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ALGORITHMS FOR SOLVING STOCHASTIC DISCRETE CONTROL PROBLEMS 

ON NETWORKS WITH VARYING TIME OF STATES’ TRANSITIONS 

OF THE DYNAMICAL SYSTEM 

Maria CAPCELEA 

Universitatea de Stat din Moldova 
 

The stochastic versions of discrete optimal control problem on networks with varying time of state transitions of the 
dinamical system are studied. Polynomial time algorithms for determining the optimal stationary strategies in this prob-
lems are proposed.  

Keywords: discrete processes, stochastic optimal control problem, stationary strategies, linear programming approach, 
polynomial time algorithm. 

 
ALGORITMI PENTRU REZOLVAREA PROBLEMELOR DE CONTROL OPTIMAL DISCRET  
PE REŢELE CU TIMP DE TRECERE VARIABIL ÎNTRE STĂRILE SISTEMULUI DINAMIC 
În lucrare se examinează variantele stocastice ale problemei de control optimal discret pe reţele cu timp variabil de tranzi-

ţie între stările sistemului dinamic. Sunt propuşi algoritmi polinomiali pentru determinarea strategiilor optime staţionare. 
Cuvinte-cheie: procese discrete, problemă de control optimal stocastic, strategii staţionare, metoda programării li-

niare, algoritm polinomial. 
 
 

1. Introduction and Problem Formulation 
In this paper we consider the stationary case of the stochastic discrete optimal control problem on net-

work, with an average cost optimization criterion, when the time of systems’ transitions from one state to 
another may vary in the control process. The main results we describe are based on the control model with a 
fixed unit time of state’s transitions, on linear programming approach and the concept of Markov decision 
processes. The problem will be reduced to the corresponding case of the problem with unit time of states’ 
transitions of the system. The statement of the problem is the following. 

Let a discrete dynamical system L  with finite set of states X  be given. At every discrete moment of 
time 0 1 2, , ,...t t t t=  the state of L  is ( )x t X∈  and at the starting moment of time 0 = 0t  the state of the dy-

namical system is 0 = (0)x x . Assume that the dynamics of the system is described by a directed graph of 

state's transitions ( ),G X E= . An arbitrary vertex x  of G  corresponds to a state x X∈  and an arbitrary 

directed edge ( ),e x y E= ∈  expresses the possibility of the system L  to pass from the state ( )x t  to the 

state ( )ex t τ+ , where eτ  is the time of the system's transition from the state x  to the state y  through the 

edge ( ),e x y= . So, on the edge set E  it is defined the function : Eτ → � , which associates to each edge 

a natural number eτ , which means that if the system L  at the moment of time t  is in the state ( )x x t= , 

then the system can reach the state y  at the moment et τ+  if it passes through the edge ( ),e x y= , i.e., 

( )ey x t τ= + . We assume that graph G  does not contain deadlock vertices, i.e., for each x  there exists at 

least one leaving directed edge ( ),e x y E= ∈ . In addition, on the edge set E  it is defined the cost function 

:c E → � , which associates to each edge the cost ec  of the system's transition from the state ( )x x t=  to 

the state ( )ey x t τ= +  for an arbitrary discrete moment of time t . So, finally we have that to each edge 

( ),e x y E= ∈  the cost ec  and the transition time eτ  from x  to y  are associated.  
We assume that the set of states X  of dynamical system may admit states in which system L  makes 

transitions to a next state in the random way, according to given distribution function of probabilities on the 
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set of possible transitions from these states. So, the set of states X  is divided into two subsets CX  and NX  
( C NX X X= U , C NX X =∅I ), where CX  represents the set of controllable states x X∈  in which the 
transitions of the system to a next state y  can be controlled by the decision maker at every discrete moment 
of time t  and NX  represents the set of uncontrollable states x X∈ , in which the decision maker is not able 
to control the transition because the system passes to a next state y  randomly. The probability distribution 

function [ ]: 0,1Np E →  on the set ( ){ },N NE e x y E x X= = ∈ ∈  is defined such that ( ) , 1x yy X x
p+∈

=∑ , 

( ) ( ){ }| ,X x y X e x y E+ = ∈ = ∈ . Here ,x yp  expresses the probability of system's transition from the state 

x  to the state y  for every discrete moment of time t . Note, that the condition , 0x yp =  for a directed edge 

( ),e x y=  is equivalent with the condition that G  does not contain this edge. 

