

INDEPENDENT JOURNAL OF MANAGEMENT & PRODUCTION (IJM&P)
http://www.ijmp.jor.br v. 6, n. 1, January - March 2015
ISSN: 2236-269X
DOI: 10.14807/ijmp.v6i1.262

[http://creativecommons.org/licenses/by/3.0/us/]
Licensed under a Creative Commons Attribution 3.0 United States License

 211

 COMPARING MIXED & INTEGER PROGRAMMING VS.
CONSTRAINT PROGRAMMING BY SOLVING JOB-SHOP

SCHEDULING PROBLEMS

Renata Melo e Silva de Oliveira
University of State of Para, Brazil

University of Porto, Portugal
E-mail: prdeig1209651@fe.up.pt

Maria Sofia Freire Oliveira de Castro Ribeiro

University of Porto, Portugal
E-mail: mariaribeiro4@gmail.com

Submission: 04/09/2014

Accept: 15/09/2014
ABSTRACT

Scheduling is a key factor for operations management as

well as for business success. From industrial Job-shop Scheduling

problems (JSSP), many optimization challenges have emerged since

de 1960s when improvements have been continuously required such

as bottlenecks allocation, lead-time reductions and reducing response

time to requests. With this in perspective, this work aims to discuss 3

different optimization models for minimizing Makespan. Those 3

models were applied on 17 classical problems of examples JSSP and

produced different outputs. The first model resorts on Mixed and

Integer Programming (MIP) and it resulted on optimizing 60% of the

studied problems. The other models were based on Constraint

Programming (CP) and approached the problem in two different ways:

a) model CP1 is a standard IBM algorithm whereof restrictions have

an interval structure that fail to solve 53% of the proposed instances,

b) Model CP-2 approaches the problem with disjunctive constraints

and optimized 88% of the instances. In this work, each model is

individually analyzed and then compared considering: i) Optimization

success performance, ii) Computational processing time, iii) Greatest

Resource Utilization and, iv) Minimum Work-in-process Inventory.

Results demonstrated that CP-2 presented best results on criteria i

and ii, but MIP was superior on criteria iii and iv and those findings are

[http://creativecommons.org/licenses/by/3.0/us/]
Licensed under a Creative Commons Attribution 3.0 United States License

 212

INDEPENDENT JOURNAL OF MANAGEMENT & PRODUCTION (IJM&P)
http://www.ijmp.jor.br v. 6, n. 1, January - March 2015
ISSN: 2236-269X
DOI: 10.14807/ijmp.v6i1.262

discussed at the final section of this work.

Keywords: Constraint Programming, Mixed an Integer Programming, Job-shop

Scheduling Problem, Makespan minimization

1. INTRODUCTION

 A typical Job-shop consists on a high-mix low-volume (HMLV) production flow,

which simultaneously requires process of operations by the use of shared resources.

In this manufacturing context, scheduling and sequencing operations became critical

to the efficient use of both time and the machinery involved in a certain production

system.

 In this context scheduling is a well-known problem that deals with the efficient

allocation of resources in order to perform a collection of tasks given a certain time

range (DUMITRESCU; STOEAN; STOEAN, 2007). Thus, one of the challenges

related to those issues is to reduce lead time by minimizing the amount jobs work in

progress (WIP inventories). Then accordingly to Boushaala et al. (2012) and French

(1982), a job-shop scheduling problem (JSSP) is complex and hard to be solved

because of the following reasons:

i. Each job requires a different sequence of operations to be completed,

which generates different jobs under processing simultaneously on different

machines,

ii. Processing times for all jobs are known and constant,

iii. All jobs are available for processing at time zero,

iv. Machine absences are not allowed and each machine is continuously

available for production,

v. There is only one machine of each type in the shop,

vi. Each machine can perform only one operation at a time on any job,

vii. An operation of a job cannot be performed until its preceding operations are

completed

viii. Transportation time between machines is zero,

ix. A job does not visit the same machine twice.

[http://creativecommons.org/licenses/by/3.0/us/]
Licensed under a Creative Commons Attribution 3.0 United States License

 213

INDEPENDENT JOURNAL OF MANAGEMENT & PRODUCTION (IJM&P)
http://www.ijmp.jor.br v. 6, n. 1, January - March 2015
ISSN: 2236-269X
DOI: 10.14807/ijmp.v6i1.262

x. There is no restriction on queue length for any machine.

xi. There are no limiting resources other than machines/workstations

xii. The machines are not identical and perform different operations

xiii. Operation cannot be interrupted,

xiv. An operation of a job can be performed by only one machine.

xv. There are capacity limitations which lead to bottleneck problems,

xvi. Due dates must be observed together with the completion times.

 This work proposes the optimization on 17 classical Job-shop Scheduling

problems (JSSP), under two perspectives: a) 1 Mixed Integer Programming model

(MIP), and b) 2 Constraint Programming (CP) Models. Both of those techniques

were applied aiming to minimize the makespan by sequencing the permutation of

Jobs on the machines regarding the necessary order of processing.

 Each model was set to obtain the best possible result given a range of 3600

sec, and after performing the simulations those 3 models performances are analyzed

and commented.

 Data used on this work was partially extracted from the work of Applegate and

Cook (1991) and (BEASLY, 2005) and the approach to solve them was based on the

work of Fisher (1973), Applegate and Cook (1991), Zhou (1996) and also by

Mastrolilli (2000). Despites the reference works, this article does not aim to reproduce

exactly the same results but to discuss the classical mathematical JSSP formulation

and the computational solution obtained at IBM ILOG CPLEX environment under the

light of Linear Programming perspective.

 Then, on the next sections, a brief review of Linear Programming, Mixed

Integer Programming and Constraint Programming will be presented, followed by

JSSP mathematical model statement.

2. DEFINITIONS

2.1. A Brief Overview of Linear Programing

 Linear Programming (LP) was first proposed by George B. Dantzig in 1947 as

resource to the need of solving complex planning problems concerning to warlike

operations during the World War II. LP is one of the most famous features of

[http://creativecommons.org/licenses/by/3.0/us/]
Licensed under a Creative Commons Attribution 3.0 United States License

 214

INDEPENDENT JOURNAL OF MANAGEMENT & PRODUCTION (IJM&P)
http://www.ijmp.jor.br v. 6, n. 1, January - March 2015
ISSN: 2236-269X
DOI: 10.14807/ijmp.v6i1.262

Mathematical Programming, the later is defined by Dave, Dantzig and Thapa (1998)

as follows:

“branch of mathematics dealing with techniques for maximizing or minimizing an

objective function subject to linear, nonlinear, and integer constraints on the

variables”

 This fundamental concept is important to define the range of this study as the

initial step taken to optimize the JSSP was to build an integer optimization model,

composed by some of those elements mentioned above.

 Continuing with the definitions, the Linear programming (LP) can be viewed

as part of a great revolutionary development, which has given humankind the ability

to state general goals and to lay out a path of detailed decisions to take in order to

“best” achieve its goals when faced with practical situations of great complexity

(DANTZIG, 2002). In order to be linear, an optimization model must satisfy 3

assumptions: proportionality, nonnegativity and additivity, which are described on

Table 1.

Table 1: Conditions to linearity
Assumption 1: Proportionality

The quantities of flow of various items into or out the activity are
always proportion to the activity levels. i.e.: it concerns to
contribution per unit of each decision variable to the objective
function.

Assumption 2: Additivity

Relates to the relationships among the decision variables. For
each item it is required that the total amount specified by the
system as a whole equals to the sum of the amounts flowing into
the various activities minus the total amount flowing out. i.e.:
The total value of the objective function equals the sum of the
contributions of each variable to it.

