VARIATIONS OF KINEMATIC PARAMETERS OF THE CARDANIC JOINTS ACCORDING TO TEHNOLOGICAL DEVIATIONS

VARIAȚIILE PARAMETRILOR CINEMATICI AI ARTICULAȚIEI CARDANICE ÎN FUNCȚIE DE ABATERILE TEHNOLOGICE

PhD. Eng. Stud. Bulac I., Prof. PhD. Eng. Pandrea N.

University of Piteşti / Romania

E-mail: ionbulac57@yahoo.com

Abstract: Technological deviations determine in the intermediate couples of the cardan joint supplementary efforts due to restrained movement. This paper sets as goal the determination of dependency between the technological deviations and the size of these movements.

Key words: deviations, cardan, kinematics.

INTRODUCTION

Spatial RCCC mechanism

The mechanism with one cardanic joint [3], [4], [8] is a RRRR mechanism and a particular case of a spatial RCCC mechanism, where by C, R [9] was noted the cylindrical kinematic rotation couple.

The technological deviations determine the apparition of some efforts in the intermediary couple of the cardanic joint.

In order for one to have a measure for these displacement it is first necessary to study the RCCC spatial mechanism kinematics.

The positional analysis of the RCCC mechanism

The RCCC mechanism (fig. 1) is made of four elements noted with 1, 2, 3 and 4, the forth element (the base) being fixed and the elements being connected through the kinematic couples O_1 , O_2 , O_3 and O_4 , the O_1 being the rotation couple and O_2 , O_3 and O_4 being the cylindrical kinematic couples.

Rezumat: Abaterile tehnologice fac ca in cuplele intermediare ale articulației cardanice să apară eforturi datorită unor deplasări împiedicate.

Această lucrare își propune determinarea dependenței între abaterile tehnologice și mărimea acestor deplasări.

Cuvinte cheie: abateri, cardan, cinematică.

INTRODUCERE

Mecanismul spațial RCCC

Mecanismul cu o articulație cardanică [3], [4], [8] este un mecanism RRRR și un caz particular al mecanismului spațial RCCC, unde prin C, R, [9] s-a notat cupla cinematică cilindrică, respectiv cupla cinematică de rotație.

Abaterile tehnologice fac ca în cuplele intermediare ale articulației cardanice să apară eforturi datorită unor deplasări împiedicate.

Pentru a avea o măsură a acestei deplasări este necesar a studia mai întâi cinematica mecanismului spațial RCCC.

Analiza pozițională a mecanismului RCCC

Mecanismul RCCC (fig.1) este format din patru elemente, notate cu 1, 2, 3, 4, elementul 4 (baza) fiind fix, elementele fiind legate între ele prin cuplele cinematice O_1 , O_2 , O_3 , O_4 , cupla cinematică O_1 fiind de rotație iar cuplele, O_2 , O_3 , O_4 fiind cuple cinematice cilindrice.

Fig. 1 – RCCC Spatial Mechanism / Mecanismul spațial RCCC

The axes of the kinematic couples are noted with $O'_i z_i$, i = 1, 2, ..., and the following perpendiculars are noted with $O'_i O'_{i+1}$, i = 1, 2, 3, 4, point O_5 being identical with point O_1 .

One notates with σ_i , α_i , i = 1,2,3,4 the length of the axes and the angle between them.

Axele cupleleor cinematice sunt notate cu $O'_i z_i$, i = 1, 2, ..., iar perpendicularele comune succesive sunt notate cu $O'_i O'_{i+1}$, i = 1, 2, 3, 4, punctul O_5 fiind identic cu punctul O_1 .

Se notează cu σ_i , α_i , i = 1,2,3,4 lungimile distanțelor dintre axe respectiv unghiurile dintre axe.

So it is chosen a local reference system $O_i x_i y_i z_i$, i = 1,2,3,4 so that the axes $O_i x_i$ to be situated on the shared perpendiculars of the axes $O'_i z_i$, $O'_{i+1} z_{i+1}$. It is noted with s_i the distances $O'_i O_i$ and with θ_i the angle between the axes $O_{i-1} x_{i-1}$, $O_i x_i$, i = 1,2,3,4.

In these conditions, the geometrical parameters s_i , σ_i , α_i , i = 1,2,3,4 being known, the positional analysis for determining $\theta_2, \theta_3, \theta_4, s_2, s_3, s_4$ is based on the angle θ_1 .

From the equation of rotations closing, using the diagram ,, $\theta \alpha$ " [9] and the order 3, 4, 1 and 2 is obtained the following equation, where:

Se aleg sistemele de referință locale $O_i x_i y_i z_i$, i = 1,2,3,4 astfel încât axele $O_i x_i$ să fie situate pe perpendicularele comune ale axelor $O'_i z_i$, $O'_{i+1} z_{i+1}$, se notează cu s_i , distanțele $O'_i O_i$, și cu θ_i unghiurile dintre axele $O_{i-1} x_{i-1}$, $O_i x_i$, i = 1,2,3,4.