A directed edge ( ),e x y=  in G  corresponds to a stationary control of the system in the state x X∈  

which provides a transition from ( )x x t=  to ( )ey x t τ= +  for every discrete moment of time t . A 

sequence of directed edges { }0 1, ,..., ,...tE e e e=% , where ( ) ( )( ),
jj j j ee x t x t τ= + , 0,1, 2,...j = , determines 

in G  a control of the system with fixed starting state ( )0x . An arbitrary control in G  generates a 

trajectory ( ) ( ) ( )0 1 2, , ,...x t x t x t , for which the mean integral-time cost by a trajectory can be defined by the 

formula ( )
1

0

1lim
j

t

et j
f E c

σ

−

→∞
=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑% , where

1

0
j

t

e
j

σ τ
−

=

=∑ .  

The control problem on network ( )0, , , , ,C NG X X c p x  with an average cost optimization criterion con-

sists in finding the stationary strategy s∗  that provides the minimal mean integral-time cost by a trajectory. 
We define a stationary strategy for the control problem on network as a map: 

( ):s x y X x+→ ∈  for Cx X∈ . 

Let s  be an arbitrary stationary strategy. Then the graph ( ),s s NG X E E= U , 

where ( ) ( ){ }, ,s CE e x y E x X y s x= = ∈ ∈ = , corresponds to a Markov process with the probability 

matrix ( ),
s s

x yP p= , where 

,

,

, ,

= 1, = ( ),
0, ( ).

x y N
s
x y C

C

p if x X and y X

p if x X and y s x
if x X and y s x

∈ ∈⎧
⎪ ∈⎨
⎪ ∈ ≠⎩

 

In the considered Markov process, for an arbitrary state Cx X∈ , the transition ( )( ),x s x  from the state 

Cx X∈  to the state ( )y s x X= ∈  is made with the probability ( ), 1x s xp =  if the strategy s  is applied.  

2. Reduction to the problem with unit time of states’ transitions  
We describe a general scheme how to reduce the stochastic control problems with varying time of states' 

transitions to the case with unit time of states’ transition of the system. We show that our problem can be reduced 
to the problem with unit time of states' transitions on an auxiliary graph ( ),G X E′ ′ ′= , which is obtained 

from ( ),G X E= , using a special construction. This means that after such a reduction we can apply the 

linear programming approach described in [1,4]. Graph ( ),G X E′ ′ ′=  with unit transitions on directed 

edges e E′ ′∈  is obtained fromG , where each directed edge ( ),e x y E= ∈  with corresponding transition 
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time eτ  is changed by a sequence of directed edges ( ) ( ) ( )1 1 2 1 2 1, , , ,..., ,
e e

e e e ee x x e x x e x yτ τ −′ ′ ′= = = . This 

means that a transition from a state ( )x x t=  at the moment of time t  to the state ( )ey x t τ= +  at the mo-

ment et τ+  in G  we represent in G′  as the transition of a dynamical system from the state ( )x x t=  at the 

time-moment t  to ( )ey x t τ= +  when the system makes transitions through a new fictive intermediate set 

of states 1 2 1, ,...,e e ex x xτ −  at the corresponding discrete moments 1, 2,..., 1et t t τ+ + + − . 
The graphical interpretation of this construction is represented in Fig. 1 and Fig. 2. In Fig.1 it is represented 

an arbitrary directed edge ( ),e x y=  with the corresponding transition time eτ  inG . In Fig.2 it is represented 

the sequence of directed edges ie′  and the intermediate states 1 2 1, ,...,
e

e e ex x xτ −  in G′  that correspond to a direc-

ted edge ( ),e x y=  inG . So, the set of vertices X ′  of the graph G′  consists of the set of states X  and the set 

of intermediate states { }| , 1, 2,..., 1e
i eXI x e E i τ= ∈ = − , i.e., X X XI′ = U . Also, we consider the sets CX ′  

and NX ′ , so that C NX X X′ ′ ′= U , C CX X′ =  and \N CX X X′ ′= . The set of edges E′  is defined as follows: 

( ) ( ) ( ) ( ){ }1 1 2 1, , , , ,..., , ,
e

e e e e e e

e E

E x x x x x y x y Eτ −
∈

′ = = ∈UE E . 

We define the cost function :c E′ ′ → �  in the following way: 

1
,, e x yx x

c c′ =   if ( ),e x y E= ∈ ,   
1 2 2 3 1, , ,

... 0e e e e e
ex x x x x y

c c c
τ −

′ = = = = . 

