
 

   
   Abstract – The identification of competitive diffusion 
parameters in heterogeneous nanoporous materials is analyzed. 
Solutions to the direct and inverse problems are basing on the 
Heaviside’s operational method and gradient method are 
obtained. New procedures for identification of diffusion 
coefficients for co-diffusing components (benzene and hexane) in 
intra- and intercrystallite spaces are implemented using high-
speed gradient methods and mathematical diffusion models as 
well as the NMR spectra of the adsorbed mass distribution of 
each component in the zeolite bed. The gradient of the residual 
functional is obtained basing on optimal control theory. These 
diffusion coefficients are obtained as a function of time for 
different positions along the bed. Benzene and hexane 
concentrations in the inter- and intracrystallite spaces for every 
position in the bed and for different adsorption times are 
calculated. 
 
   Key words: mathematical model, competitive diffusion, 
direct end inverse boundary problems, functional 
identification, gradient method, Heviside’s operational 
method, nanoporous media.  

I. INTRODUCTION 
   New theoretical developments in system analysis and 
mathematical modeling constitute the basis for     information 
technologies of the control of research experiment and the 
analysis of the state of complex physical objects. The latter 
include multicomponent systems of competitive mass transfer 
in nanoporous media; studying their kinetics is an important 
problem of the modern nanophysics and nanodiffusion. 

Nanoporous media widely used in various branches of 
industry (medicine, petrochemistry, catalysis, partition of 
liquids and gases) consist of porous structure particles  with 
different physical and chemical (including diffusion) 
properties. Nanoporous media is a multilevel system of pores 
with two most important subsystems (spaces): system of 
micropores and nanopores with high adsorption capacity and 
low diffusion penetration rate (intraparticle space) and system 
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of macropores and cavities among particles with low capacity 
and high penetration rate (interparticle space) [1–4]. 

The numerous studies in this domain concerned molecular 
transport of isolated substances in a porous medium, where 
mass transfer was mainly considered on a macrolevel without 
significant influence of micro- and nanotransfer in particles 
[1–8], which is a limiting and governing factor of the general 
kinetics. The major problems of intermolecular interactions, 
based on the Langmuir–Hinshelwood principle [4], which take 
place in real systems of diffusion “competition”(competitive 
diffusion of two and more substances) are not investigated. 

 Identifying of kinetic transfer parameters that determine 
the rate of the process at macro- and microlevels and the 
conditions of their equilibrium is an important scientific 
problem, which arises along with determining the 
concentration and gradient fields for each diffusing substance. 

II. THE OBJECTIVE AND INVESTIGATION TASKS 
   The objective of the work is the development of highly 
efficient and high-speed  parameter identification methods of 
competitive diffusion of gases in the catalytic media of 
nanoporous particles taking into account the complex of 
limiting physical factors of inner transfer kinetics. 
   The following taskes are stated:  
   - to stady theoretically the competitive diffusion in media of 
particles (crystallites) of nanoporous structure, the 
mechanisms of mass transfer in the system «itercrystallite 
space-nanoporous particles", intereactions and flow of micro- 
and macrotransfer, equilibrium conditions, 
   - basing on the optimal control theory developed for 
multicomponent distributed systems to state and to interpret 
the direct and conjugate coefficient identification problems on 
the basis of functional (residual, error), to implement the 
gradient procedure of parameter identification;  
   - to justifay mathematically and to construct analytical 
solutions of direct and conjugate problems using the 
Heviside’s operational method, 
   - to implement the technology of transfer parameter 
identification on the basis of obtaining explicit expressions of 
gradients residual functional,  identification and modeling, to 
define the distributions of the diffusion kinetic parameters. 
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III. MATHEMATICAL MODEL OF COMPETITIVE 
DIFFUSION IN MICROPOROUS SOLIDS 
 

The model presented is similar to the biporous model [6, 7, 
15, 16]. We consider a system of complex competitive mass 
transfers between two diffusing components (benzene and 
hexane) in a heterogeneous medium (crystallite bed) with 
crystallites of nanoporous structure. The diffusion process 
involves two types of mass transfer: diffusion in the 
macropores (intercrystallite space), and diffusion in the 
micropores of crystallites (intracrystallite space).  

