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Abstract: Existing research on agricultural auto water
pumps mainly concentrate on structure optimization;
nonetheless, a few works examine the characteristics of
the inner flow field. The current study conducted an
unsteady numerical simulation calculation of agricultural
auto water pumps using an impeller model with a 0.5 mm
blade tip clearance (o) and ANSYS CFX software. The
unsteady flow results were analyzed, and results indicated
that the unsteady characteristics of the lift undergo
significant periodic changes due to the dynamic and static
interference of the cut water and the impeller. This change
in frequency is in accordance with the passing frequency
of the blade. The pressure fluctuation varies at different
monitoring points on the same volute section. The
pressure fluctuation decreases first and then increases
from the bottom volute to the back volute. Additional dither
components were also detected at the monitoring points
on the bottom volute. The pressure fluctuation is
maximized at the circumferential monitoring points
proximal to the water cut. The distance between the
circumferential monitoring points and the water cut
increases with the circumference angle, whereas the
fluctuation amplitude decreases. The results of fluid
dynamics provide useful references to determine the
reduction in the vibration and noise of agricultural auto
water pumps.
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INTRODUCTION

The market demand for agricultural automobiles has
increased with social development. The agricultural auto
water pump is a centrifugal pump that transmits medium
energy based on a steady pressure difference generated
under a certain flow rate. Nonetheless, unsteady flow
occurs in different working conditions because of the high
rotation speed of the water pump and the unsteady
geometric  boundaries of the rotating impeller.
Furthermore, the inner fluid forms a boundary layer on the
solid wall surface, which in turn causes interior backflow
and interference from dynamic and static components, as
well as leaking and wake flows at the blade tip. Moreover,
the formation of the boundary layer results in the
fluctuation of flow field pressure and the generation of an
alternating acting force. In the process, resonance or
fatigue damages are incurred [5,6]. For the effective
operation of an agricultural auto water pump, strict
requirements are proposed for its stability, although these
requirements do not include the lift design requirements.

3-D unsteady numerical simulation technology is
widely used because of the rapid development of
computational fluid dynamics and computer technology.
Both Chinese and foreign scholars conducted research on
water pumps by combining test analysis and numerical
simulation calculation [4,7,12]. For example, References
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[2, 10, 14] described the interaction between the impeller
diffuser in a pump and pump performance; these works
determined that the unsteady flow at the impeller exit is
the main cause of pressure fluctuation. APRE et al. of
Switzerland [3] studied inner flow in a draft tube of a
mixed-flow water turbine model through a steady-state
analysis of six different flow points under controlled
working conditions. These researchers also analyzed
fluctuation amplitude and frequency characteristics in a
conical draft tube as well as vortex strip frequency and
pressure fluctuation at small flow points under no-steam
turbid. Reference [1] conducted high-frequency pressure
sensor measurement proximal to the discharge flange of
the centrifugal pump. The collected data were processed
with fast Fourier transform, and the results indicate that
the main signal frequency is the blade passing frequency
of the centrifugal pump. This signal was used to measure
the rotation speed of the pump. Reference [13]
summarized the pressure fluctuation testing techniques
used worldwide. The researcher tested the pressure
fluctuation characteristics at the different impeller exit
directions of the centrifugal pump and determined the
relationship between unsteady fluid flow and pressure
fluctuation at the impeller exit. The results indicated that
the main causes of pressure fluctuation are the fluctuation
in blade frequency induced at the efflux-wake and the
shaft frequency fluctuation caused by asymmetric flow in
the impeller passage. The pressure fluctuation caused by
the structure declines with the widening of the distance
between the impeller and the volute section. Moreover, a
100-145 Hz broadband frequency between four times the
shaft and the blade frequencies was discovered in the
spectrum of pressure fluctuation frequency at the blade
exit. Charler [8] employed large-eddy simulation to
calculate the pressure fluctuations in the volute, runner,
and draft tube of a mixed-flow water turbine. By contrast, a
few models employed a running simulation approach that
cannot set real boundary conditions at the entrance of the
draft tube. Although the average inflow conditions can be
selected, the calculated flow state of the draft tube
remains unsteady. The pressure fluctuation test in a draft
tube mainly focuses on pressure fluctuation amplitude and
frequency characteristics. Internal situations are
impossible to observe; therefore, pressure fluctuation
amplitude must be computed and the causes of pressure
fluctuation analyzed.