Assumption 3: Nonnegativity

While any positive multiple of an activity is possible, negative
quantities of activities are not. Ex.: A negative quantity of
delivery packages cannot be negative.

Source: Adapted from DANTZIG (1996)

 Summarizing it in a more scientific verbiage, Linear programming (LP)

consists on the mathematical programming technique applied for finding optimal

solutions to problems expressed in linear equations and inequalities (BRADLEY;

[http://creativecommons.org/licenses/by/3.0/us/]
Licensed under a Creative Commons Attribution 3.0 United States License

 215

INDEPENDENT JOURNAL OF MANAGEMENT & PRODUCTION (IJM&P)
http://www.ijmp.jor.br v. 6, n. 1, January - March 2015
ISSN: 2236-269X
DOI: 10.14807/ijmp.v6i1.262

HAX; MAGNANTI, 1977). Generally LP aims is to find a vector ݔ	 ∈ Թ௡ maximizing

(or minimizing) the value of a given linear function among all vectors ݔ	 ∈ Թ௡ that

satisfy a given system of linear equations and inequalities. The linear function to be

maximized, or sometimes minimized, is called the objective function and it presents

the following form (MATOUSEK; GARTNER, 2007):

C T X = c 1 x 1 + · · · + c n x n

 Where, ݔ	 ∈ Թ௡ is a given vector

 Continuing, those linear equations and inequalities in the linear program are

called constraints and a linear program is often written using matrices and vectors, in

a way similar to the notation AX = b for a system of linear equations in linear algebra.

Therefore, linear programs are problems that can be expressed in canonical form:

Max C T X (1)

Subject to:

A X ≤ b (2)

X ≥ 0 (3)

The standard form of this kind of problem is:

max ܿଵ	ݔଵ ൅ ܿଶݔଶ ൅ ⋯൅ ܿ௡ ௡ (4)ݔ

Subject to

ܽଵ	ݔଵ ൅	ܽଵଶ ଶݔ ൅ ⋯൅ ܽଵ௡ ௡ݔ ൌ ܾଵ (5)

ܽ௠ଵ	ݔଵ ൅	ܽ௠ଶ ଶݔ ൅ ⋯൅ ܽ௠௡ ௡ݔ ൌ ܾ௠ (6)

ଵݔ ൒ 0,… , ௡ݔ ൒ 0 (7)

 The way usually pursued to solve such problems is the Simplex Method, which

was introduced in the late 1940s, simplex evaluates from vertex to vertex on the

boundary of the feasible polygon gradually improving the objective function until an

optimal solution is found - or it is established that no solution exists (MATOUSEK;

GARTNER, 2007). It is not the aim of this work to discuss step by step the methods to

solve Linear Programs – even though Simplex method is very important to solve real

world optimization problems. Thus, in order to obtain a detailed explanation of how

solve many types of LP trough simplex or graphic method see bradley; Hax and

Magnanti (1977) and Taha, (2007).

[http://creativecommons.org/licenses/by/3.0/us/]
Licensed under a Creative Commons Attribution 3.0 United States License

 216

INDEPENDENT JOURNAL OF MANAGEMENT & PRODUCTION (IJM&P)
http://www.ijmp.jor.br v. 6, n. 1, January - March 2015
ISSN: 2236-269X
DOI: 10.14807/ijmp.v6i1.262

 Once presented a quick overview of Linear programming, on subsection 2.2

the main definitions of mixed and integer programming are briefly presented.

2.2. Basic definitions of MIP

 Mixed and integer programming is a part of mathematical programming

dedicated to solve problems which require that the variables must be integers

numbers. i.e. {0, 1, 2, 3,…, n}. Therefore, it focuses on discrete optimization

problems (KAUFMANN, 1977). It is noteworthy that most of the integer problems are

complex to be solved as the best solution with integer values of is not always

obtained by taking the maximal solution of the program for continuous values and by

then suppressing the decimal portion of it.

 There are plenty of important issues that can be formulated as integer

programming problems and solved by the use of the simplex method, such as i)

Scheduling Problems (VANDERBEI, 2008). (e.g.: Equipment Scheduling and

personnel scheduling), ii) The Traveling Salesman Problem, and ii) Fixed Costs

problems. In the case of the examples i, ii, and iii, they present as property that the

integer decision variables are binary. Because of the characteristics described

above, the standard integer programming problem is define as:

Max C T X (8)

Subject to:

A X ≤ b (9)

X ≥ 0 (10)

ࢄ ∈ Ժ (11)

 However, for problems in which the decision variables may assume any

nonnegative integer value, it is necessary to resort to techniques such as the branch-

and-bound method. Complementarily, that there is no single technique for solving

integer programs and because of that a certain number of procedures have been

developed for this purpose. They are broadly classified in 3 groups of three

approaches:

i) Enumeration techniques, including the branch-and-bound procedure,

ii) Cutting-plane techniques and,

[http://creativecommons.org/licenses/by/3.0/us/]
Licensed under a Creative Commons Attribution 3.0 United States License

 217

INDEPENDENT JOURNAL OF MANAGEMENT & PRODUCTION (IJM&P)
http://www.ijmp.jor.br v. 6, n. 1, January - March 2015
ISSN: 2236-269X
DOI: 10.14807/ijmp.v6i1.262

iii) Group-theoretic techniques. The first item on the list consists on the

main resource applied by IBM ILOG CPLEX and because of the

relevance of this work, it is important to present further explanations

about it. For more detail about item ii and iii, see Bradley; Hax;

Magnanti (1977) and Vanderbei (1998).

 The Branch-and-bound intends solve an expected large number of correlated

LP problems at the search for an optimal integer solution. Marie-France Derhy

described this method as based on the principle that the total set of feasible solutions

can be portioned into smaller subsets of solutions (DERHY, 2010), such as shown on

Figure 1.

Figure 1- B&B illustrated procedure.

Source: Gurobi Optimization, (2014)

 Continuing with the description, then the smaller subsets are evaluated

systematically until the best solution is found. Whenever this method is used it is

combined to a continuous solution method such as the simplex.

 However, as an integer linear program is a LP only constrained by ࢄ	 ∈ Ժ, in a

minimization problem, the value of the objective function at the linear-program

optimum will always be a lower bound on the optimal integer-programming objective,

while any other integer feasible point is always a upper bound on the optimal linear-

program objective value (BRADLEY, HAX and MAGNANTI, 1977). This process is

repeatedly upgraded until an optimal solution if found or until every node is whacked.

With this in perspective, it is important to present two more fundamental concepts:

 GAP: the difference between the current upper-bounds (UB) and lower-

bounds (LB) is the gap

 INTEGER OPTIMAL: when [UB- LB] ÷ LB = 0, the integer optimal is achieved

[6].

[http://creativecommons.org/licenses/by/3.0/us/]
Licensed under a Creative Commons Attribution 3.0 United States License

 218

INDEPENDENT JOURNAL OF MANAGEMENT & PRODUCTION (IJM&P)
http://www.ijmp.jor.br v. 6, n. 1, January - March 2015
ISSN: 2236-269X
DOI: 10.14807/ijmp.v6i1.262

 Although it presents limitations, MIP has proved to be very effective in

modeling and solving both theoretical and practical optimization problems.

Additionally, MIP consists on a special case of CP, despites the former represents a

very important case of CP where all constraints and the objective function are

required to be linear and only integer or real-valued domains are feasible accordingly

to Salvagni(2008a) and Barták, (1999). With that idea on focus and considering that

the second part of this work betakes Constrain Programming for Job-shop

Scheduling Problems, the section is dedicated to present definitions on CP and its

main features.