În aceste condiții parametrii geometrici s_i , σ_i , α_i , i = 1,2,3,4 fiind cunoscuți, analiza pozițională constă în determinarea $\theta_2, \theta_3, \theta_4, s_2, s_3, s_4$ în funcție de unghiul θ_1 .

Din ecuația de închidere a rotațiilor, utilizînd diagrama ", $\theta \alpha$ " [9] și ordinea 3, 4, 1, 2, se obține ecuația, unde:

$$A_{3}(\theta_{1})s\theta_{4} - B_{3}(\theta_{1})c\theta_{4} + C_{3}(\theta_{1}) = 0$$

$$A_{3}(\theta_{1}) = s\alpha_{3}s\theta_{1}s\alpha_{1}$$
(1.2)

$$B_3(\theta_1) = s\alpha_3(c\alpha_4c\theta_1s\alpha_1 + s\alpha_4c\alpha_1)$$

$$C_{3}(\theta_{1}) = -c\alpha_{3}s\alpha_{4}c\theta_{1}s\alpha_{1} + c\alpha_{3}c\alpha_{4}c\alpha_{1} - c\alpha_{2}$$

The trigonometrical functions cos, sin being noted with c, s. Through the conventional derivate of the relations (1.1), (1. 2) having as basis [9] the relations:

$$D(c\theta_i) = -s_i s\theta_i D(s\theta_i) = s_i c\theta_i$$
(1.3)

$$D(c\alpha_i) = -\sigma_i s\alpha_i; \ D(s\alpha_i) = \sigma_i c\alpha_i \tag{1.4}$$

Is obtained the equation:

$$D_3 s_4 + F_3 s_1 + F_3 \sigma_1 + G_3 \sigma_2 + H_3 \sigma_3 + K_3 \sigma_4 = 0$$
(1.5)

se obtine ecuatia:

where:

$$D_{3} = s\alpha_{3}c\theta_{4}s\theta_{1}s\alpha_{1} + s\alpha_{3}s\theta_{4}c\alpha_{4}c\theta_{1}s\alpha_{1} + s\alpha_{3}s\theta_{4}s\alpha_{4}c\alpha_{1}$$

$$E_{3} = s\alpha_{3}s\theta_{4}c\theta_{1}s\alpha_{1} + s\alpha_{3}c\theta_{4}c\alpha_{4}s\theta_{1}s\alpha_{1} + c\alpha_{3}s\alpha_{4}s\theta_{1}c\alpha_{1}$$
(1.6)

$$F_{3} = s\alpha_{3}s\theta_{4}s\theta_{1}c\alpha_{1} - s\alpha_{3}c\theta_{4}c\alpha_{4}c\theta_{1}c\alpha_{1} - c\alpha_{3}s\alpha_{4}c\theta_{1}c\alpha_{1} + s\alpha_{3}c\theta_{4}s\alpha_{4}s\alpha_{1} - c\alpha_{3}c\alpha_{2}s\alpha_{1}$$
$$G_{3} = s\alpha_{2}$$

$$H_{3} = c\alpha_{3}s\theta_{4}s\theta_{1}s\alpha_{1} - c\alpha_{3}c\alpha_{4}c\theta_{1}s\alpha_{1} + s\alpha_{3}s\alpha_{4}c\theta_{1}s\alpha_{1} - c\alpha_{3}c\theta_{4}s\alpha_{4}c\alpha_{1} - s\alpha_{3}c\alpha_{4}c\alpha_{1}$$
$$K_{3} = s\alpha_{3}c\theta_{4}s\alpha_{4}c\theta_{1}s\alpha_{1} - c\alpha_{3}c\alpha_{4}c\theta_{1}s\alpha_{1} - s\alpha_{3}c\theta_{4}c\alpha_{4}c\alpha_{1} - c\alpha_{3}s\alpha_{4}c\alpha_{1}$$

The angle θ_{4} is determined by solving the equation (1.2)

and through the equation (1.5) is known the parameter s_4 . With circular permutations the relations follows:

1

Prin rezolvarea ecuației (1.2) se determină unghiul θ_4 ,

iar apoi din ecuația (1.5) se determină parametrul s_4 . Prin permutări circulare se obțin relațiile:

$$A_{2}(\theta_{4})s\theta_{3} - B_{2}(\theta_{4})c\theta_{3} + C_{2}(\theta_{4}) = 0$$
(1.7)

$$A_{1}(\theta_{3})s\theta_{2} - B_{1}(\theta_{3})c\theta_{2} + C_{1}(\theta_{3}) = 0$$
(1.8)

from which are determined, in order, the angles θ_3 and θ_2 and also the equations:

din care se determină în ordine unghiurile θ_3 , θ_2 precum și ecuațiile:

$$D_2 s_3 + E_2 s_4 + F_2 \sigma_4 + G_2 \sigma_1 + H_2 \sigma_2 + K_2 \sigma_3 = 0$$
(1.9)

$$D_1 s_2 + E_1 s_3 + F_1 \sigma_3 + G_1 \sigma_4 + H_1 \sigma_1 + K_1 \sigma_2 = 0$$
(1.10)

from which are determined the parameters s_3 , s_2 . The expressions of the coefficients $A_i B_i$, C_i , D_i , E_i , F_i , G_i , H_i , K_i , i=3,2,1, are given in table 1.1

din care se determină parametrii s_3 , s_2 .Expresiile coeficienților A_i , B_i , C_i , D_i , E_i , F_i , G_i , H_i , K_i , i = 3, 2, 1, sunt date în tabelul 1.1

			Table 1.1 / Tabelul 1.1
i	3	2	1
A_{i}	$s\alpha_3 s\theta_1 s\alpha_1$	$s\alpha_2 s\theta_4 s\alpha_4$	$s\alpha_1 s\theta_3 s\alpha_3$
B_i	$s\alpha_3(c\alpha_4c\theta_1s\alpha_1+s\alpha_4c\alpha_1)$	$s\alpha_2(c\alpha_3c\theta_4s\alpha_4+s\alpha_3c\alpha_4)$	$s\alpha_1(c\alpha_2c\theta_3s\alpha_3+s\alpha_2c\alpha_3)$
C_i	$c\alpha_3(-s\alpha_4c\theta_1s\alpha_1+c\alpha_4c\alpha_1)$	$c\alpha_2(-s\alpha_3c\theta_4s\alpha_4+c\alpha_3c\alpha_4)$	$c\alpha_1(-s\alpha_2c\theta_3s\alpha_3+c\alpha_2c\alpha_3)$
	$-c\alpha_2$	$-c\alpha_1$	$-c\alpha_4$
D_i	$s\alpha_{3}s\alpha_{1}(c\theta_{4}s\theta_{1}+s\theta_{4}c\alpha_{4}c\theta_{1})$	$s\alpha_2 s\alpha_4 (c\theta_3 s\theta_4 + s\theta_3 c\alpha_3 c\theta_4)$	$s\alpha_1 s\alpha_3 (c\theta_2 s\theta_3 + s\theta_2 c\alpha_2 c\theta_3)$
	$+s\alpha_3s\theta_4s\alpha_4c\alpha_1$	$+s\alpha_2s\theta_3s\alpha_3c\alpha_4$	+ $s\alpha_1 s\theta_2 s\alpha_2 c\alpha_3$
E_i	$s\alpha_{2}s\alpha_{1}(s\theta_{4}c\theta_{1}+c\theta_{4}c\alpha_{4}s\theta_{1})$	$s\alpha_{2}s\alpha_{4}(s\theta_{2}c\theta_{4}+c\theta_{2}c\alpha_{2}s\theta_{4})+$	$s\alpha_1s\alpha_2(s\theta_2c\theta_2+c\theta_2c\alpha_2s\theta_2)+$
	+ $\mathcal{C}\mathcal{A}_3S\mathcal{A}_4S\mathcal{O}_1S\mathcal{A}_1$	$\mathcal{C}\mathcal{U}_2 \mathcal{S}\mathcal{U}_3 \mathcal{S}\mathcal{O}_4 \mathcal{S}\mathcal{U}_4$	$c\alpha_1 s\alpha_2 s\sigma_3 s\alpha_3$
F _i	$s\alpha_3 c\alpha_1 (s\theta_4 s\theta_1 - c\theta_4 c\alpha_4 c\theta_1)$	$s\alpha_2 c\alpha_4 (s\theta_3 s\theta_4 - c\theta_3 c\alpha_3 c\theta_4) -$	$s\alpha_1 c\alpha_3 (s\theta_2 s\theta_3 - c\theta_2 c\alpha_2 c\theta_3)$
	$c\alpha_{3}s\alpha_{4}c\theta_{1}c\alpha_{1} +$	$c \alpha_2 s \alpha_3 c \theta_4 c \alpha_4 +$	$c\alpha_1 s\alpha_2 c\theta_3 c\alpha_3 +$
	$s\alpha_3c\theta_4s\alpha_4s\alpha_1-c\alpha_3c\alpha_2s\alpha_1$	$s\alpha_2 c\theta_3 s\alpha_3 s\alpha_4 - c\alpha_2 c\alpha_1 s\alpha_4$	$s\alpha_1 c\theta_2 s\alpha_2 s\alpha_3 - c\alpha_1 c\alpha_4 s\alpha_3$
G_i	$s\alpha_2$	$s\alpha_1$	$s \alpha_4$
H_i	$c\alpha_3 s\alpha_1 (s\theta_4 s\theta_1 - c\theta_4 c\alpha_4 c\theta_1)$	$c\alpha_2 s\alpha_4 (s\theta_3 s\theta_4 - c\theta_3 c\alpha_3 c\theta_4)$	$c\alpha_1 s\alpha_3 (s\theta_2 s\theta_3 - c\theta_2 c\alpha_2 c\theta_3)$
	+ $s\alpha_3 s\alpha_4 c\theta_1 s\alpha_1$ -	+ $s\alpha_2 s\alpha_3 c\theta_4 s\alpha_4$ -	+ $s\alpha_1s\alpha_2c\theta_3s\alpha_3$ -
	$c\alpha_{3}c\theta_{4}s\alpha_{4}c\alpha_{1}-s\alpha_{3}c\alpha_{4}c\alpha_{1}$	$c\alpha_2 c\theta_3 s\alpha_3 c\alpha_4 - s\alpha_2 c\alpha_3 c\alpha_4$	$c\alpha_1 c\theta_2 s\alpha_2 c\alpha_3 - s\alpha_1 c\alpha_2 c\alpha_3$
K _i	$s\alpha_1(s\alpha_3c\theta_4s\alpha_4c\theta_1-c\alpha_3c\alpha_4c\theta_1)$	$s\alpha_4(s\alpha_2c\theta_3s\alpha_3c\theta_4-c\alpha_2c\alpha_3c\theta_4)$	$s\alpha_3(s\alpha_1c\theta_2s\alpha_2c\theta_3-c\alpha_1c\alpha_2c\theta_3)$
	$-c\alpha_1(s\alpha_3c\theta_4c\alpha_4+c\alpha_3s\alpha_4)$	$-c\alpha_4(s\alpha_2c\theta_3c\alpha_3+c\alpha_2s\alpha_3)$	$-c\alpha_3(s\alpha_1c\theta_2c\alpha_2+c\alpha_1s\alpha_2)$