The current study used the RNG k-¢ turbulence model
and conducted an unsteady numerical simulation of the
full flow path for a quadratic, variable-curvature, half-open,
and centrifugal agricultural auto water pump. The
unsteady pressure fluctuation characteristics in such a
path were analyzed when Q/Qq = 0.7, 1.0, and 1.3. The
results have strong practical significance for determining
how pressure fluctuation characteristics of rotating fluid
machinery are pre-estimated and how the vibration and
noise of water pumps are reduced.

MATERIAL AND METHOD
Unsteady numerical calculation program

The steady calculation utilizes the standard k-
turbulence model; by contrast, the unsteady calculation
employs the RNG k-¢ turbulence model because this
model can handle the high strain rate and substantial flow
of a significantly bending flow line while maintaining high
calculation efficiency. The RNG k-¢ turbulence model was
proposed by Yakhot et al. [11] in 1986 and was deduced
from the mathematical method of a renormalization group.
This model improves on the standard k-¢ model to some
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extent [9]. Given an incompressible and steady flow, the
RNG k-¢ turbulence model is expressed as:

o(pu;k) o
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Through a comparison between the k-¢ model and the
RNG k-¢ model, the latter modifies C; in the € equation of
the former:
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C, is modified; thus, the coefficient of the eddy
viscosity of the RNG k-¢ model under a low-strain rate is
higher than that of the standard k-¢ model but lower
under the high-strain rate. The RNG k-¢ model considers
high-strain rate and substantial curvature flow; this model
can achieve significantly higher calculation accuracy than
the standard k-¢ model can for rotational flow and
substantial curvature. The findings are particularly
applicable to the calculation of the internal flow of an
impeller blade (e.g., axial flow and centrifugal pumps).
The RNG k-¢ model can generate higher accuracy and
reliability in a more extensive flow than the standard k-¢
model can because of these characteristics. Thus, the
present study adopts the RNG k-& model.

The entrance, exit, and static wall surface were similar
to those for steady calculation. The interface between the
inner rotor and the pump stator was set as the transient
rotor stator. The steady calculation result was employed
as the initial flow field for unsteady calculation.

According to the requirement of the calculation model
regarding Courant number.

¥
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where At is characteristic time; v and | are the
characteristic speed and characteristic scale, which were
determined based on the estimated mean speed and
minimum grid size in this study. The maximum length of
the optional time step of this model is 5 ms. Considering
the resolution requirements of pressure fluctuation in the
high-speed rotating machinery, the final time step length
was determined to be 1/90 of the rotation period and the
rotating time was set to 4°, that is, approximately 0.11111
ms. Six full periods were calculated under every working
condition; the maximum iteration steps of every time step
length were set to 10 because of the effective
convergence in the steady calculation.

Fig. 1 shows the variable-curvature and half-open
prototyping pump and the distribution of monitoring
points. P1 is the entrance pressure of the pump; P2—-P9
are at the first to eighth cross sections of the volute; P10
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is close to the water cut of the volute and P11 is at the o I . .
downstream of the volute; and P12 is the exit pressure of A PLL AL FAZER & ML A R LR, P12 MR H
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pressure-measuring points, all the pressure-measuring
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image of the sensor installation. Fig. 3 provides a 3 NILIZINK R4t 4 5 &.

panoramic view of the field test system. . - N
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Fig.3- Panoramic view of the field test system
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RESULTS
Analysis of unsteady external characteristic

