COMPUȘI COORDINATIVI BI- ȘI POLINUCLEARI AI UNOR METALE TRANZIȚIONALE CU LIGANZI DIOXIMICI ÎN BAZA PUNȚILOR BIPIRIDINICE

Eduard COROPCEANU

Institutul de Chimie al AŞM

A fost elaborată strategia de evoluție a sintezei compușilor mono-, bi- și polinucleari cu liganzi dioximici în baza punților bipiridinice. A fost realizată sinteza orientată a 11 complecși binucleari ai cuprului, zincului și cadmiului și a 9 polimeri coordinativi ai zincului și cadmiului, compoziția și structura cărora au fost determinate cu ajutorul metodelor de cercetare contemporane: spectroscopia în IR, analiza cu raze X. S-a stabilit că zincul și cadmiul, manifestând numărul de coordinare 6, pot forma polimeri coordinativi, iar natura anionilor din sarea inițială are un aport determinant în constituirea arhitecturii lor moleculare. Natura ligandului punte influențează asupra specificului lanțului polimeric. Capacitatea anionilor sulfat de a coordina prin atomii de oxigen la cationii generatorului de complex permit legarea lanțurilor polimerice între ele.

Cuvinte-cheie: compuși coordinativi, binucleari, polimeri coordinativi, cupru, zinc, cadmiu.

ASSEMBLY OF BI- AND POLYNUCLEAR COORDINATION COMPOUNDS OF SOME TRANSITION METALS WITH DIOXIME LIGANDS BASED ON BRIDGING BIPYRIDINES

The strategy of evolving synthesis of mono-, bi- and polynuclear compounds with dioxime ligands based on bridging bipyridines has been developed. Oriented synthesis of 11 copper, zinc and cadmium binuclear complexes and 9 zinc and cadmium coordination polymers has been performed. Their composition and structure were determined by modern investigation methods: IR spectroscopy, X-ray analysis. It was established that zinc and cadmium, are able to form coordination polymers with coordination number 6 and anions nature of the initial salt has a decisive contribution on building up their molecular architecture. The type of bridging ligand influences the specificity of polymeric chain. The ability of sulfate anions to coordinate by the oxygen atoms to the cation of central atom allows the binding of the polymeric chains with each other.

Keywords: coordination compounds, binuclear, coordination polymers, copper, zinc, cadmium.

Introducere

Complecșii metalelor tranziționale cu liganzi chelanți ocupă un loc important în chimia compușilor coordinativi. Din această clasă fac parte și dioximații, care se deosebesc prin stabilitatea poliedrului de coordinare și prezintă obiecte interesante din punctul de vedere atât al studiilor teoretice, cât și practice [3,5,6]. Compușii coordinativi ai dioximelor cu cuprul sunt mai bine cunoscuți în literatură [2,13,15,20,21,22], pe când informații despre complecșii zincului și cadmiului sunt rar întâlnite [1,4,18].

În compuşii coordinativi cu dioximele cuprul poate avea numărul de coordinare 4,5 sau 6 [15,20,21], manifestând capacitatea de a coordina atât prin intermediul atomului de azot, cât și al celui de oxigen în dependență de condițiile de sinteză [15,20]. Dioximele pot coordina la atomul de cupru ca ligand neutru, monodeprotonat sau bideprotonat [2,13,21]. În literatură sunt descriși compuși în care se urmărește evoluția de la complecși cu nuclearitate joasă ai cuprului cu liganzi oximici spre cei polinucleari [14,19]. Un interes deosebit prezintă includerea liganzilor cu funcție de punte între atomii generatorului de complex, care creează condiții pentru formarea compușilor bi- și polinucleari [14,23,26]. În unii polimeri ai Cu(II) descriși anterior funcția de punte este îndeplinită de anioni anorganici [26]. Liganzii bipiridinici s-au manifestat în calitate de punți organice comode pentru sinteza complecșilor bi- și polinucleari [16,17] cu dioximele.