In the initial position, $\theta_i^0 = 0$ the expressions are obtained:

În poziția inițială, $\theta_i^0 = 0$ se obțin expresiile:

$$A_{3} = 0; B_{3} = s\alpha_{3}s(\alpha_{1} + \alpha_{4}); C_{3} = c\alpha_{3}c(\alpha_{1} + \alpha_{4}) - c\alpha_{2}$$
(1.11)
si rezultă:

and it results that:

$$c\theta_4^0 = \frac{c\alpha_3 c(\alpha_1 + \alpha_4) - c\alpha_2}{s\alpha_3 s(\alpha_1 + \alpha_4)}$$
(1.12)

For solving the calculus for such a mechanism it is first necessary to make some specifications:

- the joint perpendiculars between the axes with the index *i*, *i*+1 are noted with O_i , O'_{i+1} ;
- the direction of the axis $O_i x_i$ is given by the rotation direction of the axis $O'_i z_i$ over the axis $O'_{i+1} z_{i+1}$, direction that also specifies the measurement direction of the angle α_i ;
- the positive measurement direction of angle θ_i between the axes $O_{i-1}x_{i-1} O_i x_i$, is given by the direction of the $O_i x_i$ axis rotation around the axis $O'_i z_i$.

Pentru efectuarea calculului unui astfel de mecanism este necesar a se face următoarele precizări:

- perpendicularele comune între axele cu indici i, i+1 se notează cu O_i, O'_{i+1};
- sensul axelor $O_i x_i$ este dat de sensul rotirii axei $O'_i z_i$ peste axa $O'_{i+1} z_{i+1}$, sens care precizează şi sensul de măsurare al unghiului α_i ;
- sensul pozitiv de măsurare al unghiului θ_i între axele $O_{i-1}x_{i-1} O_i x_i$, este dat de sensul rotirii axei $O_i x_i$ în jurul axei $O'_i z_i$.

The cardanic joint without technical deviations

The normal cardanic joint The cardanic joint enables the transmission of the rotation movement from the shaft 3 through the cardanic cross 2.

The cardanic cross is tied to the brackets of the shafts 1 and 2 through the Kinematic rotation couples A, A and respectively B, B.

Articulatia cardanică fără abateri tehnologice Articulația cardanică normală

Articulația cardanică face posibilă transmiterea mișcării de rotație de la arborele 1 (fig. 2) la arborele 3 prin intermediul crucii cardanice 2.

Crucea cardanică este legată la furcile arborilor 1, 2 prin cuplele cinematice de rotație A, A respectiv B, B.