 

 
Fig. 1 

 

 

Fig. 2 

The probability function [ ]: 0,1Np E′ ′ →  on the set ( ){ },N NE e x y E x X′ ′ ′ ′ ′ ′ ′= = ∈ ∈  is defined as follows: 

, 1
,

, , ,

1, \ .

e
x y N N

x y
N N

p if x x x X X and y x
p

if x X X
′ ′

′ ′ ′ ′⎧ = ∈ ⊂ =⎪′ = ⎨
′ ′∈⎪⎩

 

Between the set of stationary strategies ( ):s x y X x+→ ∈  for x X∈  and the set of stationary strategies 

( ):s x y X x+′ ′ ′ ′ ′→ ∈  for x X′ ′∈ , there exists a bijective mapping, such that the corresponding average 

and discounted costs on G  and on G′  are the same. So, if s ∗′  is the optimal stationary strategy of the problem 
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with unit transitions on G′  then the optimal stationary strategy s∗  on G  is determined by fixing ( )s x y∗ =  

if ( ) 1
es x x∗′ = , where ( ),e x y= . 

3. The main results 
The linear programming algorithms for solving the control problem with a unit time of states’ transitions 

have been developed in [1-4]. At first, we formulate an algorithm for determining the optimal stationary stra-
tegies for the control problem on perfect networks. Therefore, we consider the stochastic control problem on 
the network ( )0, , , , ,C NG X X c p x  with CX ≠ ∅ , NX ≠ ∅ , and assume that this network is perfect, i.e. the 

graph G  and the subgraph ( ),s s NG X E E= U  (for an arbitrary stationary strategy s S∈ ) are strongly con-

nected. In this case the network ( )0, , , , ,C NG X X c p x′ ′ ′ ′ ′  is perfect. The Markov chain induced by the proba-

bility transition matrix sP  is irreducible for an arbitrary strategy s.  
Let s S′ ′∈  be an arbitrary strategy inG′ . Taking into account that for every fixed Cx X′ ′∈  we have a 

unique ( ) ( )y s x X x+′ ′ ′ ′ ′= ∈ , we can identify the map s′  with the set of Boolean values ,x ys ′ ′′  for Cx X′ ′∈  

and ( )y X x+′ ′ ′∈ , where 

( )
( ),

1, ,

0, .x y

if y s x
s

if y s x′ ′

′ ′ ′=⎧⎪′ = ⎨
′ ′ ′≠⎪⎩

 

For the optimal stationary strategy s ∗′  we denote the corresponding Boolean values by ,x ys ∗
′ ′′ . 

Based on the results from [1,4] we can prove the following 
Theorem 1. Let ( ), , , ( )x y C xx X y X q x Xα∗ ∗

′ ′ ′′ ′ ′ ′ ′ ′∈ ∈ ∈  be a basic optimal solution of the following li-
near programming problem: 

Minimize 

, ,
( )

( , )
C N

x y x y z z
x X z Xy X x

q c qψ α α μ
+

′ ′ ′ ′ ′ ′
′ ′ ′ ′∈ ∈′ ′ ′∈

′= +∑ ∑ ∑ ,        (1) 

subject to 

, ,
( )

,
( )

,

, ,

1,

, ,

0, , ; 0, ,

NC

C N

x y z y z y
z Xx X y

x z
x X z X

x y x C
y X x

x y C x

p q q y X

q q

q x X

x X y X q x X

α

α

α

−

+

′ ′ ′ ′ ′ ′
′ ′∈′ ′ ′∈

′ ′
′ ′ ′ ′∈ ∈

′ ′ ′
′ ′ ′∈

′ ′ ′

′ ′⎧ + = ∀ ∈
⎪
⎪

+ =⎪⎪
⎨
⎪ ′ ′= ∀ ∈
⎪
⎪ ′ ′ ′ ′ ′ ′≥ ∀ ∈ ∈ ≥ ∀ ∈⎪⎩

∑ ∑

∑ ∑

∑
       (2) 

where ( ) ( ){ }, ,
( )

, , ,z z y z y N C C
y X z

p c z X X y x X x y Eμ −
′ ′ ′ ′ ′

′ ′ ′∈

′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′= ∀ ∈ = ∈ ∈∑ . Then the optimal statio-

nary strategy s ∗′  on a perfect network ( )0, , , , ,C NG X X c p x′ ′ ′ ′ ′  can be found as follows: 