Fig. 4 presents the unsteady characteristics of the lift
in three periods under different working conditions. The
blade positions corresponding to ABCD are marked, and
the same blade is highlighted with a red frame. L1 is the
start point of the period, and L2 is the end point. This
figure 8 shows that:

The unsteady characteristics of a lift change
periodically. This change frequency is consistent with the
blade passing frequency, and this phenomenon is caused
by the dynamic and static interference of the water cut
and the impeller. A and B are blade phases indicating that
the blade just passes through the water cut. At C and D,
the blade is in the middle of the flow passage. Lift
fluctuation increases gradually with flow rate. At the same
time, the downward pressure fluctuation under a low flow
rate exhibited the poorest law in a single period. When
flow rate increases, the amplitude change within a single
period stabilizes, thereby implying that a high flow rate is
conducive to the stable pump operation.
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Fig.4- Unsteady characteristics of the lift

Fig. 5 illustrates the static pressure distribution in the
middle blade section under the ABCD phases. The
minimum and maximum pressures in the middle section
fluctuate violently; moreover, the static pressure close to
the water cut is relatively higher than that in other
positions, as is the lift. A high-pressure gradient appears
when the blade exit approaches the flow path of the water
cut. When the blade moves to the middle of the flow path,
the local high pressure area narrows but pressure
increases and the entrance pressure decreases.
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Fig.5- Static pressure at the middle impeller under the ABCD phases
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Entrance and exit pressure fluctuations

Fig. 6 presents the time—domain map of pressure
fluctuation at the impeller entrance under different
working conditions. According to the variation of the
pressure fluctuation coefficient, entrance pressure
fluctuation does not vary regularly. The minimum
pressure fluctuation is achieved under 1.3 Qd, and eight
wave peaks occur in a single period. The maximum
pressure fluctuation is observed under 1.0 Qd, and a
weak correlation exists between pressure fluctuation
within a single period and blade frequency. This
correlation implies that the optimum working conditions of
the pump are skewed to a high flow rate.
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Fig.6- Time—domain map of pressure fluctuation at the impeller entrance under different working conditions

Fig. 7 illustrates the time—domain map of the pressure
fluctuation volute exit under different working conditions.
Pressure fluctuation at the volute exit is two orders of
magnitude higher than that at the impeller entrance;
moreover, this pressure fluctuation law is closely related
to blade passing frequency. Nonetheless, pressure
fluctuation amplitude changes significantly when the
impeller is at different phases; the amplitude under
different flow rates does not change when the impeller is
at the same phase. This outcome occurs because the
pressure-measuring points at the exit are downstream of
the bend, and the turbulence at the bend disrupts
downstream pressure monitoring.
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Fig.7-Time—domain map of pressure fluctuation at the volute exit under different working conditions

Pressure fluctuation in volute

Fig. 8 depicts the fluctuations of P2—P9 in two periods.
The water cut plays a decisive role in the pressure
fluctuation caused by the interaction of the rotating
impeller and the static impeller. The water cut is the main
pulsation source of pressure fluctuation. In this case,
pressure fluctuation amplitude decreases gradually with
an increase of flow rate. This result demonstrates that
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flow stabilizes and the losses caused by internal
turbulence decrease with an increase in flow rate. The
optimum working condition is skewed to a high flow rate.

Pressure fluctuation differs at various monitoring
points on the same volute section. This fluctuation
decreases first and then increases from the bottom volute
to the back volute. Moreover, many dither components
are detected at the monitoring points on the volute
bottom. The maximum pressure amplitude along the
circumference of the volute is at the monitoring points
proximal to the water cut. The distance between the
circumferential monitoring points and the water cut
increases with the circumference angle, whereas
fluctuation amplitude decreases gradually. Two wave
peaks in one period are observed on the second, third,
and seventh sections, thus indicating that these flow
sections experience significant turbulence, which in turn
covers the pulsation source of the water cut.
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(9) Numerical calculation of the pressure fluctuation at P8
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Fig.8-Numerical calculation of the pressure fluctuation in the volute