Fig. 2 – Cardanic joint / Articulație cardanică

 α_i

Structurally speaking [9], the kinematic couples A', B' are passive and then, structurally and kinematically speaking, the cardanic crosscan be replaced with the element 2 from figure 2.

So are considered the bearings C and D and the concurrent rotation axes Oz_i , i = 1, 2, 3, 4.

The axes are being concurrent in the points O_i , O'_i , i = 1,2,3 and they coincide, so the mechanism from figure 2 becomes an RCCC mechanism where:

Din punct de vedere structural, [9], cuplele cinematice A', B' sunt pasive și atunci, din punct de vedere structural și cinematic, crucea cardanică se poate înlocui cu elementul 2 din fig. 2.

Se consideră palierele C, D și axele de rotație concurrente Oz_i , i = 1, 2, 3, 4.

Axele fiind concurente rezultă că punctele O_i , O'_i ,

i = 1,2,3 coincid și atunci, mecanismul din fig.2 devine un mecanism RCCC în care:

$$\sigma_i = 0; \ s_i = 0 \ i = 1, 2, 3, 4 \tag{2.1}$$

If the angles α_i , i = 1, 2, 3 are fulfilling the condition:

$$=\frac{\pi}{2}$$
(2.2)

Dacă în plus unghiurile α_i , i = 1,2,3 îndeplinesc condiția :

then the cardan joint is called normal cardan joint. For such a joint ($heta_1^0=0$) one considers that $lpha_4=\pi-lpha$ and from figure1.2.1 results:

atunci articulația cardanică se numește articulație cardanică
normală. Pentru o astfel de articulație (
$$\theta_1^0 = 0$$
)
considerăm că $\alpha_4 = \pi - \alpha$, din fig.1.2.1 rezultă:

$$\theta_2^0 = \frac{\pi}{2}; \ \theta_3^0 = \frac{3\pi}{2} + \alpha; \ \theta_4^0 = \frac{\pi}{2}$$
 (2.3)

Taking into account the relations 2.1 it results that the relations (1.5), (1.9) and (1.10) are identically fulfilled and conduct to solving the equations (1.1), (1.7), (1.8). From table 1 it results that:

Tinând seama de relațiile 2.1 rezultă că relațiile (1.5), (1.9), (1.10), sunt identic îndeplinite și ca atare studiul cinematic se reduce la rezolvarea ecuațiilor (1.1), (1.7), (1.8). Din tabelul 1. rezultă:

$$A_{3} = s\theta_{1}; B_{3} = -c\alpha c\theta_{1}; C_{3} = 0$$
(2.4)

$$A_2 = s\theta_4 s\alpha; B_2 = -c\alpha; C_2 = 0$$
(2.5)

$$A_1 = s \theta_3; B_1 = 0; C_1 = c \alpha$$
 (2.6)
some: si ecuațiile (1.1), (1.7), (1.8) devin :

And the equations (1.1), (1.7) and (1.8) become:

$$s\theta_1 s\theta_4 + c\alpha c\theta_1 c\theta_4 = 0 \tag{2.7}$$

$$s\theta_4 s\alpha s\theta_3 + c\alpha c\theta_3 = 0 \tag{2.8}$$

$$s\theta_3 s\theta_2 + c\alpha = 0 \tag{2.9}$$

from which, with the notations:

$$\theta_i = \theta_i^0 + \theta_i^*$$
, $i = 1, 2, 3$ (2.10)
are obtained the results:
 $\theta_i = \theta_i^0 + \theta_i^*$, $i = 1, 2, 3$ (2.10)

se obtin rezultatele:

$$tg\theta_4^* = \frac{1}{c\alpha} tg\theta_1 \tag{2.11}$$

$$tg(\alpha + \theta_3^*) = tg\,\alpha c\,\theta_4^* \tag{2.12}$$

$$c\theta_2^* = \frac{c\alpha}{c(\alpha + \theta_3^*)}$$
(2.13)

where:

$$\theta_{4}^{*} = \begin{cases} arctg(\frac{1}{c\alpha}tg\theta_{1}); 0 \leq \theta_{1} < \frac{\pi}{2} \\ \frac{\pi}{2}; \theta_{1} = \frac{\pi}{2} \\ \pi + arctg(\frac{1}{c\alpha}tg\theta_{1}); \frac{\pi}{2} \leq \theta_{1} < \frac{3\pi}{2} \\ \frac{3\pi}{2}; \theta_{1} = \frac{3\pi}{2} \\ 2\pi + arctg(\frac{1}{c\alpha}tg\theta_{1}); \frac{3\pi}{2} < \theta_{1} \leq 2\pi \end{cases}$$

$$(2.14)$$

unde :

and the variation diagrams from figure 3 a,b,c: și diagramele de variație din fig. 3. a,b,c: θ 0*4 θ^{*_2} 2π $3\pi/2$ α $\pi/2$ π $3\pi/2$ 2π 0 θ_1 π -α $\pi/2$ 0 $\pi/2$ $3\pi/2$ 2π A1 -2α π 0 $\pi/2$ π $3\pi/2$ 2π θ с a b