2.3. Basic Definitions of Constraint Programming

 This section aims to present definitions related to constraint programming as

well as briefly listing the main applications mentioned on literature. Literature Review

on Constraint Programming is wide, stating in 1963 with the concept of general

logical constraints by Sutherland in 1963 at his interactive drawing system Sketchpad

(ACHTERBERG et al., 2008a). Later, during the 1970’s further definitions of

Constraint logic programming emerged in the artificial intelligence studies.

Thereafter, in the following decade the constraint solving was incorporated into logic

programming – when the work of Jaffart and Lassez(1987); Colmerauer (1990),

among others gained prominence.

 Constraint Programming (CP) is the study of computational systems based on

constraints. It is an emergent paradigm to declarative model and e�ectively solve

large, often combinatorial, optimization problems Salvagni(2008a). Then, because

CP builds upon stating constraints and solving them, in this section some definitions

related to this field are presented for later comparison to MIP. Summarizing it, a

constraint program definition is a triple (BERTHOLD, NATURWISSENSCHAFTEN,

2008):

 CP = ሺՁ, ܲ, ݂ሻ	and consists of solving (CP) ݂∗ ൌ minሼ݂ሺݔሻ|	ݔ	 ∈ ु, Ձ	ሺݔሻሽ with

the set of domains ु = ुଵ× . . . × ु௡ , the constraint set Ձ = {C 1, … , C m }, and an

objective function݂:	ु → Թ. We denote the set of feasible solutions by ܺ஼௉ ൌ ሼݔ	ݔ|	 ∈

ु, Ձ	ሺݔሻሽ . A CP where all domains ु ∈ 	Ձ ∈ D are finite is called a finite domain

constraint program (CP (FD)).

[http://creativecommons.org/licenses/by/3.0/us/]
Licensed under a Creative Commons Attribution 3.0 United States License

 219

INDEPENDENT JOURNAL OF MANAGEMENT & PRODUCTION (IJM&P)
http://www.ijmp.jor.br v. 6, n. 1, January - March 2015
ISSN: 2236-269X
DOI: 10.14807/ijmp.v6i1.262

 Complementing the definition, a constraint is simply a logical relation among several

unknowns (or variables), each taking a value in a given domain. Furthermore, about

constraints (BARTÁK, 1999) :

i) They can specify partial information, i.e. there is no obligation of previously

declaring variables value,

ii) Constraints are non-directional and they are declarative, i.e. they specify what

relationship must hold without specifying a computational procedure to enforce

that relationship,

iii) They possess additive propriety. Therefore, the order of imposition of

constraints is irrelevant as the conjunction of constraints is in effect,

iv) Usually, constraints from the constraint store share variables.

 CP has been successfully applied to a high variety of knowledge fields such as

project management, whether industry or hospital scheduling. Further applications

exemplified by Wallace (1996), such as Circuit Checking, Real-time control systems.

2.3.1. Constrain Programming Techniques

 Constraint problems Techniques (solving technologies) can usually be

categorized into 2 broad groups (BARTÁK, 1999): Constraint Satisfaction and

Constraint solving.

 The first group (Constraint Satisfaction) possesses strong relationship with

Artificial Intelligence (AI) for solving Constraint Satisfaction Problems (CSP) which

are stated as: a set of variables X={x1 ,...,xn }, where for each variable xi there is a

finite set Domain (Di) of possible values. Also, there is a set of constraints that

restrict the values that the variables can simultaneously take (LITTLE, TSANG,

1995). The possible values of the domain can whether be numeric or not, and in the

case of D assume numeric values, there is no obligation for them to be integer.

Therefore, the solution of a CSP will be accomplished when every variable assumes

on value from the domain and all constraint are simultaneously satisfied.

 A CSP allows multiple solutions depending on the goals can various solutions

or only one can be found. Yet, is it still possible to obtain optimal solutions or even

only a desirable one. In order to satisfy the constraints of such problems, following

approaches are suggested (ACHTERBERG et al., 2008a):

[http://creativecommons.org/licenses/by/3.0/us/]
Licensed under a Creative Commons Attribution 3.0 United States License

 220

INDEPENDENT JOURNAL OF MANAGEMENT & PRODUCTION (IJM&P)
http://www.ijmp.jor.br v. 6, n. 1, January - March 2015
ISSN: 2236-269X
DOI: 10.14807/ijmp.v6i1.262

 Consistence Techniques,

 Constraint propagation,

 Stochastic and Heuristics algorithms

 Systematic Search

 Moving forward, the Constraint solving category covers the use of optimization

based algorithms and mathematical techniques. A Constraint Satisfaction

Optimization Problems (CSOP) consists on the same the definition of a standard

constraint satisfaction problem (CSP) plus the requirement of finding optimal

solutions (LITTLE, TSANG, 1995). Therefore the solution must comply with a

previously defined objective function and at the same time it satisfies all the

constraints together. In that context, the Branch and Bound (B&B) method is the

most recurrent resource, which can be applied to the CSOP and to MIP problems as

well (BARTÁK, 1999).

 According to the same author, the B&B requires an heuristic function for

mapping the partial labelling to a numerical value and in the case of a minimization

problem such as the ones studied in this work, it represents an under estimate of

the objective function for the best complete labelling achieved.

 Thus, this kind of model searches for solutions in a depth first manner and

behaves like chronological Backtracking1 except that as soon as a value is assigned

to the variable, the value of heuristic function for the labelling is computed. If this

value exceeds the bound, then the sub-tree under the current partial labelling

is pruned immediately. Another way to address that type of problem is the use of

Stochastic and Heuristics algorithms such as Genetic algorithms (GAs). GAs

represent a class of stochastic search based on the concept of the evolution in

nature which successfully has been applied to combinatorial optimization problems

such:

i) the travelling salesman problem (TSP),

ii) the quadratic assignment problem (QAP) and ,

iii) Scheduling Problems.

1 “Backtracking” is a problem solving method according to which one systematically searches for

one or all solutions to a problem by repeatedly trying to extend an approximate solution in all possible ways

(FOKKINGA, 2004).

[http://creativecommons.org/licenses/by/3.0/us/]
Licensed under a Creative Commons Attribution 3.0 United States License

 221

INDEPENDENT JOURNAL OF MANAGEMENT & PRODUCTION (IJM&P)
http://www.ijmp.jor.br v. 6, n. 1, January - March 2015
ISSN: 2236-269X
DOI: 10.14807/ijmp.v6i1.262

 The plurality of constraint programming techniques is evident, as well as large

range of applications. However, it is not the objective of this study to conduct a broad

theoretical review on each technique related to this area of knowledge. In fact, it is

noteworthy to recapitulate that this works intends to present a comparison between

the different results obtained through a MIP model and several CP models aiming to

optimize 17 hard Job-shop problems.

 In this sense it is relevant to mention the work of Berthold and

Naturwissenschaften (2008), in which it is presented the paradigm of Constraint

Integer Programming (CIP). This author defends that MIP can be approached as a

specific case of Constraint Programming and therefore, it is possible to integrate

them. Aiming to do this, the author establishes that most problems of MIP – including

the Job-shop Scheduling problems – can be treated as a Constraint Integer problem

as long as the constraints are linear. Therefore, by definition, a Constraint Integer

Programming (CIP) consists on solving:

CIP = (Ձ, ,ܫ ܿሻ (12)

where: CIP c* = min {cTx | Ձ (x) , xj ∈ Ժ for all

J ∈ I }

(13)

 And Ձ = {C1…Cm} is a is a finite set of constraints Ci: Թ	n →{0,1}, i = 1, …,

m, a subset I ⊂ N = {1,…, n}, of a variable index set and an objective function vector

c ∈ Թn .

