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FORCE CONSTANT MATRICES FROM KEATING INTERATOMIC POTENTIAL:
APPLICATION TO GRAPHENE
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Based on the Keating interatomic potential an analytical derivation of force constant matrices of two- and three-
body interactions in crystals is performed. Using the derived force constant matrices the in-plane phonon energy spectra
of graphene was calculated in the framework of a lattice dynamics theory. A reasonable agreement with experimental
data was obtained. The results can extend the applicability of the current force constant models for investigation of
crystal dynamics.
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MATRICELE CONSTANTELOR DE FORTA DIN POTENTIALUL INTERATOMAR AL LUI KEATING:

APLICAREA CATRE GRAFEN

In baza potentialului interatomar al lui Keating au fost deduse analitic matricele constantelor de forta ale interactiu-
nilor a doua si trei particule in cristale. Utilizdnd aceste matrice, in cadrul teoriei dinamicii retelei cristaline a fost
calculat spectrul fononic al grafenului in planul stratului. A fost obtinut un acord rezonabil cu datele experimentale.
Aceste rezultate pot extinde aplicabilitatea modelelor constantelor de forta curente la studierea dinamicii cristalelor.

Cuvinte-cheie: matricele constantelor de fortd, potentialul lui Keating, grafen, fononi, dinamica cristalelor.

Introduction

Modeling of different properties of crystals and crystalline nanostructures is accomplished either on the
atomic level, by lattice dynamics (LD) or molecular dynamics (MD) methods, or on the electronic structure
level, using ab initio techniques such as density functional theory. One of the main advantages of lattice
dynamics is that, in contrast to molecular dynamics or ab initio simulations, it does not require large
computational times.

The major part of LD models are based on the empirical force constant matrices [1-3] and thus, are strongly
limited in predicting the properties of materials with a lack of experimental data on phonon frequencies
in high-symmetry points of Brillouin zone. MD methods, which are based on the empirical interatomic
potentials [4-6], have a wider applicability, since the parameters of interatomic potentials can be fitted on a
different set of experimental data. However, it is possible to derive the force constant matrices from inter-
atomic potentials and thus to extend the applicability of conventional LD models. In this work the problem
of obtaining analytic expressions for force constant matrices including contributions of two- and three-body
interaction potentials is solved in the harmonic approximation.

Theory
Let us introduce the following notations: N — number of atoms in unit cell, N,, — number of neighbour

atomic spheres, n,(i) — number of atoms on the s-th neighbour sphere of atom i, #, — vector of displacement

of i-th atom from the i-th lattice node, 7 — radius-vector of i-th lattice node (equilibrium position of i-th

atom), R, —radius-vector of i-th atom.
— ui
.
1

Fig.1. Vector scheme. The vectors are related as: R, = 17; +u,

Consider the total potential energy of the crystal lattice as a sum of two-body “stretching” and three-body
“bending” potentials:

V — Vstr + Vbend ] (1)
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In general case, in potential (1) are involved all atoms of the crystal. However, since the crystal possesses
periodicity and since the interatomic interaction usually has a short-range action, it is convenient to limit the
consideration only to a few neighbour atomic spheres. In this case, V' can be rewritten as follows:

Non

V= z (Vsstr + I/Sbend) ) (2)
s=1

In case of the Keating potential the two- and three-body terms in equation (2) are determined by the

following expressions:
n (i)

str 1 str S 2
SR OWICHE (3)

i=1 j=1
where K;”- force constant of two-body stretching interaction between atoms from s-th sphere, 57;7 - small
deviation of the i-j bond from equilibrium, and:

N
I/Sbend dZ bend Z

i=l j=1

ny (i) n, i

2.(80,)° 4)

where " - force constant of three-body bendmg interaction between atoms from s-th sphere, 66, - small

<

bending of the j-i-k bond from equilibrium, d. - radius of the s-th neighbour sphere.