Discuții

Cu scopul studierii condițiilor de sinteză a compușilor cu liganzi dipiridinici din sistemul Cu(CH₃COO)₂H₂O/CuF₂nH₂O – yL – xDioxH₂, unde DioxH₂– ligand dioximic, iar L – ligand bipiridinic, a fost realizată sinteza unei serii de complecși ai cuprului: $[Cu_2(DH)_4bpy]_2(DH_2)_4$ (1) [8], $[Cu_2(DH)_4bpy][Cu(DH)_2bpy](bpy)(DH_2)_2$ (2) [8], $[Cu_2(DfH)_4bpy]_2DMF$ (3) [25], $[Cu_2(DH)_4bpe]$ (4) [7], $[Cu_2(NioxH)_4bpe]$ (5) [7], $[Cu_2(DfH)_4bpe]$ (6) [7], $[Cu_2(DfH)_4bpe][Cu(DfH)_2bpe]_2 2DMF$ (7) [7], a căror structură a fost stabilită cu ajutorul analizei cu raze X. În complecșii 1, 2, 7 compoziția a fost determinată de raporturile stoechiometrice ale substanțelor inițiale (varierea excesului de ligand dioximic și bipiridinic). În baza analizei spectrelor IR ale compuşilor **1** şi **2** poate fi formulată concluzia că benzile la ~2920 şi 2855 cm⁻¹ corespund vibrațiilor v(CH₃). Oscilațiile de deformare ale grupelor metil δ_{as} (CH₃) au fost înregistrate la ~1468-1462 şi δ_s (CH₃)~1377-1375 cm⁻¹. Grupul oximic este caracterizat de benzile v_{as}(N–O)~1225-1217 cm⁻¹ şi v_s(N–O)~1111-1104 cm⁻¹. Benzile din regiunea 1072-1006 cm⁻¹ corespund vibrațiilor v(C–C), în timp ce ρ (CH) au fost înregistrate în regiunile 774-771, 724 şi 699-694 cm⁻¹. Benzile intense ale vibrațiilor de deformație δ (CNO) au fost observate la ~963 cm⁻¹. Pe lângă oscilațiile v(C=N) ale ligandului bpy coordinat înregistrate la 1603 (**1**) şi 1601 cm⁻¹ (**2**), pentru ultimul se observă banda 1590 cm⁻¹, care, probabil, corespunde ligandului necoordinat. În intervalul 664-569 cm⁻¹ au fost înregistrate vibrațiile γ (CCC) şi γ (CNC), care aparțin ligandului ciclic. Oscilațiile de valență v_{as}(Cu–N) au fost înregistrate în intervalul 484-482 cm⁻¹.

Compusul coordinativ 1 este format din complecși binucleari $[Cu_2(DH)_4bpy]$ și molecule necoordinate DH₂. La ionul de cupru coordinează patru atomi de azot de la doi monoanioni ai dimetilglioximei, iar în poziția a cincea coordinează atomul de azot al ligandului punte bpy. Moleculele libere DH₂ adoptă o conformație *trans*, participând prin legături de hidrogen intermoleculare la formarea lanțurilor cu moleculele binucleare [8].

În complexul 2 se realizază asamblarea unui compus coordinativ ce conține doi complecși ai cuprului – unul

binuclear, iar altul - mononuclear. Datorită excesului liganzilor DH₂ și bpy, este posibilă formarea unității mononucleare [Cu(DH)2bpy], în care 4,4'-bipiridilul are rolul de ligand coordinat numai cu unul dintre cei doi atomi de azot. În unitatea mononucleară [Cu(DH)2bpy] centrul de coordinare nu diferă esential de cel din unitatea binucleară. Moleculele necoordinate de DH₂ adoptă, ca și în 1, o conformație trans cu respectarea legăturii centrale C-C. Molecula liberă bpy este într-o formă usor răsucită cu unghiul diedru dintre inelele piridinice egal cu 26.1°. La împachetarea componentelor în cristal contribuie esențial: legăturile de hidrogen și interactionile de tip " π - π stacking" dintre sistemele π -delocalizate. Așa cum s-a subliniat mai sus, legăturile de hidrogen acționează între liganzii coordinați și liberi de DH2. Două molecule libere DH2 leagă unitățile binucleare

Fig.1. Fragment al lanțului format din complexul $[Cu_2(DH)_2bpy]$ și moleculele necoordinate DH₂ în **1.**

 $[Cu_2(DH)_4bpy]$ prin legăturile de hidrogen OH…O cu formarea rețelei unite prin legături de hidrogen; astfel, în fiecare "celulă închisă" sunt combinați patru dimeri și patru molecule DH₂.

Fig.2. Asocierea a două lanțuri vecine prin medierea cu molecule de bpy în 2.

Unitățile mononucleare și binucleare sunt aranjate în așa mod, încât fragmentul liber al moleculei de bpy este aranjat între două unități binucleare vecine, fiind practic paralel cu planul mediu al metalociclului. Combinarea unităților binucleare și mononucleare duce la formarea canalelor rectangulare umplute cu molecule libere de bpy și DH₂.