Fig.3 - Variation diagrams / Diagrame de variație

Below are presented the variation diagrams for the angles θ_4^* , θ_3^* , θ_2^* depending on the angle θ_1 for $\alpha = 20^\circ$, for a cardan joint with no technical deviations. The variation graphs are presented in figure 4. Mai jos sunt prezentate diagramele de variație a unghiurilor θ_4^* , θ_3^* , θ_2^* funcție de θ_1 pentru $\alpha = 20^\circ$ pentru o articulație cardanică fără abateri tehnologice. Graficele de variație sunt prezentate în fig.4

MATERIALS AND METHOD

The kinematics of cardanic joints with technical deviations

Identifying the geometrical deviations (technological)

A kinematic diagram that represents a mechanism with one cardan joint, with all geometrical deviations possible, is presented in figure 5.

MATERIALE ȘI METODĂ

Cinematica articulației cardanice abateri cu tehnologice

Identificarea abaterilor geometrice (tehnologice)

O schemă cinematică care reprezintă un mecanism cu articulație cardanică cu toate abaterile geometrice posibile este redată în fig. 5.

Fig. 5 – Technological deviations / Abateri tehnologice

These deviations are small and fulfill the condition:

Aceste abateri sunt mici și îndeplinesc condițiile :

$$\alpha_{i} = \frac{\pi}{2} + \Delta \alpha_{i}, \ i = 1, 2, 3; \ \alpha_{4} = \pi - \alpha; \ \sigma_{i} = O_{i}O_{i+1}', \ i = 1, 2, ; \ \sigma_{4} = O_{4}O_{i}'$$
(3.1)

The angular deviation of the main shaft bracket is defined by the parameter $\Delta \alpha_1$ and the smoothness deviations for the same bracket is given by the parameter σ_1 .

The angular deviation of the cardanic cross 2 is given by the parameter $\Delta lpha_2$ and also the deviation from smoothness is given by the parameter σ_2 .

The angular deviation of the driven shaft bracket 3 is given by the parameter $\Delta \alpha_3$ and the smoothness deviation is given by the parameter σ_3 .

The angular deviation of the driven shaft 3 depending on the driving shaft 1 is given by the parameter σ_{A} .

The influence of technological deviations over the kinematic parameters

As shown in default of shafts 1 and 3 points are known (figure 4).

 O_4 , O_1' , O_1 , O_2' , O_2 , O_3' , O_3 , O_4' , are overlaid with point O (fig. 5) and the kinematic cylindrical couples A, B and D become rotation kinematic couples (there are no displacements s_2 , s_3 , s_4 , along the axes Oz_2 , Oz_3 , Oz_4).

The existence of technical deviations conducts to the displacements s_i , i = 1, 2, 3, 4 and by blocking them, the excess efforts from the rotation kinematic couples A, B, C, D appear (fig. 2).

In order to determine these displacements it is first necessary to calculate the angular parameters θ_2 , θ_3 , θ_4 variation depending on the angle θ_1 from the equation system:

Abaterea unghiulară a furcii arborelui conducător este definită de parametrul $\Delta \alpha_1$ iar abaterea de la planeitate pentru aceeași furcă este dată de parametrul σ_1 .

Abaterea unghiulară a crucii cardanice 2 este dată de parametrul $\Delta \alpha_2$ iar abaterea de planeitate este dată de parametrul σ_2 .

Abaterea unghiulară a furcii arborelui condus 3 este dată de parametrul $\Delta \alpha_3$ iar abaterea de planeitate este dată de parametrul σ_3 .

Abaterea de planeitate a arborelui condus 3 fată de arborele conducător 1 este dată de parametrul σ_{A} .

Influența abaterilor tehnologice asupra parametrilor cinematici

Aşa cum s-a arătat în lipsa abaterilor arborilor 1, 3 sunt cunoscute, punctele (fig. 4).

 $O_4,\ O_1',\ O_1,\ O_2',\ O_2,\ O_3',\ O_3,\ O_4',$ se suprapun cu punctul O (fig. 5) iar cuplele cinematice cilindrice, A, B, D, devin cuple cinematice de rotație (nu există deplasări s_2 , s_3 , s_4 , în lungul axelor Oz_2 , Oz_3 , Oz_4).