P. Keating noted [3], that the total potential energy of the interatomic interaction should be invariant
under an arbitrary (i) displacement and (ii) rotation of the crystal lattice as a whole. The first condition
(displacement invariance) ensures that V' can depend only on the differences between atomic positions

—

v = ;7’ _;7. The second condition (rotation invariance) is satisfied only if V' is formed from the scalar

products between r e.g. r Ty il T, etc.

ik > ity
In the harmonic approx1mat10n the potential energy can be written as:
Nenw N ng (i)
Str,S [+ . bend,s ;- -
V=— z ZZZ(@;/}Y(Z,])+®O$ 5(1,]))uij’aul.j’ﬂ . (5)
afﬂ x,y,z s=1 i=1 j=1

The elements of the force constant matrices are second derivatives from corresponding potential energies
on atomic displacements, taken at equilibrium positions. In case of stretching interaction:

. 82Vstr
O,y (1)) =——— (6)
ou, ,0u; 4
In case of bending interactions:
ZVbend
q)bend .8 (7)
af ( ) a au

Equation (7) describes an indirect interaction between atoms i and j through a third atom. In order to
calculate the force constant matrices from equations (6-7) one should express the stretching deviation é‘rl.j
and angle deviation 66 i 1n terms of radius-vectors of the lattice nodes 7; and displacements u,, . Below is
presented a detailed analytical derivation of the force constant matrices of two- and three-body interactions.

Two-body “stretching” interaction
The stretching deviation § r; can be defined as:

57’1.1. =R. - - (8)

)

At the same time, the distance between atoms 7 and j, i.e. R, can be expressed through atomic displace-

ments u_. as.
2 2
Z (l/7+uii,7) - Z (U}/) + Z 21/7 i T Z (uij,}') ~
y=x.,2 y=x.5,2 y=x.5.2 y=x.,7
Jr— —— (9)
ru V. Uu.
_ 232 > ~ A i
\/2 (1, )"+ 2. 21 u w‘\/(’”y‘) +2nu; =1, =1 1+ =t
V=XYZ V=X,Y,2 (z/) rl/
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Introducing equation (9) into (8) one can obtain for deviation 51;.}. a simple expression:

.
B

or, =

q

. (10)
By
Using this relation the two-body “stretching” potential can be written as:
ng (i) —’ -' str ng (i)

Vf”— “’ZZ(”) 2dZZZ(w)2 (11)

i=l j=1 i i=l j=1
Note, that potential (11) satisfies the displacement and rotation invariance conditions, since it is expressed
only through a scalar products l_;;ﬁy Force constant matrices of two-body interactions are calculated from

formula (6) as:

s aZI/gstr a a lK:tr N n o
O (i, f) = = SELY S G | |-

2
ou, ,0u; » 6ui’a ou, ,\ 2 d; T3
str N ng (i) str N
K a N - — K a - —
= Ty | (=~ —| 2\t <4 ) 1=,
8 ; j,,H = ij-"ij d52 aui’a (;( i i J,ﬂ)j
Str
—_ — K
L (ru ) ——r,
d>? ljﬁa i d? v i.p
thus:
str
®Strs(l J)_ d_zja i,p (12)
Three-body “bending” interaction
The angle deviation 66, can be defined as:
50, =0, -0, . (13)

The cosine of the angle Hﬁk can be expressed through displacements u; using the definition of the scalar

product I_éy I_éik :

COSQ Rijik _ (I/;j + lj)(r;k +ulk) _ lj lk +r;/ulk + 7" u +ul]ulk -
]lk =2 =2 - — — - — - -2 _, - 2 ~
AR [ fmad @y v2ma v \/(m) ¥R, + ()
l/;]’/;k Uy T Uy
- USRI CL)
U ru
gy ik ik
I+ || 1+
T Tik
— . . . 0 VI,Z}
In equilibrium configuration the following relations are true: 7, =7, = d,, cos 6’ , where d_

s

the radius of s-th atomic sphere. Therefore equation (14) can be rewritten as:
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0 - - - RN - -
d Cos 0]11{ + ]/;julk + l/;kul] 0 ij ik ’;’kuij 1
cos eﬁk B =| COs Hjik T 2 7 z
d:+7u, +ru S d. 1 Uy +ru
dZ

ru, 7riu, P, +ru 7o +ru riu 7 +17'L_i
~| cos @, + 0 it |y T IR | oggn |- B TR 1 By T TR )
d d; d; d: d; d;

_,_, - — - — - —

Fol, Uy T u ru, ru, T,
k k k
’ (l— ik v jzcosé?]. —cos¢9° Tl _ 0og @0 00y TiTik | Tk

