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1 Introduction

Discrete dynamical systems in exponential form have rich dynamics. Such systems can

be used to discuss population models. Due to adequate computational consequences

discrete dynamical system are much better than allied systems in differential equations.

Particularly, in case of non-overlapping generations difference equations are more apposite

to study the behavior of population models [1, 18, 21, 22, 24]. For more detail of some

amiable population models both in differential equations as well as in difference equations,

we refer the interested reader to [2, 3, 17, 19]. Moreover, for some basic properties of

nonlinear difference equations one can see [23, 29]. It is very curios to investigate the

dynamics of solutions of systems of nonlinear difference equations and to discourse about

the local and global asymptotic stability of their equilibrium points. For some notable

results related to the qualitative behavior of difference equations, we refer the reader to

[4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15].

El-Metwally et al. [20] discussed the qualitative behavior of the following two-

dimensional population model:

xn+1 = α + βxn−1e
−xn .

Papaschinopoulos et al. [25] discussed the qualitative behavior of the following two-

dimensional interactive and invasive species model:

xn+1 = a+ bxn−1e
−yn , yn+1 = c+ dyn−1e

−xn.

Papaschinopoulos et al. [26] discussed the qualitative behavior of the following three

systems of difference equations of exponential form:

xn+1 =
α+ βe−yn

γ + yn−1
, yn+1 =

δ + ǫe−xn

ζ + xn−1
,

xn+1 =
α+ βe−yn

γ + xn−1
, yn+1 =

δ + ǫe−xn

ζ + yn−1
,

and

xn+1 =
α+ βe−xn

γ + yn−1
, yn+1 =

δ + ǫe−yn

ζ + xn−1
.

Papaschinopoulos et al. [27] discussed the qualitative behavior of the following two dif-
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ference equations:

xn+1 = a+ byn−1e
−yn, yn+1 = c + dxn−1e

−xn,

and

xn+1 = a+ byn−1e
−xn, yn+1 = c+ dxn−1e

−yn.

Moreover, Din [5] investigated the global asymptotic stability of the following discrete-

time population model:

xn+1 = αxne
−yn + β, yn+1 = αxn

(

1− e−yn
)

.

Furthermore, Din [7] discussed the qualitative behavior of the following two-dimensional

plant-herbivore system:

xn+1 =
αxn

βxn + eyn
, yn+1 = γ(xn + 1)yn.

In [9] the author studied the qualitative behavior of the following modified host-parasitoid

system:

Hn+1 = rN0 + r(Hn −N0) exp(−aPn),

Pn+1 = e(Hn −N0) (1− exp(−aPn)) .

In [16] the authors investigated the qualitative behavior of the following generalized Bed-

dington model:







Nt+1 = Nt exp
[

r
(

1− Nt

k

)

− aPt

]

,

Pt+1 = λNt [1− exp(−bPt)] .

Motivated by above study, our aim in this paper is to investigate the qualitative behavior

the following two-dimensional discreet dynamical system of exponential form:

xn+1 =
α1 + β1e

−yn + γ1e
−yn−1

a1 + b1yn + c1yn−1
, yn+1 =

α2 + β2e
−xn + γ2e

−xn−1

a2 + b2xn + c2xn−1
, (1)

where the parameters αi, βi, γi, ai, bi, ci for i ∈ {1, 2} and initial conditions

x0, x−1, y0, y−1 are positive real numbers.

Particularly, we study boundedness, existence and uniqueness of nontrivial steady-
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state, parametric conditions for local and global asymptotic stability of the unique posi-

tive equilibrium point and the rate of convergence of positive solutions of system (1) which

converge to its unique positive equilibrium point. In system (1), if we take γ1 = γ2 =

b1 = b2 = 0 and c1 = c2 = 1, then it reduces to a population model of two species which

has been investigated in [26].

2 Existence and stability of positive equilibrium

Following theorem guarantees about the boundedness and persistence of every solution of

(1).