Pressure fluctuation in the water cut area

Fig. 9 displays the pressure fluctuation at the
monitoring points close to the water cut. Generally, mean
pressure declines with an increase in flow rate.
Meanwhile, the pressure fluctuation law reflects the
dynamic and static interference at the water cut. At the
same time, the pressure downstream of the water cut is
higher than that at a location close to the water cut. In
other words, fluid pressure increases from the volute to
the volute downstream. The pressure fluctuation at the
water cut of the quadratic variable-curvature centrifugal
pump differs from the regular pressure fluctuation of a
common centrifugal pump, which is in turn positively
correlated with the blade number. A significant difference
is observed between the adjacent wave peaks of the
pressure fluctuation in the quadratic variable-curvature
centrifugal pump. Subsequently, the internal flow
mechanism is analyzed further through testing.
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(a) Numerical calculation of the pressure fluctuation at P10

(b) Numerical calculation of the pressure fluctuation at P11

Fig.9-Numerical calculation of the pressure fluctuation near the water cut

Experimental verification

According to the distribution of the actual test points,
C4-C8 pressure monitoring points are scattered on the
full flow path of the volute. C7 is proximal to the water cut,
and this point is the closest one to the outlet. C8 is the
most proximal point to the volute exit; meanwhile, C4, C5,
and C6 scattered on the volute evenly.

I HAE

P WA 0 SE bRl s hr B A, FEWR ST AN IE LA
C4~C8 LMl i, e C7 fER &ML, 2 H/K I RiE
, C8 Bif7¢ i Of%ilt, C4, C5, C6 WA AitElR% L.

HE

AN

62



INMATEH:-- a‘q ricultural anqincou)lq

Vol.47, No.3./ 2015

2D 0O~ x
o2 T ] L e B Bl O, R R

= 020: 2000(53) MS: C7 | FETICT) [Ba7] O [5]

[ber

EE [Hz]

ot e ] 8 |- B B € © R R

== D17 5000{110) MS: C7 : FFT(CT) [bar] O 5]

[ber

SHEE EEEE: 1/1 SRESE
2D (3)
o3 o || E | b £ (o 2 | (DD CL C_ R R

— DS 7200(131) MS: C7 | FETICT) [6a7] O [5]

[ber

== [Hz)

SRZ=  HREE: 1/1 SRFESE

Fig.10-Pressure fluctuation at C7 under different working conditions

Fig.10 indicates that the main frequency component at i SRR N D s S
C7 under different working conditions is the blade passing HiFE 10 P, ARTTOE RIS C7 S EHBR RS AT

frequency. Additionally, random fluctuations occur in the PR . 5 A E AR X R B — e LS, 3R
low-frequency area. These low-frequency random ° R - ’

fluctuations are caused by the secondary flow in the FAEM R g VR SR R R, 3G R AT B AL
impeller and efflux tail, as with similar to white noise. The

pressure fluctuation amplitude is proportional to rotation k3, BT AR . FEELELRERRK, NkahiEM
speed and flow rate. At the same time, the pressure . R o o
fluctuation under a low flow rate exhibited the poorest law K. [FIF AT DUR L, FE/NGEE N I 7k 76 54

in a single period. Low frequency (< twice that of blade " AT ke e < -
passing frequency) can influence pressure fluctuation SHPY IR IE R, d TR PV, ST 1 AR B

significantly because of the turbulence in the pump. As 2 AT TE A kBN AR B, o 25 I 1 18 e B ) 34
flow rate increases, the changes in pressure fluctuation
amplitude within one period gradually stabilize and the MR E AR AL B A, ERENLNKE) 20 S, ®
random fluctuation declines evidently. This outcome
indicates that a high flow rate is beneficial to steady pump W2 IUIB AT A2 5 P 7] KU L0, 3X S5 AMRAPE AR E 5
operation. This result is consistent with the outcome of the

