction  versus visco-elasticity  for different time slots in left panel while in the 

right panel,  versus  for different values of visco-elasticity. 

 
In Figure 4, we note that the skin friction increases with the increase of time t and visco-

elasticity 0K .  
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Fig. 5(a). Temperature profile  versus  for 
different time slot  for . 

 

Fig. 5(b). Temperature profile  versus  
for different time slot  for . 

 
 

 
Fig. 5(c). Temperature profile  versus  for 
various value of visco-elasticity  at . 

 

Fig. 5(d). Temperature profile  versus  
for various value of visco-elasticity  
at . 

In Figures 5(a) and 5 (b), the temperature profile   has been plotted against  for different 
time slot . We see that visco-elasticity has no significant influence on temperature field. The same 
pattern has also been obtained for different values of  for fixed time slot in Figures and . 
Here, we see that the heat transfer is behaving similar to Figures  and .  
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Fig. 6(a). Nusselt number  versus 
visco-elasticity  for different time slot .  

Fig.6(b). Nusselt number  versus time  
for different values of . 

 
The graphs obtained in Figures 6(a) and 6(b) are to show the behaviour of convectional heat 

transfer coefficient Nusselt number . It is seen that the Nusselt number is a function of  

and . We observe here that the Nusselt number  increases as any one of  or  increases. 
 
Conclusion 
An exact solution has been obtained to the problem of heat transfer in case of visco-elastic 

fluid flow past a stretching plate. This paper covers two aspects: one methodology by which one can 
deal with unsteady heat transfer problems, and another is the flow pattern of temperature profile 
in case of convectional heat transfer. This problem reduces to the problem solved for unsteady 
boundary layer flow of viscous incompressible fluid when  [12]. 
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