Theorem 1. Every positive solution {(xn, yn)} of system (1) is bounded and persists.

Proof. For any positive solution {(xn, yn)} of system (1), one has

xn+1 ≤
α1 + β1 + γ1

a1
= U1, yn+1 ≤

α2 + β2 + γ2

a2
= U2, n = 0, 1, 2, · · · . (2)

Furthermore, from system (1) and (2) we obtain that

xn+1 ≥
α1 + β1e

−U2 + γ1e
−U2

a1 + b1U2 + c1U2
= L1, yn+1 ≥

α2 + β2e
−U1 + γ2e

−U1

a2 + b2U1 + c2U1
= L2, n = 2, 3, · · · .

(3)

From (2) and (3), it follows that

L1 ≤ xn ≤ U1, L2 ≤ yn ≤ U2, n = 3, 4, · · · .

Hence, theorem is proved.

Lemma 1. Let {(xn, yn)} be a positive solution of system (1). Then, [L1, U1] × [L2, U2]

is invariant set for system (1).

Proof. The proof follows by induction.

Next, we consider the following general systems of two difference equations

xn+1 = f(yn, yn−1), yn+1 = g(xn, xn−1), (4)

where f , g are continuous functions and the initial conditions xi, yi for i ∈ {−1, 0} are

positive real numbers. Arguing as in [26], we have following result for global behavior of

(1).
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Lemma 2. Assume that f : (0,∞)× (0,∞) → (0,∞) and g : (0,∞)× (0,∞) → (0,∞)

be continuous functions and a, b, c, d are positive real numbers with a < b, c < d.

Moreover, suppose that f : [c, d] × [c, d] → [a, b] and g : [a, b] × [a, b] → [c, d] such that

following conditions are satisfied:

(i) f(y1, y2) is decreasing in both y1 and y2, g(x1, x2) is decreasing in both x1 and x2.

(ii) Let m1, M1, m2, M2 are real numbers such that

m1 = f(M2,M2), M1 = f(m2, m2), m2 = g(M1,M1) and M2 = g(m1, m1), then

m1 = M1 and m2 = M2.

Then the system of difference equation (4) has a unique positive equilibrium point (x̄, ȳ)

and every positive solution of system of difference equations (4) which satisfies

xn0
∈ [a, b], xn0+1 ∈ [a, b], yn0

∈ [c, d], yn0+1 ∈ [c, d], n0 ∈ N (5)

converges to the unique positive equilibrium of system (4).

Theorem 2. System (1) has a unique positive equilibrium (x̄, ȳ) and every positive so-

lution of system (1) converges to the unique positive equilibrium (x̄, ȳ) as n → ∞, if the

following holds true:

β2 + γ2 < a1, β1 + γ1 < a2, b1 + c1 = b2 + c2. (6)

Proof. Consider the following functions:

f(u, v) =
α1 + β1e

−u + γ1e
−v

a1 + b1u+ c1v
, g(z, w) =

α2 + β2e
−z + γ2e

−w

a2 + b2z + c2w
,

where z, w ∈ [L1, U1] = I1 and u, v ∈ [L2, U2] = I2 which implies that f(u, v) ∈ I1 and

g(z, w) ∈ I2 so that f : I2 × I2 → I1 and g : I1 × I1 → I2. Assume that {(xn, yn)} be any

positive solution of (1), then by Lemma 2 we have xn ∈ I1 and yn ∈ I2. Next, we assume

that m1, M1, m2, M2 be the positive real numbers such that

M1 =
α1 + β1e

−m2 + γ1e
−m2

a1 + b1m2 + c1m2

, m1 =
α1 + β1e

−M2 + γ1e
−M2

a1 + b1M2 + c1M2

,

M2 =
α2 + β2e

−m1 + γ2e
−m1

a2 + b2m1 + c2m1
, m2 =

α2 + β2e
−M1 + γ2e

−M1

a2 + b2M1 + c2M1
. (7)
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Let

F (x) =
α1 + (β1 + γ1) e

−f(x)

a1 + (b1 + c1)f(x)
− x,

where

f(x) =
α2 + (β2 + γ2)e

−x

a2 + (b2 + c2)x
, x ∈ I1.