 A CIP must fulfil the conditions below:

ොݔ	∀ 	∈ Ժூ∃	൫ܣ’ , ’ܤ ൯: ሼܿݔ ∈ Թ஼|Ձ ሺݔො, ሻሽݒݔ

 ൌ	

ሼܿݔ ∈ Թ஼|ܣ’ ܿݔ ൑ ܾ’ ሽ

(14)

With

C: = N \ I, A ∈ Թ௞ ௑ ௖, ܽ݊݀ ܾ´ ∈

Թ௞			݂ݎ݋	݁݉݋ݏ ݇ ∈ Ժஹ଴.

(15)

[http://creativecommons.org/licenses/by/3.0/us/]
Licensed under a Creative Commons Attribution 3.0 United States License

 222

INDEPENDENT JOURNAL OF MANAGEMENT & PRODUCTION (IJM&P)
http://www.ijmp.jor.br v. 6, n. 1, January - March 2015
ISSN: 2236-269X
DOI: 10.14807/ijmp.v6i1.262

 The first constraint (equation 10) guarantees linearity to the problem after

fixing the integer variables therefore, the problem can be solved by enumerating all

values of the integer variables and solving the corresponding Linear Programs

(BERTHOLD, NATURWISSENSCHAFTEN, 2008). This new paradigm set MIP

problem as CIP, which allowed Job-shop scheduling problems (among many others)

to be solved with hybrid approaches. Another contribution of ACHTERBERG et al.

(2008b) and Berthold and Naturwissenschaften (2008) consists on establishing a

parallel on both techniques, which can be observed on Table 2.

Table 2 –differences between MIP and CP
Constraint Programming (CP)

Domains of variables are (arbitrary) sets,
Constraints are (arbitrary) subsets of domain space,
High flexibility in modelling, natural but very general
concept.

Mixed Integer Programming (MIP)

Domains are intervals in ℚ or Ժ
Constraints and objective function are linear,
Highly structured, specialized algorithms, restricted
modelling

Constraint Integer Programming (CIP)

Linear objective function
Arbitrary constraints, but fixing all integer variables always
leaves LP (as in MIP)

Source: adapted from ACHTERBERG et al. (2008b)

 Once presented main definitions that based this work, on the next section the

proceedings of MIP study are presented, followed by the empirical study of CP.

3. JSSP GENERAL STATEMENTS

3.1. The objective function

 Inputs of these JSSP consist on a set of Jn (jobs) x Mn (machines), where the

due dates are not known, and there where specified two schedule decision criteria:

i) Maximization of the number of jobs,

ii) Minimization of the makespan and,

iii) J = finite set of jobs, J= {ji,….,jn},

iv) M = finite set of machines, M= {mi,….,mn}

[http://creativecommons.org/licenses/by/3.0/us/]
Licensed under a Creative Commons Attribution 3.0 United States License

 223

INDEPENDENT JOURNAL OF MANAGEMENT & PRODUCTION (IJM&P)
http://www.ijmp.jor.br v. 6, n. 1, January - March 2015
ISSN: 2236-269X
DOI: 10.14807/ijmp.v6i1.262

 For each j and m, let xjm be the starting time of a job j in machine m, and let

Pjm be processing time of (j,m), where each Job possesses a predefined sequence

of operations through the machines.

 Also, every Jj at each Mm have a nonnegative integer processing time (Pjm)

and the instant of a Jj enters into Mm to be process is denominated Xjm.

 The objective of this problem consists on minimizing Makespan, which

corresponds to the subtraction of completion time of last job and starting time of the

first job (Cmax). Then, as the starting time of the first job must be the instant zero, the

objective function corresponds to (APPLEGATE, COOK, 1991):

Min Z = Cmax - 0 (16)

Cmax = Max Xjm+ Pjm

(17)

 Now that the objective function is defined, the declaration of the constraints is

presented on the next section.

3.2. Constraints

 The constraints established for this problem are:

Xjm ≥ 0 for all j ∈ J, m ∈ M (18)

Xj(t) ≥ Xj(t-1) + Pj(t-1)m for all t = 2,…,m (19)

Xim ≥ Xjm+ Pjm or Xjm ≥ Xim + pim

for all I, j ∈ J, m ∈ M
(20)

Zx ≥ Xj(t) + Pj(t)m for all J ∈ J (21)

 In order to solve this problem with the IBM ILOG CPLEX, a dummy variable

was incorporated on constraint (5) so that this problem could be solved with MIP. The

binary variable Ym (ij) assumes value one, whenever job i is scheduled on m before

job j (7).

Xim ≥ Xjm+ Pjm + K. (1- Ym (ij)) , {Ym (ij) ∈: 0≤ Y≤ 1}

Or

 Xjm ≥ Xim+ Pim + K. Ym (ij), {Ym (ij) ∈: 0≤ Y≤ 1} for all I, j ∈ J,

(22)

[http://creativecommons.org/licenses/by/3.0/us/]
Licensed under a Creative Commons Attribution 3.0 United States License

 224

INDEPENDENT JOURNAL OF MANAGEMENT & PRODUCTION (IJM&P)
http://www.ijmp.jor.br v. 6, n. 1, January - March 2015
ISSN: 2236-269X
DOI: 10.14807/ijmp.v6i1.262

m ∈ M

May K corresponds to some large constant.

 Summarizing, the model is: {Min (16), Sub to (18), (20), (21) and (22) }.

4. JSSP FORMULATIONS

4.1. MIP formulation

 After stating the mathematical model for the JSSP, in this subsection the MIP

formulation to solve this problem is presented.

Objective function Min Cmax

Constraints for all I, j ∈ J, m ∈ M

Nonnegative times:

 Xjm ≥ 0

(23)

No-Preemption

Xj(t) ≥ Xj(t-1) + Pj(t-1)m

for all t = 2,…,m

(24)

Dummy Variable:

Yji-1, ji ∈ {0,1}

for all j i-1 ∈ J > ji ∈ J

(25)

Sequencing Criteria

Xim ≥ Xjm+ Pjm + K. (1- Ym (ij))

 Xjm ≥ Xim+ Pim + K. Ym (ij)

(26)

 L (sec): Time limit: = 3.600 (27)

 The objective function of this problem is consistent with equation (17), which is

minimizing the completion time of all the jobs through finding the best sequencing.

The constraints for this problem recall the Job-shop characteristics described on

section one (items 1-14), which were translated to equations 23 to 26.

4.2. The CP -1 Model for JSSP

 The CP -1 model consists on running the standard algorithm of IBM for default

job-shop scheduling problems. This default model was conceived under the

paradigm of setting discrete decision variables (processing intervals and sequencing

[http://creativecommons.org/licenses/by/3.0/us/]
Licensed under a Creative Commons Attribution 3.0 United States License

 225

INDEPENDENT JOURNAL OF MANAGEMENT & PRODUCTION (IJM&P)
http://www.ijmp.jor.br v. 6, n. 1, January - March 2015
ISSN: 2236-269X
DOI: 10.14807/ijmp.v6i1.262

machines) with the objective function of minimizing Makespan. For this kind of

problem, IBM set the constraints according to the definitions of the Constraint

Programming, and which are consequently aligned to the JSSP rules presented on

section 1. After setting the constraints, the next step is to search for a satisfactory

solutions, which is performed as illustrated on Figure 2.