A cylindrical bed of zeolite crystallites, assumed to be 
spherical (radius R), is exposed to a constant concentration of 
adsorbate in the gas phase (Fig. 1). One face of this bed is 
permeable to the two gases. In this case one can consider that 
diffusion of the two gases is axial in the macropores of the 
intercrystallite space (z direction along the height, l, of the 
bed) and radial in the micropores of the zeolite. We have 
made the following assumptions: (i) during the evolution of 
the system towards equilibrium there is a concentration 
gradient in the macropores and/or in the micropores; (ii) the 
effect of heat is negligible; (iii) diffusion occurs in the 
Henry’s law region of the adsorption isotherm; (iv) all 
crystallites are spherical and have the same radius R; (v) the 
crystallite bed is uniformly packed. 
 

 

 

 

 

 

 

 
Fig. 1. Schema of diffusion competitive in nanoporous 

particles media 
 
The coefficients of competitive diffusion in intracrystallite 
space 

sintraD and intercrystallite space 
sintraD , s=1,2 (s = 1 

for benzene and s = 2 for hexane) being unknown, the 
mathematical model of gas diffusion kinetics in the zeolite bed 
is defined in domains: 

T
(0,T) , (0,1)Ω = ×Ω Ω = by the 

solutions of the system of differential equations (with 
dimensionless coordinates defined in the nomenclature) [5, 8]:  
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Initial conditions  
 

 sC (t=0,Z)=0;  sQ (t=0,X,Z)=0 ; ( )X 0,1 , Z Ω∈ ∈ ,        (3) 
 
boundary conditions for coordinate Z: 
 

  sC (t,1)=1 , sС
(t,Z=0)=0

Z
∂
∂

, t (0,T)∈ ;             (4) 

 
boundary conditions at itch point T(Z,t) Ω⊂  for 
concentrations Qs for particle radius X : 
 

 sQ (t,X=0,Z)=0
X
∂

∂
 (symmetry condition),             (5) 

  
s sQ (t,X=1,Z)=C (t,Z) (equilibrium condition), t (0,T)∈ , Z ∈ Ω ;  (6) 

additional condition (experimental data):  
 

 ( )s s s γγ
C t,Z +Q (t,Z) = M (t,Z) , s=1,2;γ Ω  ∈  , t (0,T)∈ .    (7) 

 
The problem of the calculation (1)−(7) is: to find unknown 

functions 
s sintra T inter TD Ω , D Ω∈ ∈  (

s sintra interD >0, D >0 , s=1,2 ), when 

absorbed masses s sC (t,Z)+Q (t,Z)  satisfy the condition (7) 

for every point γ ⊂ Ω   [16, 17]. 
Here:   
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Q (t,Z)= Q (t,X,Z)XdX∫  - average concentration of adsorbed 

component s ( s=1,2 ) in micropores; s γM (t,Z)  - 

experimental distribution of absorbed mass in macro- and 
micropores) at γ ⊂ Ω  (results of NMR data) [8]. 
 
IV. MATHEMATICAL JUSTIFICATION OF THE IDENTIFICATION 

PROBLEM SOLVABILITY 
The identification of diffusion coefficients 

sintraD  and 

sinterD  is a complex mathematical problem. In general, it is 
not possible to obtain a correct statement of the problem of 
calculation of diffusion coefficients (1) - (7) and to construct a 
unique analytical solution, because of the complexity of taking 
into account all the physical parameters (variation of 
temperature or pressure, crystallite structures, non-linearity of 
Langmuir isotherms, etc.), as well as the insufficient number 
of reliable experimental data, measurement errors and other 
factors.  

 
 

 
 

 
 



 

Therefore, according to the principle of Tikhonov [12], 
later developed by Lions [13] and Sergienko and Deineka 
[17], the same problems of identification of diffusion 
coefficients require the specification of the model solution 
with each iteration step, by minimizing the difference between 
the calculated values and the experimental data.  

The method proposed is a generalization of the 
identification approaches presented in [7, 15, 16]; it allows to 
reduce the number of iterations to 2-3 of magnitude for each 
specification cycle. It can also be used to identify parameters 
for more complicated adsorption systems and to identify three 
or more parameters simultaneously.  

The solution of the problem of calculation of diffusion 
coefficients (1) - (7) is reduced to the problem of minimizing 
the functional of the difference (9) between the model solution 
and the experimental data, the solution being refined 
incrementally by means of a special regularisation procedure 
which uses fast, high-performance gradient methods [13, 14, 
17].  