Existența abaterilor tehnologice duce la producerea deplasărilor s_i , i = 1, 2, 3, 4 iar acestea fiind împiedicate fac să apară eforturi suplimentare în cuplele cinematice de rotație A, B, C, D (fig. 2)

În vederea determinării acestor deplasări este necesar a calcula mai întâi variația parametrilor unghiulari θ_2 , θ_3 ,

 θ_4 , în funcție de unghiul θ_1 din sistemul de ecuații:

$$A_i s \theta_{i+1} - B_1 c \theta_{i+1} + C_i = 0; i = 1, 2, 3$$
(3.2)

For this purpose, one uses the Newton method [11] and with the notations:

În acest sens, se utilizează metoda Newton [11] și cu notațiile :

$$\begin{bmatrix} \theta_2 \\ \theta_3 \\ \theta_4 \end{bmatrix}; \begin{bmatrix} \Delta \theta \end{bmatrix} = \begin{bmatrix} \Delta \theta_2 \\ \Delta \theta_3 \\ \Delta \theta_4 \end{bmatrix}$$
(3.3)

$$\Psi_{i} = A_{i}s\theta_{i+1} - B_{i}c\theta_{i+1} + C_{i}, \ i = 1,2,3; \quad \{\Psi\} = \begin{bmatrix} \Psi_{1} \\ \Psi_{2} \\ \Psi_{3} \end{bmatrix}$$
(3.4)

$$A_1^* = s\alpha_1 s\alpha_3 c\theta_3; B_1^* = -s\alpha_1 c\alpha_2 s\theta_3 s\alpha_3; C_1^* = c\alpha_1 s\alpha_2 s\theta_3 s\alpha_2$$
(3.5)

$$A_2^* = s\alpha_2 s\alpha_4 c\theta_4; B_2^* = -s\alpha_2 c\alpha_3 s\theta_4 s\alpha_4; C_2^* = c\alpha_2 s\alpha_3 s\theta_4 s\alpha_4$$
(3.6)

$$\begin{bmatrix} J \end{bmatrix} = \begin{bmatrix} A_1 c \theta_2 + B_1 s \theta_2 & A_1^* s \theta_2 - B_1^* c \theta_2 + C_1^* & 0\\ 0 & A_2 c \theta_3 + B_2 s \theta_3 & A_2^* s \theta_3 - B_2^* c \theta_3 + C_2^*\\ 0 & 0 & A_3 c \theta_4 + B_3 s \theta_4 \end{bmatrix}$$
(3.7)

is obtained the matric equation:

se obține ecuația matricială:

$$\{\Delta\theta\} = [J]^{-1} \{\Psi\}$$
(3.8)

from which results the variation { $\Delta \theta$ } for the known values of angles θ_1 , θ_2 , θ_3 , θ_4

RESULTS

One considers a cardanic joint for which:

 $\alpha = 0^{\circ}$; $\Delta \alpha_i = 0.001 rad$; $s_1 = 0.001$; $\sigma_i = 0.001$, i = 1.2.3.

The variation graphs are presented in figure 6.

din care se obține variația { $\Delta \theta$ } pentru valorile cunoscute ale unghiurilor θ_1 , θ_2 , θ_3 , θ_4

REZULTATE

Se consideră o articulație cardanică pentru care: $\alpha = 0^{\circ}$; $\Delta \alpha_i = 0,001 rad$; $s_1 = 0,001$; $\sigma_i = 0,001$, i=1, 2, 3 Graficele de variație sunt prezentate în fig.6

Fig. 6 – Variation graphs / Grafice de variație

CONCLUSIONS

For the normal cardan joint with no technical deviations:

- in the initial position where, $\theta_1^0 = 0$ results $\theta_2^0 = \frac{\pi}{2}$;

$$\theta_3^0 = \frac{3\pi}{2} + \alpha; \ \theta_4^0 = \frac{\pi}{2}$$

- for $\alpha = 20^{\circ}$:when θ_1 covers the interval $0 - 360^{\circ}$, the angle θ_4^* varies between $0 - 360^{\circ}$; angle θ_3^* varies between $0 \div -2\alpha$; angle θ_2^* varies between $0 \div \alpha$;

For the normal cardan joint with technical deviations with $\alpha = 0^{\circ}$ and $\Delta \alpha_i = 0,001 rad$, when θ_1 covers the interval $0-360^{\circ}$, the angle θ_4 varies between $90-450^{\circ}$; angle θ_3 varies between $269,88-270^{\circ}$; angle θ_2 varies between $90-90,06^{\circ}$;

The influence of σ_i and s_1 deviations over the angles $\theta_4; \theta_3; \theta_2$ are insignificant as value.

The variation of angles $\Delta \alpha_i$ i=1,2,3 does not influence the displacements s_i , i=2,3,4.

The displacements S_i , i=2,3,4. are influenced only by

the value of the σ_i and s_1 parameters.