Figure 2: CP search process

Source:OPL(2009)

 This initial model, here called naïve, presents the formulation shown below:

Objective function Min Makespan (28)

Constraints
No-Preemption : noOverlap Tj,m (29)

Process Sequencing: endBeforeStart (Ij,m -1,Ijm) (30)

 L (sec): Time limit: = 3.600 (31)

Where:

Tj,m = Tuple operation of j ∈ J, m ∈ M

Ij,m = Interval in which j is under processing at m

 Eq.(28) does not differ from the other objective function previously discussed

in section 3.1, but the constraints are presented with some differences:

[http://creativecommons.org/licenses/by/3.0/us/]
Licensed under a Creative Commons Attribution 3.0 United States License

 226

INDEPENDENT JOURNAL OF MANAGEMENT & PRODUCTION (IJM&P)
http://www.ijmp.jor.br v. 6, n. 1, January - March 2015
ISSN: 2236-269X
DOI: 10.14807/ijmp.v6i1.262

i) NoOverlap : this constraint is used to prevent intervals in a sequence from

overlapping and (optionally) to enforce a minimal distance between

consecutive intervals (IBM, 2014).

ii) EndBeforeStart: this constraint states that the end of a given interval

variable Ij,m -1 is necessarily less than or equal to the start of a given interval

variable Ijm. (IBM, 2014).

iii) TimeLimit (sec): the solutions search was originally limited per number of fails.

However, for this study this parameter was changed to TimeLimit of 3600 sec.

 That implies that this search is not guaranteed to return the optimal solution,

but the best one found within the limit available (IBM, 2014).

4.3. The CP -2 Model for JSSP

 CP-2 model resembles definitions from section 3.1 and 3.2, from which is

added the constraint of time limit Eq. (36). This proposition can be observed next.

Objective function
Min Cmax

Cmax = Max Xjm+ Pjm

(32)

Constraints Nonnegative times:

 Xjm ≥ 0 for all j ∈ J, m ∈ M
(33)

No-Preemption

Xj(t) ≥ Xj(t-1) + Pj(t-1)m

for all t = 2,…,m

(34)

Process Sequencing:

Xim ≥ Xjm+ Pjm ⋁ Xjm ≥ Xim + pim
(35)

L (sec): Time limit: = 3.600 (36)

 The sequencing criteria for CP-2 model does not differ mathematically from

the one presented on model MIP excepting for discharging the use of dummy

variables and, of course, by the use of the CP solver.

4.4. experimental results the test problem

 Aiming to verify if the proposed models could successfully solve a JJSP, one

short test problem was ran on IBM ILOG CPLEX for each model, before any attempt

to run one of the hard proposed by (BEASLY, 2005).

[http://creativecommons.org/licenses/by/3.0/us/]
Licensed under a Creative Commons Attribution 3.0 United States License

 227

INDEPENDENT JOURNAL OF MANAGEMENT & PRODUCTION (IJM&P)
http://www.ijmp.jor.br v. 6, n. 1, January - March 2015
ISSN: 2236-269X
DOI: 10.14807/ijmp.v6i1.262

 This short problem was based on the JSSP description by i) Slack, Chambers

and Johnston(2010), ii) (Boushaala et al., 2012)and French (1982) and it consists on

a 3 jobs x 4 machines, in which, every job had to follow a predefined. The problem

times and routes are presented on Table 3.

Table 3: Problem to test the model
Jobs Machine

Sequence
Processing Times in h
(machine, job)

0 0,1,2 P01=9, p11=10, p21=14

1 1,0,3,2 p12=8, p02=5, p32=5,
p22=6

2 0,1,3 P03=9, p13=7, p33=5

 This problem required 48 seconds to be solved on a computer with processors

4 Intel® Core™ i7-4700MQ and 8GB of RAM, and it presented the following results (

Table 4).

Table 4: MIP test solution
Test
JSSP

Size Optimal
Cmax

MIP
Cmax

GAP
(%)

D

MIP

3x4 39

39 0 0

CP1 39 - 0

CP2 39 - 0

D = deviation from best Cmax l % 2

 The Cmax calculated through MIP matched the optimal solution and it is

important to mention that the MIP model has reach optimality as the GAP calculated

by IBM ILOG CPLEX equals to zero. With this in view, it can be inferred that the MIP

model is functional and can be applied to more complex problems.

 Similarly to the model test performed on MIP, the results obtained though IBM

default model CP-1 - here defined as naïve model - took 3 x 10-3 seconds to solve

this problem and to find the best Cmax value.

 Next, the CP-2 model is presented as an alternative to CP-1 model in the

search for solutions. For testing Model CP2, the instance TEST was run in 1.05

seconds until the best Cmax was found.

2 D = [Cmax (model) - Cmax (optimal)] ÷ Cmax (optimal)

[http://creativecommons.org/licenses/by/3.0/us/]
Licensed under a Creative Commons Attribution 3.0 United States License

 228

INDEPENDENT JOURNAL OF MANAGEMENT & PRODUCTION (IJM&P)
http://www.ijmp.jor.br v. 6, n. 1, January - March 2015
ISSN: 2236-269X
DOI: 10.14807/ijmp.v6i1.262

 Thus, as every model presented in this section has shown capability to find

optimal results for the JSS test problem, their application on hard problems was

proceeded. The results of this final stage of work can be observed on section 5.

 Moving forward, as the job-shop scheduling problems (JSSP) are both

scheduling and sequencing problems it is important for the operations management

to provide a way of viewing the sequencing and timing instantaneously. For that

reason, the Gantt chart was chosen to illustrate the results obtained for this initial

problem - Figure 3.

Figure 3: Gantt chart for JSSP test 1 (machines x time)

 The Gantt chart consists on a bar graphic which pictures the schedule of a

certain set of operations in the appropriate sequence. Through this chart it is possible

to observe both start and finish times of each operation at the jobs involved on the

problem.

 Those start and finish times were initially calculated via IBM ILOG CPLEX.

But, in order to pedagogically illustrate this JSSP, the following discussion will be

supported by the Gantt chart.

 Then, calculating the total waiting time of each job through the graph: J0

presented no waiting time, efficiently flowing all long the processing.

 J1 had 15h of waiting time from machine 1 to machine 0. J2 had the

sequencing with higher and also more frequent waiting time among machines: M0 (9

h), M1 (8h), M3 (1h). Therefore, the total waiting time for this job was 18 h.

 Additionally, from the chart it is possible to extract the available time of each

machine in this timeframe: i) M0 is free for 5hs between J2 and Job1, ii) M1 has 14h

not occupied as between J0 and J2 there is 7hs and once J2 leaves this machine

[http://creativecommons.org/licenses/by/3.0/us/]
Licensed under a Creative Commons Attribution 3.0 United States License

 229

INDEPENDENT JOURNAL OF MANAGEMENT & PRODUCTION (IJM&P)
http://www.ijmp.jor.br v. 6, n. 1, January - March 2015
ISSN: 2236-269X
DOI: 10.14807/ijmp.v6i1.262

there are still 6h free to be used, iii) M2 has 18hs unoccupied before J0 starts to be

processed, iv) and M3 has 28h free before J1 starts to be processed and also 1hs

between J1 and J2.

 Still, it is relevant to expatiate that because the sequencing results of CP are

not identical to the one obtained from MIP model, Figure 3 will suffice to illustrate the

obtained sequencing results. Once this solution for the test problem presented no

deviation from its optimal, the next step taken was to run further complex problems in

order to observe how it fits them.

5. EXPERIMENTAL ANALYSIS

5.1. Studied instances

 At this stage of work, there were selected 17 differently sized JSSP to be

optimized by the algorithms written on IBM ILOG CPLEX. The sizes of the chosen

problems are presented on Table 5.