,
,

,

1, 0,

0, 0,
x y

x y
x y

if
s

if

α

α

∗
′ ′∗

′ ′ ∗
′ ′

⎧ >⎪′ = ⎨
=⎪⎩

 

where , ( )Cx X y X x+′ ′ ′ ′ ′∈ ∈ . Moreover, for every starting state x X′ ′∈  the optimal average cost per 

transition is equal to ( , )qψ α∗ ∗ , i.e., 

, ,
( )

( )
C N

x x y x y z z
x X z Xy X x

f s c qα μ
+

∗ ∗ ∗
′ ′ ′ ′ ′ ′ ′

′ ′ ′ ′∈ ∈′ ′ ′∈

′ ′= +∑ ∑ ∑  
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for every x X′ ′∈ . 
So, if the network ( )0, , , , ,C NG X X c p x  is perfect then we can find the optimal stationary strategy s∗  by 

using the following algorithm. 
Algorithm 1.  
1) Formulate the linear programming problem (1), (2) and find a basic optimal solution *

,x yα ′ ′  

( ),Cx X y X′ ′ ′ ′∈ ∈ , ( )xq x X∗
′ ′ ′∈ ; 

2) Fix a stationary strategy s ∗′  in G′ : put , 1x ys ∗
′ ′′ =  for Cx X′ ′∈ , ( )y X x+′ ′∈  if *

, 0x yα ′ ′ > ; otherwise 

put , 0x ys ∗
′ ′′ = ; 

3) Fix a stationary strategy s∗  in G : for each ( ),x y E′ ′ ′∈  so that , 1x ys ∗
′ ′′ =  put , 1x ys∗′ =  for 

( )y X x+ ′∈ , so that ( ),x y′ ′  is edge of a directed path from x′  to y ; otherwise put , 0x ys∗′ = . 
We can show that the stochastic control problem on the non-perfect network, in which an arbitrary strate-

gy s  generates a Markov unichain [5], can be reduced to an auxiliary problem on perfect network. So, the 
proposed algorithm can be extended for the unichain control problem. In this case the graph sG , induced by a 
stationary strategy, may not be strongly connected, but it contains a unique strongly connected component, 
that can be reached from any vertex x X∈ . For this control problem the mean integral-time cost by a trajec-
tory is the same for an arbitrary starting state.  

A basic optimal solution ,qα∗ ∗  of the linear programming problem (1), (2) determines the strategy ,x ys ∗
′ ′′  

and a positive recurrent class { }0xX x X q∗ ∗
′′ ′ ′= ∈ >  in X ′ . For a unichain control problem Algorithm 1 

determines the optimal stationary strategy of the problem only in the case if the system starts transitions in 
the state 0x X ∗′ ′∈ . The remaining states \x X X ∗′ ′ ′∈  correspond to transient states and the optimal statio-

nary strategies in this states can be chosen in order to reach X ∗′ . So, in G′  we can find the optimal stationa-
ry strategy as follows: 

Algorithm 2.  
1) Find a basic optimal solution ,qα∗ ∗  of the linear programming problem (1),(2) and the subset of 

vertices { }0xX x X q∗ ∗
′′ ′ ′= ∈ >  which in G′  corresponds to a strongly connected subgraph 

( ),G X E∗ ∗ ∗′ ′ ′= .  

2) On G ∗′  we determine the optimal solution of the problem using the Algorithm 1. 
3)  If 0x X ∗′ ′∈  then we obtain the solution of the problem with fixed starting state 0x′ . To determine 

the solution of the problem for an arbitrary starting state we may select successively vertices \x X X ∗′ ′ ′∈  
which contain outgoing directed edges that end in X ∗′  and will add them at each time to X ∗′ , using the fol-
lowing rule: 

a) if ( )\Cx X X X ∗′ ′ ′ ′∈ ∩  then we fix an directed edge ( ),e x y′ ′ ′= , put , 1x ys∗′ ′ =  and change X ∗′  by 

{ }X x∗′ ′∪ ; 

b) if ( )\Nx X X X ∗′ ′ ′ ′∈ ∩  then change X ∗′  by { }X x∗′ ′∪ . 

Now we consider the infinite horizon discounted stochastic control problem with varying time of states’ 
transitions. The dynamics of the system is determined in the same way as for the problem with average cost, 

but the objective function which has to be minimized is defined by the sum 
0

j

j

t
e

j
cγ

∞

=
∑ , where ( )0,1γ ∈  is a 

given discount factor. An arbitrary control in the graph of states’ transitions G  generates a trajectory 
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( ) ( ) ( )0 1 2, , ,...x t x t x t , for which the discounted expected total cost is defined as follows 

( )
0

0

j

j

t
x e

j
s cγσ γ

∞

=

= ∑ . We are seeking for a stationary strategy s∗  such that ( ) ( )
0 0

minx xs
s sγ γσ σ∗ = .  

