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ABSTRACT

The developed technique makes possible to investigate the impact on oscillations of flexible elements
of drive systems and transportation of nonlinear forces, the speed of longitudinal movement and
perturbations of boundary conditions. Based on the obtained results it is proved that even for the linear
analogue system the slowly time-dependent variable of the distance between the flexible elements (SE)
contact points and the pulleys causes the change of the basic parameters of the waves. The limits of
applying the wave theory of motion in the case of nonlinear oscillations of flexible elements of drive systems
under slowly varying boundary conditions are expanded. The basic computations to analyze the main
parameters of the dynamic process depending on motion speed of flexible element, tension force, and the
ratio describing the motion principle of the contact point of flexible element and the pulley, are made.

PE3IOME

PospobneHa memoduka Oae moxnugicmb OocraiOumu 6rue Ha KOMuaHHs 2HYYKUX erleMeHmie
cucmem rpugody ma mpaHcrnopmyeaHHsi HesmiHilHUX cus, weudkocmi no3008XHbL020 pyxXy ma 36ypeHb
Kpatiogux ymos. OmpumaHi pe3ynbmamu rfokasyrms, Wo Haeimb Ons niHilHO20 aHanoz2y cucmemu
roeinbHoO3MiHHa 8 Yaci eenuquHa eiddani Mixx moykamu koHmakmy ['E ma wikigie CripuduHsie 3MiHy OCHOBHUX
napamempie xgusb. Po3wupeHO Mexi 3acmocygaHHs X8Urb080i meopil pyxy Ha eunadok HesmiHilHUX
KosuBaHb 2HY4YKUX efleMeHmi8 rnpusiOHUX cucmem i3 rosifibHO 3MIHHUMU Kpatosumu ymogamu. OmpumaHo
6a3osi criggidHoWeHHs Onsi OruUCaHHs 8U3HaYabHUX napamempie QUHaMIYHOZ0 rpPoyecy y 3anexHocmi 8id
weudkocmi pyxy eHy4YKo20 efieMeHmy, Cusiu Hamsey, Crie8iOHOWEHHS, SIKe Orucye 3aKOH PyXy MOKU
KOHMaKmy eHy4Koe20 efleMeHmy ma wkiea.

INTRODUCTION

The wave theory of motion in recent decades has become a new development to describe the various
processes and phenomena (Goroshko O. O., 2012; Chen L. Q. et al, 2004; Chen L. Q., 2005; Dodd Ret al,
1988; Kharchenko Y.V., Sokil M.B., 2006; Mytropolskyi Y.A., 1995; Mytropolskyi Y. O., Sokil B.l., 1998;
Mytropolskyi Y.A., 1998; Mytropolskyi Y.A., Lymarchenko O.S., 1998; S. Ponomareva W.T., van Horssen,
2004; Sokil M.B., 2012). As for its application in the theory of oscillations, the research concerning the
dynamics of nonlinear continuum should be mentioned primarily (Chen L. Q. et al, 2004; Chen L. Q., 2005;
Kharchenko Y.V., Sokil M.B., 2006; S. Ponomareva. W.T., van Horssen, 2004; Sokil M.B., 2012). The
nonlinear continuum, which is widely used in engineering, includes the flexible elements (SE) of drive
systems and transportation. The peculiarity of their operation is that they are characterized by longitudinal
component of motion speed. Based on the wave theory of motion adapted to the dynamics of such systems,
it is possible to explain many interesting phenomena that are not inherent in their simplified equivalents, i.e.
SEs that do not account the longitudinal component of the motion speed and actually existing nonlinear
power factors (Mytropolskyi Y.A., 1998; Mytropolskyi Y.A., Ymarchenko O.S., 1998; Mytropolskyi Y.A.,
Moseenkov B. I., 1976). In particular, even the SE motion speed constantly causes the change of the main
parameters of this element’s oscillations. At the same time, in many of the cited studies there was an
assumption that the SE length (Goroshko O. O., 2012) or the distance between the contact points (for one-
dimensional models) or correspondently the SE line of contact to the head and driven pulleys or drums is
invariable (Chen, L. Q., 2004; Chen L. Q., 2005; Kharchenko Y.V., Sokil M.B., 2006; S. Ponomareva. W.T.,
van Horssen, 2004; Sokil M.B., 2012). This assumption, with reasonable accuracy, is true when the axes of
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the head and driven pulleys or drums are stationary. This allows using classical boundary conditions in the
appropriate mathematical models of the dynamics of the process. At the same time, while operating various
kinds of mechanisms and systems in which SE carries out the transfer motion, the assumption requires
clarification. This primarily concerns the mechanisms whose axes of head and driven drums (or one of them)
are movable, i.e. spring loaded (see. Fig.1 and Fig.1.b).
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Fig.1 - Driven gears with movable SE contact points to the pulley (a) or to the drum (b)
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In this case, coordinates of the SE contact points and pulleys or drums and the distance between
them are variable. The construction of mathematical models of the dynamics of SE and their solutions
require refined formulation of the problem, a correct representation of boundary conditions and taking into
account the variable tension force caused by the SE. The studies of this problem are carried out in such a
context.