analysis of unsteady external characteristics. GER T
The results for C4, C5, and C6 in Fig. 11 indicate that HIE 11 C4, C5, C6 WTLAEL, W25 7s i I FE /1 ikah

the pressure fluctuation in the volute flow path is mainly

affected by the blade passing frequency. All the FFZ N @R, & A S R A
monitoring points are primarily influenced by low

frequency. The dominant frequency reduces continuously M C7 g EMHES] C6 &i. C5 &, T4 I,
and is minimized at C5 from C7 to C6 and C5, which is B

close to the water cut. This outcome indicates that the % C5 mAbsi/). XU I H Jy kil 32 22 -4 5 5 ALY

main pressure fluctuation source is the static—dynamic - N . - -
coupling effect at the impeller and the water cut. Based on SR M CA. CBIMETEUAH, B C8 il

the results in C4 and C8, the dominant frequency V-4 | e F g mE L g (e
amplitude at locations proximal to C8 is increased and » EHURERK, B C8 rUARIRAM, THEZE 11

peaks at C8. The dominant frequency is mainly influenced Rk X 5 IEE T T IE K —3, X
by twice the blade passing frequency. This outcome
corresponds to the pressure fluctuation law under normal  FE# & RE T ES5HZ MMshEME, HHS5KE

working conditions. This result is the consequence of the . s ‘ o
dynamic—static coupling effect of the water cut and the IR EL A T3 A K DU el (PR AT BB Y TS B ot

impeller as well as the influence of the right angle outlet of s e e e e . o
the auto water pump. Although the outlet is far from the WK IRECE, W50 N RN AR SRR, (B f

pulsation source of the water cut and the dynamic—static U, BRIE M, WA TR T E kSN, (545 C8 &
coupling effect of fluid in volute is weak, the outlet is close
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to the corner and bears the direct impact. Fluid separation
enhances pressure fluctuation, thus generating the same
pulsation intensity at C8 and significantly higher pressure
amplitude than the other monitoring points. This outcome
conforms to the results of the numerical analysis.
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Fig.11 - Frequency spectra of the pressure fluctuations at C4, C5, C6, C7, and C8

CONCLUSIONS

This research conducts an unsteady numerical
simulation and experimental study on quadratic variable-
curvature and half-open centrifugal agricultural auto
water pumps. The findings of this work are significant
with respect to the application of analysis and simulation
techniques in analyzing the dynamic characteristics of an
agricultural auto water pump and in optimizing its
structure design to improve the performance of the auto-
cooling water pump, to reduce the product development
period, and to lower cost. This work concludes that:

(1)The unsteady characteristics of the lift change
periodically. This frequency change corresponds with the
blade passing frequency, and this outcome is mainly
attributed to the dynamic and static interference of the
water cut and the impeller. Pressure fluctuation
intensifies gradually with an increase in rotation speed
and flow rate.

(2)The pressure fluctuation under a low flow rate
exhibits the poorest law in a single period. The low
frequency (< twice that of blade passing frequency)
significantly influences pressure fluctuation because of
the turbulence in the pump. As flow rate increases, the
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pressure fluctuation amplitude in a single period gradually
stabilizes and the random fluctuation decreases
significantly. This result indicates that a high flow rate is
beneficial for steady pump operation.

(3)Pressure fluctuation differs at the various
monitoring points on the same volute section; this
fluctuation decreases first and then increases from the
bottom volute to the back volute. Many dither
components are detected at the monitoring points at the
bottom volute. The monitoring points close to the water
cut along the circumference of the volute experience
maximum pressure fluctuation. Moreover, the distance
between the circumferential monitoring points and the
water cut increases with the circumference angle,
whereas the pressure fluctuation weakens gradually.

(4)The pressure fluctuation at the water cut of the
quadratic variable-curvature centrifugal pump varies from
the regular pressure fluctuation of a common centrifugal
pump, which is in turn positively correlated with blade
number. The differences between adjacent wave peaks
are significant; this result conforms to the result of the
experimental analysis.
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