Table 5: JSSP instances dimensions
Problems Quantity Size

LA06 1 15 X5

FT06 1 6X6

LA01, LA 02, LA05, LA08,
LA03, LA04

6 10x5

ABZ5, ABZ6,LA19,LA20,
ORB2, ORB5, MT10 (FT10),
ORB 1, ORB3

9 10x10

 FT06 optimal value was published by Fisher and Thompson (1973) and the

others were previously published by Appplegate and Cook (1991) and also

Zhou,(1996) and with a different approach by Mastrolilli (2000). The calculated

Cmax, and their deviations from the optimal solution, which were obtained though

models MIP, CP-1 and CP-2 are presented on Table 6.

5.2. Experimental Results

 The experimental results were organized in a way such as the interpretation of

the reader was facilitated. Therefore: i) Colum Opt shows the Optimal Cmax value

for the problem, ii) Colum SMIP corresponds to the solution obtained by MIP model,

iii) in the sequence, iv)SCP1 displays the solution btained by model CP-1, v) SCP2

[http://creativecommons.org/licenses/by/3.0/us/]
Licensed under a Creative Commons Attribution 3.0 United States License

 230

INDEPENDENT JOURNAL OF MANAGEMENT & PRODUCTION (IJM&P)
http://www.ijmp.jor.br v. 6, n. 1, January - March 2015
ISSN: 2236-269X
DOI: 10.14807/ijmp.v6i1.262

exhibit the solution obtained by model CP-2. Finally, every Colum containing the

symbol vi) Dn, shows the deviation from optimal Cmax. Deviations were calculated

taking as an example footnote 2, on page 227.

Table 6: Results per model

Instance Opt SMIP DMIP SCP1 D CP1 SCP2 D CP2

ABZ5 1234 1238 - 1277 0,035 1239 0,004
ABZ6 943 943 - 948 0,005 943 -
FT06 55 55 - 55 0,000 55 -
LA01 666 666 - 666 0,000 666 -
LA02 655 655 - 662 0,011 655 -
LA03 597 597 - 647 0,084 597 -
LA04 590 590 - 655 0,110 590 -
LA05 593 593 - 593 0,000 593 -
LA06 902 926 0,03 1559 0,728 926 0,027
LA08 863 863 - 863 0,000 863 -
LA19 842 842 - 884 0,050 842 -
LA20 887 887 - 934 0,053 902 0,017
MT10 572 593 0,04 1062 0,857 937 0,638
ORB1 1059 1102 0,04 1079 0,019 1077 0,179
ORB2 860 888 0,03 907 0,055 888 0,032
ORB3 930 1038 0,12 1067 0,147 1024 0,101
ORB5 886 926 0,05 983 0,109 887 0,001

Dmodel = deviation from best Cmax l %

 Despites the limitation of time which was set in 3600 seconds for both models,

the MIP achieved optimality on 6 problems: ABZ6, LA01, LA02, LA03, LA04, LA20.

Other 4 problems were granted as optimized, but they presented small gaps3.

 Concerning to those last problems, there should be a clarification: IBM ILOG is

configured by default for a 10% tolerance on GAPS measure and that is why during

the run of those 4 JSSP the algorithm was interrupted before 3600 sec. Those

instances where: ORB01, ORB02, ORB03 and ORB05.

 The CP-1 model presented the smaller time of solution processing, within a

range from 0s03 sec (LA06) to 1,06 sec (ABZ06), with ORB 01 as an outlier (1390

sec). In fact, none problem solution was interrupted before exceeding the time limit.

However from 17 problems only 3 presented no deviation from the best Cmax value

of literature review. Continuing with CP-1 outputs, 6 instances presented solutions

3 Tolerance: Problems with gaps between 0.1% and 10% on their solutions were

considered nearly optimal.

[http://creativecommons.org/licenses/by/3.0/us/]
Licensed under a Creative Commons Attribution 3.0 United States License

 231

INDEPENDENT JOURNAL OF MANAGEMENT & PRODUCTION (IJM&P)
http://www.ijmp.jor.br v. 6, n. 1, January - March 2015
ISSN: 2236-269X
DOI: 10.14807/ijmp.v6i1.262

close to the target (optimal), with deviations inferior to 10%, which were : ABZ5 ,

ABZ6 , LA03 , LA19, LA20, and ORB2.

 Although the satisfactory results, some other instances presented the highest

deviation from the desired Cmax value, among the 3 models, such as: ORB3

(0,147), LA04 (0,11), LA02 (0,11) ORB5 (0,11) and especially LA06 (0,728), MT10

(0,856) that presented values superior than 70%.

 Moving the analysis to model CP-2, the general processing time were much

higher in comparison to its predecessor. The processing time range stands from

0,005 (LA08) to 1926 (ORB01).

 On the other hand, deviation from the target were much lower:

i) There were successfully solved 9 problems: with zero deviations from optimal

value (ABZ6, FT06 , LA01, LA02 , LA03 , LA04 ,LA05, LA08 , LA19) and

There were 6 problems solved with divergence between 4% and 0,1%, see

Table 6,

ii) There are only 2 solutions with diversion higher than 10% from optimal, which

are: ORB01 (0,17) and MT10 (0,638).

 At the stage of research, the standard model CP-1 was discharged as the best

choice, because although it presented the best solving time, it failed to solve 53% of

instances. Still, it was able to fully solve 3 problems: LA05, FT06 and LA01 as well as

it nearly solved 35% of this set of problems4. For that reason, the Gantt Charts of

CP-1 as well as its processing time were suppressed of the next subsection, but it

can be observed on the Attachment Section.

 By the MIP processing, most problems were optimized (or at least nearly

optimized) in less than 400 sec. However, ORB1, ORB3 and ORB5 have reached the

time limit of 3600 with gaps superiors to 11%. Because the tolerance level of gaps

was set on 10%, it was considered that these problems were not successfully solved.

 Moving forward to CP-2 model, its processing times obtained were very much

lower than the previous one, by solving 88% of instances under 500 sec. The

exceptions were ORB01 (1.926sec), OBR02 (871sec) and ORB03 (1.117sec), but

4Tolerance for CP models: problems presenting deviations from optimal between 0.1%

and 10% on their solutions were considered nearly optimal.

[http://creativecommons.org/licenses/by/3.0/us/]
Licensed under a Creative Commons Attribution 3.0 United States License

 232

INDEPENDENT JOURNAL OF MANAGEMENT & PRODUCTION (IJM&P)
http://www.ijmp.jor.br v. 6, n. 1, January - March 2015
ISSN: 2236-269X
DOI: 10.14807/ijmp.v6i1.262

notwithstanding the time, solutions presented deviations inferior to 10% on the first 2

orbs. To observe all processing times, see Table 6.

 In terms of time performance and solving success, model CP -2 has

demonstrated to be most adequate to solve this particular set of problems. However

MIP model also presented satisfactory results. Due to the times and success rates of

MIP and CP-2 models have been considered virtually equivalent, a further

exploration of results were elaborated. Thus, in the following subsection some

further comments related to the operations management perspective are presented

to aid the choice of the most appropriate model for the studied set of solutions.

5.3. Complementary Analysis

 This complementary analysis of the 2 selected models is illustrated with the

example of instance FT06. This instance is a 6 x 6 system, with optimal Cmax = 55h.

Figure 4: Gant chart for instance ft06 on MIP

 Both models have arrived on the best results for its completion time, however

the presented sequences differ from one another - differences on the sequencing can

be observed on Figure 4 and Figure 5.