Then F maps the interval I1 into itself. In order to show that the equation F (x) = 0 has

unique solution in I1 we have:

F ′(x) =

−f ′(x)

[

(a1 + (b1 + c1)f(x))(β1 + γ1)e
−f(x) + (α1 + (β1 + γ1)e

−f(x))(b1 + c1)

(a1 + (b1 + c1)f(x))2

]

− 1,

(8)

where

f ′(x) = −
[

(β2 + γ2)(a2 + (b2 + c2)x)e
−x − (b2 + c2)(α2 + (β2 + γ2))e

−x

(a2 + (b2 + c2)x)2

]

. (9)

By using the fact that F (x̄) = 0 together with (8) and (9) we obtain

F ′(x̄) =

[

(β2 + γ2) + (b2 + c2)f(x̄)

a1 + (b1 + c1)f(x̄)
]× [

(β1 + γ1)e
−f(x̄) + (b1 + c1)x̄

a2 + (b2 + c2)x̄

]

− 1. (10)

By using the condition define in (6) we have F ′(x̄) < 0 and this implies that the equation

F (x) = 0 has unique positive solution in I1. Furthermore, from (7) we see that M1 and

m1 satisfy equation F (x) = 0 which shows that M1 = m1. Therefore from equation

(7) it is clear that M2 = m2. From Lemma 2 it follows that system (1) has unique

positive equilibrium (x̄, ȳ) and every positive solution of system equation (1) converges

to the unique positive equilibrium point as n → ∞. This completes the proof of the

theorem.

In the following result we study the conditions for global asymptotic stability of unique

positive equilibrium of system (1).

Theorem 3. The unique positive equilibrium of system (1) is globally asymptotically stable

if condition (6) of Theorem 2 is satisfied.
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Proof. As we know that (x̄, ȳ) is nontrivial equilibrium of system (1), so one has

x̄ =
α1 + (β1 + γ1)e

−ȳ

a1 + (b1 + c1)ȳ
, ȳ =

α2 + (β2 + γ2)e
−x̄

a2 + (b2 + c2)x̄
. (11)

The linearized system of (1) evaluated at unique positive equilibrium (x̄, ȳ) together with

equation (11) is given by

xn+1 = − β1e
−ȳ + b1x̄

a1 + (b1 + c1)ȳ
yn −

γ1e
−ȳ + c1x̄

a1 + (b1 + c1)ȳ
yn−1,

yn+1 = − β2e
−x̄ + b2ȳ

a2 + (b2 + c2)x̄
xn −

γ2e
−x̄ + c2ȳ

a2 + (b2 + c2)x̄
xn−1,

which is equivalent to the following matrix form

Zn+1 = FJ(x̄, ȳ)Zn,

where Zn =













xn

yn

xn−1

yn−1













and the Jacobian matrix FJ(x̄, ȳ) evaluated at nontrivial equilib-

rium (x̄, ȳ) of system (1) is given by

FJ(x̄, ȳ) =













0 A1 0 A2

B1 0 B2 0

1 0 0 0

0 1 0 0













,

where

A1 = − b1x̄+ β1e
−ȳ

a1 + (b1 + c1)ȳ
, A2 = − c1x̄+ γ1e

−ȳ

a1 + (b1 + c1)ȳ
,

B1 = − b2ȳ + β2e
−x̄

a2 + (b2 + c2)x̄
, B2 = − c2ȳ + γ2e

−x̄

a2 + (b2 + c2)x̄
.