MATERIAL AND METHOD
It is known (Chen L. Q., 2005, Sokil M.B., 2012), that the differential equation of SE oscillation of
low bending stiffness, which is characterized by a constant component of speed V , can be represented
as
u +2Vu, —((a(@))’-V*)u, =&f (uu,u,u,) 1)
where:
¢ - the small parameter;
a(7) - the slowly variable function, which is determined through a variable tension force T(z) and the
SE linear weight p: (a(2))' =T(z)/p ,);
ef(z,uu,u,u,) - the known analytic function that describes the nonlinear forces, and the small

parameter specifies the small value of the SEs in comparison with the linear constituent of restoring force.
In (1), the function u(t,z,x) determines the deviation from the SE equilibrium position with Euler

coordinate x (S. Ponomareva. W.T., van Horssen, 2004) at an arbitrary point of time t .
Here, for simplicity, we will consider the case for which the SE contact point and right pulley is a
slowly varying function of time I=I(z), r=e¢t - "slow" time. In this case, the boundary conditions for

equation (1) take the form
u(t,z, x)‘x=0 =u(t,z, x)‘le(r) =0 @)
The task is to determine the influence of parameters V,«(z),I(r) and functions &f(z,u,u,u,u, ) on the

dynamics of SE.
The solution of the formulated problem is associated with solving the boundary problem (1), (2). The
maximum value of non-linear forces is small as compared to the maximum value of term (a(z))’u, (see

Restrictions on nonlinear forces). Thus, for its development, the general ideas of perturbation methods can
be used (J. Cole., 1972). The SE can be most effectively used to describe the analytically undisturbed
movement, i.e. to find solution of equation under the boundary conditions, which are analogous to (2).

ug + Vg —((a(2))? -V? ug, =0 3)

Even a relatively simplified mathematical model of the dynamic process of the researched object to
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build the solution does not allow the direct applying of the main backgrounds of classical Fourier and

d'Alembert methods for partial differential equations (Mytropolskyi Y.A., Moseenkov B. 1.,1976). Despite the

"non classicality" of boundary conditions (2), single-dynamic process of unperturbed problem with sufficient

degree of accuracy can be interpreted as an imposition of different length of waves but the same
frequencies. Thus, the solution of the boundary problem (3), (2) is assumed to have the form

uo(t,r,X):a(COS(K(T)X+a)(T)t+(/)0)—COS(;((T)X—0)(T)'[—(00)) (4)

In the dependence (4) o(r) - frequency, a - amplitude of direct and reflected waves, «(z),x(z) -

their wave numbers, and ¢, - initial phase of the waves. The formal difference of the given description of

the dynamic process in SE with "no classical" boundary conditions in comparison with “classical” ones is the

dependence of wave numbers «(7),x(z) and frequencies o(z) on slow time r. Through formal

computations, which are similar to the case of classical boundary conditions (Kharchenko Y.V., Sokil M.B.,
2006; Sokil M.B., 2012) we get the value of specified parameters

kz
x(7)= ()I( )(a(r)+V) x(7)= W(d(r)—V), w(r)= ()I( )((a(r)) -V?), (5)

where the constant k =1,2,... points the wave mode.