We develop a linear programming approach for the discounted stochastic control problem on the network 
( )0, , , , ,C NG X X c p x  using the same scheme as above. We have the following result. 

Theorem 2. Let ( ), ,x y Cx X y Xα∗
′ ′ ′ ′ ′ ′∈ ∈ , ( )x x Xβ ∗

′ ′ ′∈  be an optimal solution of the following linear 
programming problem: 

Minimize   

( )
0 , ,( , )

C N

x x y x y z z
x X z Xy X x

cφ α β α μ β
+

′ ′ ′ ′ ′ ′ ′
′ ′ ′ ′∈ ∈′ ′ ′∈

= +∑ ∑ ∑ ,         (3) 

subject to 

( ) ( )

( ) ( )
{ }

( )

( )

, , 0

, , 0

,

,

1, ,

0, \ ,

, ,

0, , 0, , ,

C N

C N

y x y z y z
x X y z X y

y x y z y z
x X y z X y

x y x C
y X x

x x y C

p y x

p y X x

x X

x X x X y X x

β γ α γ β

β γ α γ β

α β

β α

− −

− −

+

′ ′ ′ ′ ′ ′
′ ′ ′ ′ ′ ′∈ ∈

′ ′ ′ ′ ′ ′
′ ′ ′ ′ ′ ′∈ ∈

′ ′ ′
′ ′ ′∈

+
′ ′ ′

′ ′⎧ − − = =
⎪
⎪

′ ′ ′− − = ∀ ∈⎪⎪
⎨
⎪ ′ ′= ∀ ∈
⎪
⎪

′ ′ ′ ′ ′ ′ ′≥ ∀ ∈ ≥ ∀ ∈ ∈⎪⎩

∑ ∑

∑ ∑

∑
        (4) 

where 
( )

, , ,z z y z y N
y X z

c p z Xμ
+

′ ′ ′ ′ ′
′ ′ ′∈

′ ′= ∀ ∈∑ . If in ( ),G X E′ ′ ′=  an arbitrary vertex x X′ ′∈  is attainable 

from 0x′ , then 0,x Cx Xβ ∗
′ ′ ′> ∀ ∈  and  

{ } ( ), 0,1 , ,x y
C

x

x X y X x
α
β

∗
′ ′ +
∗
′

′ ′ ′ ′ ′∈ ∀ ∈ ∈ . 

The optimal stationary strategy s ∗′  of the discounted stochastic control problem on the network can be 

found by fixing ,
,

x y
x y

x

s
α
β

∗
′ ′∗

′ ′ ∗
′

′ = ,for Cx X′ ′∈  and every ( )y X x+′ ′ ′∈  if 0xβ
∗
′ ≠ ; otherwise we put , 0x ys∗′ ′ = . 

Based on the Theorem 2 we can propose the following algorithm for determining the optimal solution of 
the discounted stochastic control problem on the network, with fixed starting state 0x′  and varying time of 
states’ transitions. 
Algorithm 3.  

1. Formulate the linear programming problem (3), (4); 
2. Determine an optimal solution ( ) ( ), , ,x y C xx X y X x Xα β∗ ∗

′ ′ ′′ ′ ′ ′ ′ ′∈ ∈ ∈  of the problem (3), (4) and fix 

a stationary strategy s ∗′  in G′ : put , ,x y x y xs α β∗ ∗ ∗
′ ′ ′ ′ ′′ =  for ( ),Cx X y X x+′ ′ ′ ′ ′∈ ∈  if 0xβ

∗
′ ≠ ; otherwise 

put , 0x ys ∗
′ ′′ = .  

3. Fix a stationary strategy s∗  in G : for each ( ),x y E′ ′ ′∈  so that , 1x ys ∗
′ ′′ =  put , 1x ys∗′ =  for ( )y X x+ ′∈ , 

so that ( ),x y′ ′  is edge of a directed path from x′  to y ; otherwise put , 0x ys∗′ = . 

4. Conclusion 
A linear programming approach for finding the optimal stationary strategies of stochastic discrete optimal 

control problems with infinite time horizon and varying time of states’ transitions is proposed. Polinomial 
time algorithms based on such approach for solving the considered problems on networks are developed. 
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