The characteristic equation of Jacobian matrix FJ(x̄, ȳ) is given by

λ4 −A1B1λ
2 − (A1B2 + A2B1)λ−A2B2 = 0. (12)

Assume that condition (6) holds true and taking Ω = |A1B1|+ |A1B2|+ |A2B1|+ |A2B2|,
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we have

Ω =
β1e

−ȳ + b1x̄

a1 + (b1 + c1)ȳ
× β2e

−x̄ + b2ȳ

a2 + (b2 + c2)x̄
+

β1e
−ȳ + b1x̄

a1 + (b1 + c1)ȳ
× γ2e

−x̄ + c2ȳ

a2 + (b2 + c2)x̄

+
γ1e

−ȳ + c1x̄

a1 + (b1 + c1)ȳ
× β2e

−x̄ + b2ȳ

a2 + (b2 + c2)x̄
+

γ1e
−ȳ + c1x̄

a1 + (b1 + c1)ȳ
× γ2e

−x̄ + c2ȳ

a2 + (b2 + c2)x̄

≤ β1 + b1x̄

a1 + (b1 + c1)ȳ
× β2 + b2ȳ

a2 + (b2 + c2)x̄
+

β1 + b1x̄

a1 + (b1 + c1)ȳ
× γ2 + c2ȳ

a2 + (b2 + c2)x̄

+
γ1 + c1x̄

a1 + (b1 + c1)ȳ
× β2 + b2ȳ

a2 + (b2 + c2)x̄
+

γ1 + c1x̄

a1 + (b1 + c1)ȳ
× γ2 + c2ȳ

a2 + (b2 + c2)x̄

=

[

(β2 + γ2) + (b2 + c2)ȳ

a1 + (b1 + c1)ȳ

]

×
[

(β1 + γ1) + (b1 + c1)x̄

a2 + (b2 + c2)x̄

]

< 1.

Then it follows that all the roots of equation (12) are of absolute less than one which

sure that (x̄, ȳ) is locally asymptotically stable. Using Theorem 2, we obtain that (x̄, ȳ)

is globally asymptotically stable. This completes the proof of the theorem.

3 Rate of convergence

In this section, we investigate the rate at which the nontrivial solution of system (1)

converges to positive constant solution of (1).

The following results are fundamental in difference equations for the rate of conver-

gence of solutions. First, we consider the following system of difference equations:

Tn+1 = (C +D(n))Tn, (13)

where Tn is an m-dimensional vector, C ∈ R
m×m is a constant matrix, and D : Z+ →

R
m×m is a matrix function which holds

‖D(n)‖ → 0 (14)

as n → ∞ where ‖ · ‖, indicate any arbitrary matrix norm which is associated with the

vector norm

‖(u, v)‖ =
√
u2 + v2.

Proposition 1. (Perron’s Theorem)[28] Suppose that condition (14) holds. If Tn is a
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solution of (13), then either Tn = 0 for all large n or

τ = lim
n→∞

(‖Tn‖)1/n (15)

exists and is equal to the absolute of one the eigenvalues of matrix C.

Proposition 2. [28] Suppose that condition (14) holds. If Tn is a solution of (13), then

either Tn = 0 for all large n or

τ = lim
n→∞

‖Tn+1‖
‖Tn‖

(16)

exists and is equal to the absolute of one the eigenvalues of matrix C.

Let {(xn, yn)} be any solution of the system (1) such that lim
n→∞

xn = x̄, and lim
n→∞

yn = ȳ,

where x̄ ∈ [L1, U1] and ȳ ∈ [L2, U2]. To evaluate the error terms, one has from the system

(1)

xn+1 − x̄ =
α1 + β1e

−yn + γ1e
−yn−1

a1 + b1yn + c1yn−1

− α1 + (β1 + γ1)e
−ȳ

a1 + (b1 + c1)ȳ

=
β1 (e

−yn − e−ȳ)

(a1 + b1yn + c1yn−1)(yn − ȳ)
(yn − ȳ)

− b1 (α1 + (β1 + γ1)e
−ȳ)

(a1 + (b1 + c1)ȳ) (a1 + b1yn + c1yn−1)
(yn − ȳ)

+
γ1 (e

−yn−1 − e−ȳ)