Note 1. Based on the linear boundary problem describing the unperturbed motion, its multi-frequent
solution can be recorded without much difficulty.

The nonlinear forces and boundary conditions simultaneous effect give the solution of specified
approximated task of function u(t,z,x), which can be represented in the form

u(t,x)= a[cos(/((r)xw/)—cos(g(r)x—y/)]+gUl(r,a,q/, X) (6)
where:

v=o(@)t+e, U.(2¥.X) _jnknown analytic periodic ¥ function satisfying boundary conditions arising from
@), ie.,

U (ray.x), =Y (rayx),, =0 7

In addition, the nonlinear forces cause the change of the dynamic process’s amplitude and
frequency. Laws of changing the given parameters, as in (Mytropolskyi Y.A., Moseenkov B. 1.,1976), will be set
by differential equations

a =¢A(r,a).. g, =B (r,a). (8)
Right parts of last ratio, that is, functions A(r,a),B (z,a) and U, (7,a,w,x) are arranged in such a

way that the solution in the form of presentation (6) with the proposed degree of accuracy will satisfy the
original boundary problem (1), (2). The above mentioned provides a dependence binding the desired

function, that is, A(z,a) , B(z,a) and U, (z,a,y,x)
o, ou ou
o (7>

o ZVa)(r)aWaX ((a(r))z—VZ)yzE(r,a,X,g//)—adad)—gr)(sin(zc(r)x+z//)+sin(;((r)x—y/))+

+2{A (z, a)(w(r)+ K(T)V)(Sin(K‘(T)X+l//)+(a)(1)—}((f)v )Sin()((T)X—l//)) + ©
+aB,(r,a)((@(7)+x(7)V )cos(kx+y ) ~(0— 2V )cos(;((r)x—y/))}

where:

F.(z.a,xy) corresponds to the function f(z,u,u,u,,u, ) provided that function u(t,r, x) and its derivatives
accept only the main meanings in the equations arising from (6).
After uncomplicated transformations right parts of the differential ratio (6) take the form

A(r,a)(a)(r)+K(r)V)(Sin(K(r)x+gy)+(a)(r)—;((r)v)sin(;((r)x—(//))+
+aB, (r,a)((a)(r)+K(T)V)COS(KXH//)—(w—;(V)COS(;((r)X—l//)) =
= (A (7,a)cosy —aB, (z,a)sin (//)[(a)(r)+K(r)V )sin x(7) X+(w(r)—;((r)V )Sin;((z') XJ + (10)
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+(A(z,a)siny +aB, (r,a)cosy )| ((z)+x(z)V )cos(x () x) - (@(r) - x (£ )V )cos(x (r)X) ]
adi;)—gr)(sin(zc(r)x+y/)+sin (;((r)x—n//)) = adcg—(r)((sin x(z)x+sin z(z)x)cosy +

+(cos k() x—cos z(z)x)siny).

For unambiguous definition the unknown functions A(z,a) and Bl(r.a) of differential equation (9)
should be imposed on the function U (z,a,w,x). The additional condition is stipulated: it cannot be one of the
additions of proportional siny and cosy . The physical meaning of specified statements is as follows: the

amplitude of the wave process coincides with the amplitude of its first mode. The above statements will
come true in the following case

e

Ui(z',a,t//,x){smv/}dt//:o. (12)

cosy

The partial derivatives of specified function have similar properties. This allows deriving a system of
linear algebraic equations and functions A(r,a) and Bl(r,a) from the differential equation (9)

p(7.%)A (r.a)+aq(r.X) Bl(a)=gz—i)r(r,x)—£zfﬁ(r, a,v.X)cosydy |
q(z.x)A(a)-ap(z,x)B (a)= %3—? p(z, x)—%zf F (z.a,w,X)sinydy (12)

where
p(z.%)=(a(z)+x(z)V )sink(r)x+(a(z) - z(z)V)sin £ (r)X)), p(z,x)=(cosx(r)x—cos (z)x),
q(z.x)=(o(r)+x(r)V )cosx(r) x—(@— x (r)V )cos g (z)x, r(z,x)=(sinx(z)x+sin z(z)x).