Gradient methods of diffusion coefficients identification 
based on a Lagrange functional of residuals (target, error, etc.) 
have found practical application in the work of Lions [13] 
(problems of thermoelasticity), later developed by Alifanov 
(calculation of temperature fields for plane apparatus 
elements) [14], then by Sergienko, Deineka, Petryk, and 
Fraissard (problems of hydromechanics, of filtration, of 
adsorption, etc.) [17, 15, 16].     

Gradient method of identification. According to [17, 16] 
and using the error minimization gradient method for 
identification of competitive diffusion coefficients for 
intracrystallite space 

sintraD  and intercrystallite space 
sinterD  of 

the s-th diffusing component, we obtain the iteration 
expression for the n+1 -th identification step: 
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where 

s sinter intraJ (D ,D ) - the error functional (residual), which 
describes the deviation of the model solution from the 
experimental data on γ ∈Ω written as: 

s s s s s s

T
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inter intra s inter intra s inter intra s γ
0

1J(D ,D )= C (t,Z,D ,D )+Q (t,Z,D ,D )-M (t) dt
2
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intras

n
DJ t∇  ,
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DJ (t)∇  - the gradients of the error 

functional ( )s sinter intraJ D ,D , 
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V. ANALYTICAL SOLUTION OF DIRECT PROBLEM 

The solution sC , sQ  of the direct problem (1)-(6) was 

obtained by the procedure described in [6] using the 

Heaviside's operational method:  
2
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were knβ - roots of transcendent equations  
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VI. IDENTIFICATION METODS OF COMPETITIVE DIFFUSION IN 
MICROPOROUS SOLIDS 

 
    According to [17] the identification procedure of 

coefficients diffusion (8) requires a special calculation 
technology of  gradients 

intras

n
DJ (t)∇ , ( )

inters

n
DJ t∇  of functional 

residual (9), which is a major determinant components of 
regularization formulas (8). This leads to the problem of 
unconditional optimization of Lagrange extended functional 
[13, 17]  

  ( )s s 1 2inter intra s s sΦ D ,D =J +I +I ,                (11) 

here  
1 2s sI , I  - the components,  accounted of specificity of 

basic equations of direct problem (1)-(6): 
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here sJ - residual functional (9), s s s,=1,2,ψ ,φ  – unknown 

factors of Lagrange, to be determined from the condition of 
stationary of the functional 

s sinter intra(D ,D )Φ   [8, 14]:  
 

 
s s 1 2inter intra s s sΔΦ(D ,D ) ΔJ +ΔI +ΔI =0≡  .          (12) 



 

The calculation of components in eq. (A.4) is carried out 
assuming that the values 

s sinter intraD ,D  received increments 

s sinter intraΔD , ΔD . As a result, the concentration ( )sC t,Z  

will change into some increment ( )sΔC t,Z  and the 

concentration ( )sQ t,X,Z  well change into increment 

( )sΔQ t,X,Z , s=1,2 .  
 

VII. CONJUGATE PROBLEM 
 
 The calculation result of functional increments 

sJ∆ ,
1sJ∆ , 

2sJ∆  in (A.4) (using the integration by parts, by 

the initial and boundary conditions of direct problem (1)-(6), 
equating outside integral members and the inside integral 
components with the same increments sC (t,Z)∆ and 

sQ (t,X,Z)  to zero) leads to solving the additional conjugate 
problem of determining the unknown Lagrange factors s s, ψφ  
of functional (11): 
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here n n n n n

s s s sintra inter intra inters s s s
E (t)=C (D ,D ;t,γ)+Q (D ,D ;t,γ)-M (t) , 

δ(Z-γ)  - function of Dirac [6]. 

We have obtained solution s s, ψφ  of conjugate problem 
(13)-(16) by the procedure described in [6] using the 
operational method of the Heaviside’s.  