(a1 + b1yn + c1yn−1)(yn−1 − ȳ)
(yn−1 − ȳ)

− c1 (α1 + (β1 + γ1)e
−ȳ)

(a1 + (b1 + c1)ȳ) (a1 + b1yn + c1yn−1)
(yn−1 − ȳ),

and

yn+1 − ȳ =
α2 + β2e

−xn + γ2e
−xn−1

a2 + b2xn + c2xn−1

− α2 + (β2 + γ2)e
−x̄

a2 + (b2 + c2)x̄

=
β2 (e

−xn − e−x̄)

(a2 + b2xn + c2xn−1)(xn − x̄)
(xn − x̄)

− b2 (α2 + (β2 + γ2)e
−x̄)

(a2 + (b2 + c2)x̄) (a2 + b2xn + c2xn−1)
(xn − x̄)

+
γ2 (e

−xn−1 − e−x̄)

(a2 + b2xn + c2xn−1)(xn−1 − x̄)
(xn−1 − x̄)

− c2 (α2 + (β2 + γ2)e
−x̄)

(a2 + (b2 + c2)x̄) (a2 + b2xn + c2xn−1)
(xn−1 − x̄).
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Let e1n = xn − x̄, and e2n = yn − ȳ, then one has

e1n+1 = ane
2
n + bne

2
n−1,

and

e2n+1 = cne
1
n + dne

1
n−1,

where

an =
β1 (e

−yn − e−ȳ)

(a1 + b1yn + c1yn−1)(yn − ȳ)
− b1 (α1 + (β1 + γ1)e

−ȳ)

(a1 + (b1 + c1)ȳ) (a1 + b1yn + c1yn−1)
,

bn =
γ1 (e

−yn−1 − e−ȳ)

(a1 + b1yn + c1yn−1)(yn−1 − ȳ)
− c1 (α1 + (β1 + γ1)e

−ȳ)

(a1 + (b1 + c1)ȳ) (a1 + b1yn + c1yn−1)
,

cn =
β2 (e

−xn − e−x̄)

(a2 + b2xn + c2xn−1)(xn − x̄)
− b2 (α2 + (β2 + γ2)e

−x̄)

(a2 + (b2 + c2)x̄) (a2 + b2xn + c2xn−1)
,

dn =
γ2 (e

−xn−1 − e−x̄)

(a2 + b2xn + c2xn−1)(xn−1 − x̄)
− c2 (α2 + (β2 + γ2)e

−x̄)

(a2 + (b2 + c2)x̄) (a2 + b2xn + c2xn−1)
.

Moreover,

lim
n→∞

an = − β1e
−ȳ

a1 + (b1 + c1)ȳ
− b1 (α1 + (β1 + γ1)e

−ȳ)

(a1 + (b1 + c1)ȳ)
2 = A1,

lim
n→∞

bn = − γ1e
−ȳ

a1 + (b1 + c1)ȳ
− c1 (α1 + (β1 + γ1)e

−ȳ)

(a1 + (b1 + c1)ȳ)
2 = A2,

lim
n→∞

cn = − β2e
−x̄

a2 + (b2 + c2)x̄
− b2 (α2 + (β2 + γ2)e

−x̄)

(a2 + (b2 + c2)x̄)
2 = B1,

lim
n→∞

dn = − γ2e
−x̄

a2 + (b2 + c2)x̄
− c2 (α2 + (β2 + γ2)e

−x̄)

(a2 + (b2 + c2)x̄)
2 = B2.

Now the limiting system of error terms can be written as













e1n+1

e2n+1

e1n

e2n













=













0 A1 0 A2

B1 0 B2 0

1 0 0 0

0 1 0 0

























e1n

e2n

e1n−1

e2n−1













,

which is same as the linearized system of (1) about the equilibrium point (x̄, ȳ).

Using Proposition 1, one has following result.