Figure 5: Gant chart for instance FT06 on CP-2

 In other words, if only the initial criterion is maintained. (Min Cmax), both

models can be considered equally eligible, but with subtle difference in accuracy

between MIP and CP2.

[http://creativecommons.org/licenses/by/3.0/us/]
Licensed under a Creative Commons Attribution 3.0 United States License

 233

INDEPENDENT JOURNAL OF MANAGEMENT & PRODUCTION (IJM&P)
http://www.ijmp.jor.br v. 6, n. 1, January - March 2015
ISSN: 2236-269X
DOI: 10.14807/ijmp.v6i1.262

 For that reason, some other important performance issues were incorporated

in to this study:

i) Reducing Work-in-process and

ii) Enlarging Resource Utilization (or reducing idle resources). There are many

other performance criteria to guide decisions related to scheduling priority as

defined by Brown, Blackmon and Cousins (2011):

iii) Level of customer service,

iv) Due time,

v) Factory efficiency.

 The criteria chosen as a reference to support this section correspond i) & ii).

Reducing work-in-process (WIP) and lead time stands out as one of the most critical

objectives of Operations Management, such as defined by Slack, Nigel and

chambers (2010) especially in job shop manufacturing.

 The Work-in-process (WIP) inventories are goods at an intermediate stage

between raw materials inputs to the process and finished goods. The design of the

production process will greatly influence the level of work-in-process

inventory(BROWN; BLACKMON; COUSINS, 2011).

Figure 6 – Job´S WIP on ft06 in a 55h cycle

 Considering the definitions presented above, Figure 6 illustrates how much

time Jobs stay as WIP inventories in the sequencing of MIP Vs CP-2 model. From

that graph it can be observed that J0 spends 34% (18,7hs) of the cycle time waiting

for being processed at MIP, and 24% (13,2h). Considering a tolerance level per job

of 10% for WIP, j0 results cannot be considered efficient. Referring to J1, the total

waiting time in both cases are underneath the tolerance level of 10%. Summarizing, if

the average WIP of each model are compared MIP, presents the lower WIP inventory

[http://creativecommons.org/licenses/by/3.0/us/]
Licensed under a Creative Commons Attribution 3.0 United States License

 234

INDEPENDENT JOURNAL OF MANAGEMENT & PRODUCTION (IJM&P)
http://www.ijmp.jor.br v. 6, n. 1, January - March 2015
ISSN: 2236-269X
DOI: 10.14807/ijmp.v6i1.262

time (14,8h or 26% of the cycle time), while CP-2 puts jobs on hold for 21h or 38% of

the cycle time.

 Maximizing (or at least) Enlarging the Greatest Resource Utilization (GRU)

incurs on prioritizing sequences of activities that will result in a minimum idle time

(ALHARKAN, 2005). That is also a measure of efficiency for many authors, as it

attempts to minimize the waste of expensive means of production.

 Thus, changing the perspective of the job for the machines, MIP sequencing

also presents better performance in most of machines, with exception of M3 (Figure

7). However, CP-2 also surpasses 50% of the cycle time with this machine idle for the

same machine

Figure 7 – machine´s idle time

 Considering the average time machines are idle, there can be noticed that MIP

solution is more efficient than CP-2, because CP-2 put machines on idle on average

17hs (that corresponds to 30% of 55hs) while MIP on average does not allocate

tasks to the machines for 13 hours (24,5%). Concluding this analysis, the evaluation

of those two models leads to the following implications:

 Considering the Objective function: Min Cmax

 CP2- Model was considered the best model among three to solve this

particular set of problems, as it successfully presented the optimal value at 88% of

the studied instances as well as it fail to solve only one problem. In addition to that,

this model has demonstrated the second best timing.

 As a disadvantage, this model has shown inferior performance on reducing the

WIP inventory and also on reducing idle machine times.

 MIP model was considered the second best option because it presented a

larger processing time, and because it successfully optimized 60% of the studied

[http://creativecommons.org/licenses/by/3.0/us/]
Licensed under a Creative Commons Attribution 3.0 United States License

 235

INDEPENDENT JOURNAL OF MANAGEMENT & PRODUCTION (IJM&P)
http://www.ijmp.jor.br v. 6, n. 1, January - March 2015
ISSN: 2236-269X
DOI: 10.14807/ijmp.v6i1.262

instances. This model also presented good (though not optimal solutions) for 23% of

the JSSP and finally, it fail to optimize 12% of the problems. As an advantage, MIP

model presented better performance at the use of machinery resources and also by

presenting a shorter WIP inventory timing.

 Once concluded the experimental analysis, the final considerations of this

study are presented on Conclusions section.

6. CONCLUSIONS

 This work aimed to present a comparison among 3 optimizing models, which

are 1 MIP model and 2 CP Model, both had as objective to optimize 17 classical hard

job-shop scheduling problems.

 Through the study of those problems, it has been proved that the 2 algorithm

succeed on optimizing the majority of problems as well as they observed the 16

premises of JSSP presented on section 1.

 CP-2 has proven to be the most appropriate model to be faster on finding a

close to optimal solution for 10X10 problems, while MIP was faster to find it on 10x5

problems.

 Considering the computational processing time range of 3600sec, in spite of

79% slower, MIP has demonstrate more accuracy of results then CP-2 in 82,35% of

the studied problems. Therefore, it is evidenced the trade-off between response

speed and accuracy between those 2 models.

 Another analysis should be effectuated by a decision maker who wished to

choose between MIP and CP algorithms: the performance criteria of a given

productive system. Those trade-off analysis enter into the domain of Operations

Strategy, which is not the focus of this work and because of that it is suggested for

the reader to see the work of Slack, Nigel and Lewis (2009) on the field of Operations

Strategy.

 As future works opportunities it is suggested to be taken a multi-criteria study

aiming to simultaneously optimized Cmax, GRU and WIP or even any other

performance criteria of Productive Systems in order to pursue better results. Another

possibility is to deconstruct this work and redo it with the use of heuristics techniques,

which would require more sophisticated tools in the search for new solutions.

[http://creativecommons.org/licenses/by/3.0/us/]
Licensed under a Creative Commons Attribution 3.0 United States License

 236

INDEPENDENT JOURNAL OF MANAGEMENT & PRODUCTION (IJM&P)
http://www.ijmp.jor.br v. 6, n. 1, January - March 2015
ISSN: 2236-269X
DOI: 10.14807/ijmp.v6i1.262

 Finally, this work is concluded with the confidence of not only presenting 2

functional Optimization algorithms for JSSP but also with certainty of having

contributed to the demonstration of the many insights to the industrial management

that MIP and CP can bring along.

7. ACKNOWLEDGMENTS

 Thanks are due to CAPES for funding this work through the Program Science

without Borders. (BEX 19131127) and to University of State of Para (UEPA)

REFERENCES

ACHTERBERG, T. et al. (2008) Constraint Integer Programming: A New Approach
to Integrate CP and MIP. In: [s.l: s.n.]. p. 6–20.

ACHTERBERG, T. et al. (2008b) Constraint Integer Programming : A New
Approach to Integrate CP and MIP (M. A. Perron, Laurent ; Trick, Ed.)Integration of
AI and OR Techniques in Constraint Programming for Combinatorial Optimization
Problems- 5th CAIPOR. Proceedings...Paris: Springer, Disponível em:
<http://download.springer.com/static/pdf/854/bok:978-3-540-68155-
7.pdf?auth66=1401445197_6c2a7a5412d043e9d7236f3536cf3058&ext=.pdf>

ALHARKAN, I. M. (2005) Algorithms for Sequencing and Scheduling. 1. ed.
Riyadih: King Saud University, p. Alharkan, Ibrahim

APPLEGATE, D.; COOK, W. (1991) A computational study of the job-shop
scheduling instance. ORSA Journal on Computing, v. 3, p. 149–156.