 
VIII. RELATIONSHIP BETWEEN DIRECT AND CONJUGATE 

PROBLEM 
Substituting in the initial direct problem (1) - (6) instead 

s sinter intraD ,D  and sС (t,Z) , sQ (t,X,Z)  the corresponding 

values with increments 
s s s sinter inter intra intraD +ΔD , D +ΔD and 

s sC (t,Z)+ΔC (t,Z) , s sQ (t,X,Z)+ΔQ (t,X,Z) , and subtracting with 
the transformed equations and conditions of the problem the 
relevant components of the equations of problem (1) - (6) and 
neglecting terms of the second order of smallness, we obtain 
basic equations of the direct problem (1)-(6) in terms of 
increments sΔC (t,Z) and sΔQ (t,X,Z) , s=1,2  in the operator 
form : 

     s s s Tw (t,X,Z)=Χ , w (0,1) Ω∈ L ,           (17) 

Similarly we record the system of he basic equations of 
conjugate boundary problem (13)-(16) in operator form: 
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                                         (19)  
 here ∗L  - conjugate Lagrange operator to operator L . 

IX. OBTAINING THE RESIDUAL FUNCTIONAL INCREMENT 
FORMULA 

Increment calculated of residual functional (9), neglecting 
terms of the second order of smallness, has the view  
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Defining the scalar product 
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and taking into account (A.20) the identity of Lagrange [13, 
17] 
 

   ( ) ( )s s s sw (t,X,Z),Ψ (t,X,Z) w (t,X,Z), Ψ (t,X,Z)∗=L L w       (22) 
 
and the equality 1

s sE (t)δ(Z-γ) Ψ− ∗ =  L , we obtain the increment 
of residual functional expressed by the solution of conjugate 



 

problem and the vector of right parts of equations system  
(19): 
 

( )s ss inter intra s sJ (D ,D )= Ψ (t,X,Z), Χ (t,X,Z)∆ ,       (23)  
 
here s (t,Z)φ  and ( )sψ t,X,Z  belong to TΩ and [ ] T0,1 Ω  

respectively, 1− ∗L  - conjugate operator to inverse operator 
1−L ,  sΨ - solution vector of conjugate problem (13)-(16). 

 Revealing in equation (23) the components s (t,X,Z)Χ  
taking in account the equality (19), we come to the important 
formula, which establishes the relationship between the direct 
problem (1) - (6) and the conjugate problem  (13) - (16) and 
which makes it possible to obtain explicit analytical 
expressions of components of the residual functional   
gradient 
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 Analytical expressions of the gradients of the residual 
functional. Differentiating expression (24), by 

sintraΔD  and 

sinterΔD  respectively, and the opening of scalar products 
according to (21), we obtain the required analytical 
expressions for the gradient of the residual functional  
respectively to the components necessary of diffusion 
coefficients as functions for time in intracrystalite space and 
intercrystalite space respectively: 
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 The formulas of gradients 

intras

n
DJ (t)∇  ,

intras

n
DJ (t)∇  include 

analytical expressions of direct problem solutions (1) - (6). It 
provides high performance of computing process, avoiding a 
large number of inner loop iterations by using exact analytical 
methods. 
  Another advantage of the formulas (8) is that it is possible 
to identify the unknown kinetic parameters as a function of 
time (

s sintra interD (t), D (t) )) and other coordinates. It 
provides the possibility of internal diffusion kinetics in 
intracrystallite space and intercrystallite space and get an 
overall vision of the whole process. 

X. NUMERICAL SIMULATION AND ANALYSIS: COMPETITIVE 
DIFFUSION COEFFICIENTS,  CONCENTRATION PROFILES IN 
ITERCRYSTALLITE SPACE AND INTRACRYSTALIYTE SPACE 
The benzene and hexane intracrystallite diffusion 

coefficients intra1D  аnd 
2intraD  are presented in Figure 2 as 

functions of time for the five coordinates positions: 6, 8, 10, 
12, 14 mm, defined now from the top of the bed. The curves 
for benzene 

1intraD  (Fig. 2a) are pseudo exponentials. 
1intraD  

decreases from 9.0 E-12 to about 1.0 E-14 (equilibrium) 
depending on the position of the crystallite and the time, as 
well as on the amount of adsorbed gas. The shapes of the 
variations of 

2intraD for hexane are roughly the same, but the 

diffusion coefficients are higher, from about 9.0 E-11 to 2.0 
E-12 (Fig. 2b).  