Theorem 4. Assume that {(xn, yn)} be a positive solution of the system (1) such that
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lim
n→∞

xn = x̄, and lim
n→∞

yn = ȳ, where x̄ ∈ [L1, U1] and ȳ ∈ [L2, U2]. Then, the error vector

en =













e1n

e2n

e1n−1

e2n−1













of every solution of (1) satisfies both of the following asymptotic relations

lim
n→∞

(‖en‖)
1

n = |λ1,2,3,4FJ(x̄, ȳ)|, lim
n→∞

‖en+1‖
‖en‖

= |λ1,2,3,4FJ(x̄, ȳ)|,

where λ1,2,3,4FJ(x̄, ȳ) are the characteristic roots of Jacobian matrix FJ (x̄, ȳ).

4 Numerical simulations and discussion

Example 1. Let α1 = 0.002, β1 = 0.2, γ1 = 1.6, a1 = 0.4, b1 = 0.0008, c1 = 0.07,

α2 = 0.5, β2 = 0.1, γ2 = 0.7, a2 = 0.99, b2 = 0.0002, c2 = 0.003. Then, system (1) can be

written as

xn+1 =
0.002 + 0.2e−yn + 1.6e−yn−1

0.4 + 0.0008yn + 0.07yn−1
, yn+1 =

0.5 + 0.1e−xn + 0.7e−xn−1

0.99 + 0.0002xn + 0.003xn−1
, (17)

with initial conditions x−1 = 2.2, x0 = 2.1, y−1 = 0.56, y0 = 0.55.

In this case the unique positive equilibrium point of system (17) is given by (x̄, ȳ) =

(2.28063, 0.583352). Moreover, in Fig. 1 the plot of xn is shown in Fig. 1a and the plot

of yn is shown in Fig. 1b for system (17).

20 40 60 80 100
n
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2.35

x
n

(a) Plot of xn for the system (17)

20 40 60 80 100
n

0.56

0.57

0.58

0.59

0.60

yn

(b) Plot of yn for the system (17)

Figure 1: Plots for the system (17)

Example 2. Let α1 = 2, β1 = 12, γ1 = 16, a1 = 14, b1 = 8, c1 = 7, α2 = 5, β2 = 9,
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γ2 = 11, a2 = 13, b2 = 1.1, c2 = 30. Then, system (1) can be written as

xn+1 =
2 + 12e−yn + 16e−yn−1

14 + 8yn + 7yn−1

, yn+1 =
5 + 9e−xn + 11e−xn−1

13 + 1.1xn + 30xn−1

, (18)

with initial conditions x−1 = 1.6, x0 = 1.7, y−1 = 0.14, y0 = 0.15.

In this case the unique positive equilibrium point of system (18) is given by (x̄, ȳ) =

(1.64, 0.138736). Moreover, in Fig. 2 the plot of xn is shown in Fig. 2a an the plot of yn

is shown in Fig. 2b of the system (18).
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(a) Plot of xn for the system (18)
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yn

(b) Plot of yn for the system (18)

Figure 2: Plots for the system (18)

Concluding remarks

This work is related to the qualitative behavior of a discrete-time dynamical system,

which may be considered as generalized population model discussed in [26]. Thus our

results, considerably extend some previous investigations in literature. First it is inves-

tigated that system (1) is bounded and persists and then existence and uniqueness of

positive equilibrium point is proved. We proved that the system (1) has a unique positive

equilibrium point, which is locally asymptotically stable. The method of linearization is

used to prove the local asymptotic stability of unique equilibrium point. Linear stability

analysis shows that the positive steady-state of the system (1) is asymptotically stable

under certain parametric conditions. The main objective of dynamical systems theory is

to predict the global behavior of a system based on the knowledge of its present state.

An approach to this problem consists of determining the possible global behaviors of the

system and determining which parametric conditions lead to these long-term behaviors.

In case of nonlinear dynamical systems, it is very crucial to discuss global behavior of the

system. Moreover, we investigated the rate of convergence of a solution that converges to
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the unique positive equilibrium point of system (1).
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