It is possible to express the angle deviation 66, through cosd,, :
cosd, —cos Hj = cos(@ﬂk + 5‘9,,k) cos HA = oS Hﬂk cos(é‘@ﬂk)
—sin ), sin (50, ) - cos ), ~~sin6,50,,
thus:
50, =— ! - (cosﬂ cosé’olk) (16)
’ sin 6, s ’

Introducing (15) into (16):

1 7 Fol, 1 ri " Fkﬁ
50, = —(cos 0., )—cos(8) ): otg (00 )| e 4 0 | Lo+ 20 (16)
s sm(6‘2k) ( Jk) ( ’k) ( ’k) > d’ sin(agk) > d’
Using this relation the three-body “bending” potential can be written as:
2
n (z)n (l) —v — - — - —
r ru; 1 rU, P,
Vbend d2 bend Ctg90 ik zk U/ y v + Ky ) (17)
' ZUZ‘; 2 T8 ) sin o\ d  d’
Potential (17) is expressed through simple scalar products 7, , Fu;, T, , 7, and therefore it

satisfies the conditions imposed by displacement and rotational invariance. Force constant matrices of three-
body interactions are calculated from equation (7) as:

pond. aZVbend 1 S bend N _ng(i) ng (i) 171/_[
end ,s _ en , , Ty
q) ( ) a a 2dSKS a Zzz Ctg Jlk d2 d2
ui,a /ﬁ’ i=l j=1 k#j s
2 (18)
1 ’:]uzk r;'kuij
Tsind | & &
Sin Jik s s
After the derivation over u, , and u ;.5 one can obtain for CDZ@/;’d’S:
bend ng (i) 1 0
bend,s f+ +\ _ K COs Jik 0
© (0, ))=2 ;12 Z T (ry £C080,, — k,a)(l’;j,ﬁ-f-l’}k’ﬂ) . (19)
s k#j Sin Jik

Application to graphene

Using the force constant matrices of two-body interactions defined by equation (12) and of three-body
interactions defined by equation (19), one can calculate the phonon dispersion of a crystal within the Born —
von Karman lattice dynamics theory [2]. In this work I will consider the case of a novel 2D material —
graphene — an atomic layer of carbon atoms arranged in a honeycomb lattice. Graphene has hexagonal
crystal symmetry with 2 atoms in primitive unit cell (denoted below as ‘1’ and ‘2’). On the first atomic

a\/— a a\/_

sphere of atom i=1 there are 3 atoms with coordinates: 7, =(a,0), 7, = (—5,——) (—— —)

2

where ¢=0.142 nm is carbon-carbon bond length.
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1 00
Force constant matrices of two-body interaction from equation (12) are: ®* (L,L1)=—-x""{0 0 0],
0 00
/4 3/4 0 /4 —3/4 0
d"(1,2) = —«" \/5/4 3 0]and ®"(1,3)=—«" —\/5/4 3 0.
0 0 0 0 0 0
0 00
Force constant matrices of three-body interaction from equation (19): ®""(1,1)=-«""|0 6 0|,
0 00

92 -33/2 0 92 3J3/2 0
O (1,2)=—x"| =343/2  3/2  0|and ®(1,3)=—x""|33/2 3/2 0]
0 0 0 0 0 0

All force constant matrices of the atom ‘2’ can be obtained from these matrices by applying a corres-
ponding rotation operation on angle 7 around the axis perpendicular to the graphene plane. Using the derived
force constant matrices I calculated the in-plane phonon dispersions of graphene in all high-symmetry
crystallographic directions (see Figure 2).
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Fig.2. In-plane phonon branches of graphene. Solid lines denote acoustic branches and dashed lines denote optic
branches. Gray triangles are experimental data for graphite taken from Ref. [7-8].

For values of the parameters & =180.5 N/m and & =66.9 N/m it was obtained a reasonable agreement
between calculated and experimental in-plane phonon frequencies.

Conclusions

Based on the Keating interatomic potential an analytical derivation of force constant matrices of two- and
three-body interactions in crystals is performed. Using the derived force constant matrices the in-plane
phonon energy spectra of graphene was calculated in the framework of a lattice dynamics theory. A reasonable
agreement with experimental data was obtained. The results can extend the applicability of the current force
constant models for investigation of crystal dynamics.
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