Note 2: We consider the case for which nonlinear system forces cause the change only in time of the
basic parameters of the wave process ("short systems"). A more general case for which the determinative
parameters of waves also depend on the linear variable (the case of "long" systems) can be another subject
of research.

RESULTS

The conducted research allows to use the averaging out device (Mytropolskyi Y.A., 1972) using the
variable x in relation to the system of differential equations (12). Due to obtained results, the functions
describing the basic parameters of the wave process can be defined by the following formula:

7,a)= L T 7,X a”dw(r)rr,x —gh 7,8,¥, X)coswdy |cosydy —
e e sy L4 )2t oy sy
—q(r,x){a ﬂd;ur(r) p(r,x)—ng FI(T,a,l//,X)Sinl//dl//}:|dX
r,a)= L T T,X a”dw(r) 7,X —525 7,8,,X)sin cos -
3 (a) z,rauf)[(a,(f)w(f)vy+<w<f)_l<,)vﬂW'){ ) (e (e asnvcy fosvo

ﬂdw(r)r(r,x)—ng Fl(r,a,y/,x)sim//dl//}}dx. (13)

T 0

A special case of specified dependencies at V =0,1(z)=ly,a(7)=c, (o, |, - steel) are the known in

literature results (Mytropolskyi Y.A., Moseenkov B. I., 1976) concerning nonlinear oscillations of flexible
one-dimensional media with fixed ends. Thus, in the first approximation the dynamic process of SE with its
slowly varying contact point of right end and the pulley is described by dependence (6) in which the
parameters a and y are determined in accordance with ratio (8) and (13).
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The first improved approximation describes the impact of nonlinear forces on the form of waves; so
the function U,(z,a,,x) should be defined. Taking into account the imposed conditions, it can be

represented as
U (z,aw,x)=2>U, (r,a)X, (7,x)exp(iny) (14)

m n,n#l

where the system of functions {Xm(r,x)} must be complete and materialize the boundary conditions (2). The

system of functlons{xm (7, x)} :{smﬁx} satisfies such conditions. In this case, the unknown coefficients
T

u,.(r.a) are linked by the system of linear algebraic equations

{nzaf ~((a(@)y —Vz)[lz—j)] }Um (r,a)—ZVa)(r)Zi‘, ——ni—U, (r,a)=-F,(r,a), m+s—theodd  (15)

7)

1 27|

271"(2')1[

where F (r,a):

1sn

F (z.a,%w)exp(—iny) X (x)dxdy.,1<s<j.

1

ot—)

As a rule, the first modes of oscillation greatly influence the dynamic process. Therefore, a system of
algebraic equations (15) is sufficiently limited by the first few terms of the expansion. In this case, to find its
solution is not difficult. In particular, if we use only the first two terms of the expansion of a function

U,(r.a.x) in a series of system functions {X  (r,x)}, we obtain

U, (ra)= _i{{nw (& _VZ)(ZI—”H F (r2) -2V o, (T,a)}
U, (ra)= _%{nw (v )[%H £ (n.2)+ EMVaE, (r a)} (16)

e o[ttt ) [ a2 | e

CONCLUSIONS

The developed technique makes it possible to investigate the impact on oscillations of flexible
elements of drive systems and transportation of nonlinear forces, the speed of longitudinal movement and
perturbations of boundary conditions. Based on the obtained results it is proved that even for the linear
analogue system the slowly time-dependent variable of the distance between the SE contact points and the
pulleys causes the change of the basic parameters of the waves. In addition, under certain conditions, it
can contain sustained dynamic process when SE is converted to unstable process. Thus, with decreasing
SE tension force (at a constant speed and constant SE contact points and pulleys) the amplitude of
oscillations increases. The process becomes unstable in a speed value. Simultaneously, the results can be
the basis for developing methods of influence of periodic disturbance on SE oscillations with slowly varying
distance between its points of contact to the pulleys.
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