BARTÁK, R. (1999) Constraint Programming : In Pursuit of the Holy Grail,
Proceedings of the Week of Doctoral Students (WDS99). Proceedings...Prague:
MatFyzPress.

BEASLY, J. E. (2014) OR-Library. Disponível em:
<http://people.brunel.ac.uk/~mastjjb/jeb/orlib/files/jobshop1.txt>. Acesso em: 10 fev.

BERTHOLD, T.; NATURWISSENSCHAFTEN, D. DER. (2008) Constraint Integer
Programming. Paris: Zuse Institute Berlin.

BOUSHAALA, A. et al. (2012) Genetic Algorithm based on Some Heuristic Rules
for Job Shop Scheduling Problem, 3rd International Conference on Industrial
Engineering and Operations Management. Proceedings...Istanbul,: IEE, Disponível
em: <http://iieom.org/ieom2012/pdfs/75.pdf>

BRADLEY, S. P.; HAX, A. C.; MAGNANTI, T. L. (1977) Mathematical
Programming: An Overview, Boston: Addison-Wesley Longman, Inc., Disponível
em: <http://web.mit.edu/15.053/www/>

BROWN, S.; BLACKMON, K.; COUSINS, H. M. (2011) Operations Management. 1.
ed. Boston: Elsevier, p. 449

COLMERAUER, A. (1990) An Introduction to Prolog III (J. W. Lloyd, Ed.)
Computational Logic. Proceedings...Brussels: Springer, Disponível em:
<http://link.springer.com/book/10.1007/978-3-642-76274-1>

[http://creativecommons.org/licenses/by/3.0/us/]
Licensed under a Creative Commons Attribution 3.0 United States License

 237

INDEPENDENT JOURNAL OF MANAGEMENT & PRODUCTION (IJM&P)
http://www.ijmp.jor.br v. 6, n. 1, January - March 2015
ISSN: 2236-269X
DOI: 10.14807/ijmp.v6i1.262

DANTZIG, G. B. (1996) Linear Programming, WaPrinceton University Press.
Disponível em:
<http://bioinfo.ict.ac.cn/~dbu/AlgorithmCourses/Lectures/Dantzig1963-1.pdf>

DANTZIG, G. B. (2002) Linear Programming. Operations Research, v. 50, n. 1, p.
42–47, fev.

DAVE, U.; DANTZIG, G. B.; THAPA, M. N. (1998) Linear Programming-1:
Introduction. 1. ed. New York: Springer-Verlag, v. 49, p. 1226

DERHY, M.-F. (2010) Integer Programming: The Branch and Bound Method. In:
Linear Programming, Sensitivity Analysis & Related Topics. 1. ed. New York:
Pearson Education, p. 464.

DUMITRESCU, D.; STOEAN, C.; STOEAN, R. (2007) Genetic Chromo-Dynamics
for The JobShop Scheduling ProblemInternational Conference Knowledge
Engineering Principles and Techniques. Proceedings...Romania: KEPT, Disponível
em: <http://www.cs.ubbcluj.ro/~studia-i/2007-kept/307-DumitrescuStoean.pdf>

FISHER, H.; THOMPSON, G. L. (1973) Probabilistic learning combinations of local
job-shop scheduling rules. In: J.F. MUTH AND G.L. THOMPSON (Ed.). Industrial
Scheduling. 1. ed. New Jersey: Prentice Hall PTR, p. 128–139.

FOKKINGA, M. M. (2004) An exercise in Transformational Programming: Science of
Computer Programming, v. 16, p. 19–48.

FRENCH, S. (1982) Sequencing and Scheduling: An Introduction to the
Mathematics of the Job-Shop. [s.l.] Ellis Horwood.

GUROBI OPTIMIZATION, I. (2014) Gurobi Optimization. Disponível em:
<http://www.gurobi.com/resources/getting-started/mip-basics>. Acesso em: 31 maio.

IBM. (2014) IBM ILOG CPLEX Optimization Studio. Disponível em:
<http://pic.dhe.ibm.com/infocenter/cosinfoc/v12r6/index.jsp?topic=/ilog.odms.ide.help
/OPL_Studio/opllangref/topics/opl_langref_scheduling_sequence.html>. Acesso em:
5 out.

JAFFART, J.; LASSEZ, J. (1987) Constraint Logic Programming POPL ’87
Proceedings of the 14th ACM SIGACT-SIGPLAN symposium on Principles of
programming languages. Proceedings...New York: Spriger, Disponível em:
<http://dl.acm.org/citation.cfm?id=41635>

KAUFMANN, A. (1977) Integer and Mixed Programming: Theory and Applications -
. 1. ed. Pari: Academic Press Limited, p. 390

LITTLE, J.; TSANG, E. (1995) Foundations of Constraint Satisfaction. 2. ed. San
Diegoeg: Academic Press Limited, v. 46, p. 666

MASTROLILLI, M. ; G. L. M. (2000) Effective Neighborhood Functions for the Flexible
Job Shop Problem: Appendix (2000). Journal of Scheduling, v. 3, n. 1, p. 3–20.

MATOUSEK, J.; GARTNER, B. (2007) Understanding and Using Linear
Programming. 1. ed. Berlim: Springer-Verlag, p. 229

OPL, I. B. M. I. (2009) Optimization modeling with IBM ILOG OPL IBM, Disponível
em:
<https://www.google.pt/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact
=8&ved=0CC8QFjAA&url=http://lak.informatik.uni-

[http://creativecommons.org/licenses/by/3.0/us/]
Licensed under a Creative Commons Attribution 3.0 United States License

 238

INDEPENDENT JOURNAL OF MANAGEMENT & PRODUCTION (IJM&P)
http://www.ijmp.jor.br v. 6, n. 1, January - March 2015
ISSN: 2236-269X
DOI: 10.14807/ijmp.v6i1.262

freiburg.de/lak_teaching/ws11_12/combopt/cplex/Workbook.pdf&ei=aE6KU4jCL6Kg0
QXq8oCoDA&usg=AFQjCNFOVRPUBVjWh5wDN140Sx-
ApTHVdg&sig2=ypBxl3aZGj0QnuLIH5Al0w&bvm=bv.67720277,d.d2k>

SALVAGNI, D. (2008) And Programming Heuristic Methods for Constraint for
Mixed Integer Linear Programs Mixed. [s.l.] UNIVERSIT `A DEGLI STUDI DI
PADOVA.

SLACK, N.; CHAMBERS, S.; JOHNSTON, R. (2010) Operations Management with
MyOMLab. 6. ed. New Jersey: Prentice Hall PTR, p. 728

SLACK,NIGEL; LEWIS, M. (2009) Operations Strategy. 2. ed. Harlow: Prentice Hall
PTR, p. 528

TAHA, H. A. (2007) Operations Research: An Introduction. 8th. ed. London:
Pearson Education.

VANDERBEI, R. J. (1998) Linear Programming: Foundations and Extensions. New
York: Springer, v. 49, p. 93–98

VANDERBEI, R. J. (2008) INTEGER PROGRAMMING foundations and extension.
3rd. ed. new: Springer, p. 469

WALLACE, M. (1996) Practical applications of constraint programming. Constraints,
v. 1, n. 1-2, p. 139–168, set.

ZHOU, J. (1996) A constraint program for solving the job-shop problem. Principles
and Practice of Constraint Programming — CP96 Lecture Notes in Computer
Science, v. 1118, p. 1–15.