For $\alpha = 0^{\circ}$, the variation curves form of the kinematic parameters are alike.

REFERENCES

[1]. Buzdugan Gh., Fetcu L., Rade M. (1975) - Systems vibrations, R.S.R. Academy Publishing House, Bucharest;

[2]. Dumitru N., Nahu Gh., Vintilă D. (2008) -*Mechanisms and mechanic shafting*, Didactic and Pedagogical Publishing House, Bucharest;

[3]. Dudiță Fl. (1996) - *Cardan shafting*, Technical Publishing House, Bucharest;

[4]. Dudiță Fl., Diaconescu D., Bohn Cr., Neagoe M., Săulescu R. (2003) - *Cardan shafting*, Transilvania Expres Publishing House, Braşov;

[5]. Hariss C., Crudu Gh. (1968) - *Shocks and vibrations*, Technical Publishing House, Bucharest;

[6]. Pandrea N., Pârlac S. (2000) - *Mechanical vibrations*, University of Piteşti Publishing House, Piteşti;

[7]. Pandrea N., Pârlac S., Popa D., (2001) - *Models for studying automotive vibrations*, Tiparg Publishing House, Piteşti;

[8]. Pandrea N. (2000) - *Solid mechanics plucheriane coordinates*, Romanian Academy Publishing House, Bucharest;

[9]. Pandrea N., Popa D. (1977) - *Mechanism*, Technical Publishing House, Bucharest;

[10]. Voinea R., Voiculescu D, Simion Fl. (1989) - Introduction in the solid mechanics with applications in engineering, R.S.R. Academy, Bucharest.

CONCLUZII

Pentru articulația cardanică normală fără abateri tehnologice:

- în poziția inițială când,
$$\theta_1^0 = 0$$
 rezultă $\theta_2^0 = \frac{\pi}{2};$
 $\theta_3^0 = \frac{3\pi}{2} + \alpha; \ \theta_4^0 = \frac{\pi}{2}.$

- pentru $\alpha = 20^{\circ}$:când θ_1 parcurge intervalul $0 - 360^{\circ}$, unghiul θ_4^* variază între $0 - 360^{\circ}$; unghiul θ_3^* variază între $0 \div -2\alpha$; unghiul θ_2^* variază între $0 \div \alpha$;

Pentru articulația cardanică normală cu abateri tehnologice cu $\alpha = 0^{\circ}$ și $\Delta \alpha_i = 0,001 rad$, când θ_1 parcurge intervalul $0-360^{\circ}$, unghiul θ_4 variază între $90-450^{\circ}$; unghiul θ_3 variază între $269,88-270^{\circ}$; unghiul θ_2 variază între $90-90,06^{\circ}$;

Influențele abaterilor σ_i şi S_1 asupra unghiurilor $\theta_4; \theta_3; \theta_2$ sunt nesemnificative ca valoare.

Variațiile unghiurilor $\Delta \alpha_i$ i=1,2,3 nu influențează deplasările s_i , i=2,3,4.

Deplasările S_i, i=2,3,4. sunt influențate doar de

variația parametrilor σ_i și s_1 .

Pentru $\alpha = 0^{\circ}$, forma curbelor de variație a parametrilor cinematici sunt asemănătoare.

BIBLIOGRAFIE

[1]. Buzdugan Gh., Fetcu L., Rade M. (1975) - *Vibrațiile sistemelor*, Editura Academiei R.S.R.,București;

[2]. Dumitru N., Nahu Gh., Vintilă D. (2008) - *Mecanisme şi transmisii mecanice*, Editura Didactică şi Pedagogică, Bucureşti;

[3]. Dudiță FI., (1996) - *Transmisii cardanice*, Editura Tehnică, București;

[4]. Dudiță Fl., Diaconescu D., Bohn Cr., Neagoe M., Săulescu R. (2003) - *Transmisii cardanice*, Editura Transilvania Expres, Braşov;

[5]. Hariss C., Crudu Gh. (1968) - J*ocuri şi vibrații*, Editura Tehnică, Bucureşti;

[6]. Pandrea N., Pârlac S. (2000) - Vibrații mecanice, Editura Universitatea din Pitești;

[7]. Pandrea, N., Pârlac, S., Popa, D., (2001) - *Modele pentru studiul vibrațiilor automobilelor*,Editura Tiparg, Pitești;

[8]. Pandrea N. (2000) - *Elemente de mecanica solidelor în coordinate plucheriene*, Editura Academiei Române, Bucureşti;

[9] Pandrea N., Popa D. (1977) - *Mecanisme*, Editura Tehnică , București;

[10]. Voinea R., Voiculescu D, Simion FI. (1989) -Introducere în mecanica solidului cu aplicații în inginerie, Editura Academiei R.S.R., București.