 
Dintra

1.00E-14

2.10E-13

4.10E-13

6.10E-13

8.10E-13

1.01E-12

0 50 100 150 200 250
Time (mn)  
A 
 

 

Dintra

2.00E-12

4.00E-12

6.00E-12

8.00E-12

1.00E-11

0 50 100 150 200 250
Time (mn)  
b 
 

Fig. 2.  Variation of intracrystallite diffusion coefficients for (a) benzene 

1intraD  and (b) hexane 
2intraD  against time at different positions of the 

bed 
 6 mm,  8 mm,  10 mm,  12 mm,  14 mm 

 
  
Figure 3 presents the benzene and hexane diffusion coefficient 
distributions in intercrystallite space 

1interD  аnd 
2interD  as 

functions of time and for coordinate positions from 6 to 14 
mm. These coefficients decrease with time from 6.0 E-6 to 1.0 
E-6 (equilibrium) for benzene and from 2.7 E-6 to 1.0 E-5 for 
hexane, depending on the position in the bed and the increase 
in the adsorbed concentrations.  
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Fig. 3. Variation of intercrystallite diffusion coefficients for (a) 
benzene

1interD and (b) hexane 
2interD , against time at different positions 

of the bed 
 6 mm,  8 mm,  10 mm,  12 mm,  14 mm 

Figure 4 compares calculated and experimental curves for 
the total mass of benzene and hexane in the catalytic bed.  
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Fig. 4. Concentration of (a) benzene and (b) hexane versus time at different 
positions of the catalytic bed: dotted - experimental curves, continuous – 

model curves  
 6 mm,  8 mm,  10 mm,  12 mm,  14 mm 

 

As it can be seen from the graphs (Fig. 4a), the distributions 
of the total adsorbed mass of benzene are in good agreement 
with the experimental distributions for each measurement 
position. The maximum deviation is generally less than 5%. A 
similar pattern is observed for hexane (Fig. 4b). Here the 
greatest differences (6-7%) are for the curves corresponding 
to positions 6 and 8 mm.  

XI. CONCLUSION 
 As a result for the first time in a single physical experiment 

it was possible to probe at every moment the concomitant 
distribution of several gases co-diffusing in a porous solid and 
to identify their diffusion parameters.  

Scientific novelty. For the first time high-speed efficient 
methods of diffusion parameters identification have been 
developed taking advantage of low-consuming high-speed 
solution of the direct and conjugate problem. The analytic 
solutions  of the direct and conjugate problem, using the 
Heviside’s operational methods have been stated and 
interpreted. Basing on the theory of the multicomponent 
systems state control, explicit expressions of residual 
functional gradient have been obtained, which made possible 
to implement the efficient identification algorithms, to 
determine diffusion coefficients distributions. 

Practical importance. Application of the developed 
identification methods makes possible to obtain the diffusion 
coefficients for both components as the functions of time for 
different positions along the catalytic bed, which allows to 
specify the main diffusion flows in intercrystallite space 
(macro level) and in intracrystallite space (micro level) of 
nanoporous media and to realize the high-speeds procedures 
of such dependencies creation. 

The prospects of investigation are: generalization of the 
obtained results on the two-components and multi-
components catalytic medias of different configuration; 
obtaining of the methods and identification algorithms of three 
and more parameters; development of these methods as to 
their implementation and application to non-linear models of 
competitive diffusion, when the diffusion coefficients are 
considered as the functions of concentrations of the diffused 
components, and other parameters. 
 Nomenclature: 
c : adsorbate concentration in macropores.  
c∞ : adsorbate equilibrium concentration in macropores.  
C = c/c∞ : dimensionless adsorbate concentration in 
macropores. 
Dinter : macropore diffusion coefficient, m2/s 
Dintra : micropore diffusion coefficient, m2/s 
K : adsorption equilibrium constant  
l : bed length, mm.  
L: dimensionless bed length (L=1) 
M : total uptake at time t. 
MT : total uptake at equilibrium. 
q : adsorbate concentration in micropores.  
q∞ : equilibrium adsorbate concentration in micropores. 
Q = q/q∞ : dimensionless adsorbate concentration in 
micropores.  
x : distance from crystallite center, mm. 



 

R : mean crystallite radius, mm (we assume that the 
crystallites are spherical). 
X = x/R: dimensionless distance from crystallite center. 
z : distance from the bottom of the bed for mathematical 
simulation, mm. 
Z = z/l : dimensionless distance from the bottom of the bed. 

intere  – porosity, 
T – total duration of diffusion, min.  
n - iteration number of identification, 
Greek letters 
εinter  : bed porosity. 
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