Din sistemul $2Cu(CH_3COO)_2H_2O - bpy - 4DfH_2$ a fost sintetizat complexul binuclear $[Cu_2(DfH)_4bpy]^2DMF$ (3) [25]. În spectrul IR al complexului 3 banda de absobție la 1601 cm⁻¹ poate fi atribuită la oscilațiile de valență v(C=C), precum și v(C=N), fiind determinate de prezența moleculelor bpy în complex. Oscilațiile de valență v(CH_3)=2932 și 2848 cm⁻¹ indică la prezența moleculelor de dimetilformamidă în complex. Valoarea înaltă a frecvenței v(C=O)=1678 cm⁻¹, atribuită grupei carbonilice a DMF, indică la faptul că molecula solventului nu este coordinată la atomul metalului. În spectrul ¹H RMN două semnale 2.81 și 2.88 ppm corespund atomilor de hidrogen ai grupelor metilice, iar semnalul de la 7.93 ppm – atomului de hidrogen aldehidic al moleculei DMF. Multipleții din diapazonul 6.67-7.55 ppm caracterizează atomii de hidrogen ai inelelor benzenice și piridinice a liganzilor. Structura cristalină a compusului **3** este compusă din molecule binucleare [Cu₂(DfH)₄bpy], iar în cavitățile formate de aceste molecule la împachetarea cristalină sunt amplasate molecule de DMF.

Din sistemul Cu(CH₃COO)₂ / CuF₂ – bpe – dioximă (DH₂, NioxH₂, DfH₂) au fost obținuți trei complecși binucleari – **4**, **5** și **6**. În moleculele binucleare fiecare cation de Cu(II) leagă patru atomi de azot a doi anioni dioximici monodeprotonați care formează planul bazal și atomul de azot al moleculei bidentate de tip punte bpe în poziția axială, cu formarea sferei geometrice pătrat piramidală în jurul metalului – CuN₅ [7]. În toate moleculele binucleare ligandul bpe adoptă conformația *trans*. Inelele piridilice sunt aranjate în plane paralele în moleculele centrosimetrice, pe când în **6** ele formează unghiul diedru egal cu 15.1(3)°. La sinteza complexului **6**, dar în exces al ligandului bpe, a fost obținut complexul **7**, care constă din unități binucleare [Cu₂(DfH)₄bpe] și

Fig.3. Fragment al polimerului coordinativ {[Zn(NioxH₂)(CH₃COO)₂bpe]H₂O}_n.

mononucleare [Cu(DfH)₂bpe], precum și molecule de DMF.

Se constată faptul că, deși ligandul bpe oferă o distanță Cu…Cu mai mare în comparație cu ligandul bpy, acest lucru nu poate fi considerat un factor decisiv în creșterea cavităților accesibile pentru solvenți în rețeaua cristalină. Geometria de tip scară a bpe prevede posibilitatea unei împachetări cristaline mai eficiente și care rezultă cu lipsa moleculelor de tip "oaspete" incluse în rețeaua cristalină în compușii **4-6**.

O altă serie de sinteze a dus la obținerea unor compuși bi- și polinucleari ai zincului și cadmiului. Din sistemul $Zn^{2+}/Cd^{2+} - NioxH_2 - bpy/bpe$ în mediul H₂O-CH₃OH-DMF au fost sintetizați complecșii binucleari [Zn₂(CH₃COO)₄(NioxH₂)₂(H₂O)₂bpy] (**8**) [9],

în care la atomul central coordinează bidentat o moleculă de NioxH₂, doi ioni acetat/formiat, iar pozițiile axiale sunt ocupate de un atom de azot al ligandului bipiridinic și de atomul de oxigen al moleculei de apă.

Coordinarea moleculelor de apă blochează formarea lanțului polimeric, de aceea s-a hotărât de a omite apa din sistemul de sinteză. Cu ajutorul variației componenților inițiali: a naturii cationului, anionilor (HCOO⁻, CH₃COO⁻ sau SO₄²⁻), precum și a liganzilor bidentați ce joacă rol de punte (bpy, bpe, bps), a fost obținută o serie de complecși polinucleari cu structură polimerică. În calitate de ligand dioximic a servit NioxH₂, care, chiar luat în exces, coordinează la atomul central doar în raport de 1:1. Aceasta se datorează în primul rând afinității înalte a zincului și cadmiului față de atomul de oxigen, fapt ce condiționează păstrarea anionilor formiat, acetat și sulfat în calitate de liganzi, care ocupă două poziții de coordinare ale atomului central. În pozițiile 1,6 coordinează atomii de azot ai liganzilor punte.

În polimerul coordinativ 1D $\{[Zn(CH_3COO)_2(NioxH_2)bpe](H_2O)\}_n$ (12) [10], asamblat din sistemul $Zn(CH_3COO)_2 \cdot 2H_2O - NioxH_2 - bpe$, poliedrul de coordonare al Zn(II) este octaedric format de setul de atomi donori N₄O₂. Al doilea atom de oxigen al anionilor CH₃COO, necoordinat la centrul metalic, este implicat în legăturile de hidrogen OH…O cu grupele hidroxil oximice [10]. Ligandul bpe adoptă o conformație trans cu unghiul de torsiune C-CH₂-CH₂-C de 176.9° și inelele piridilice aproape perpendiculare reciproc (unghiul interplanar fiind de 72.48°). Distanta Zn…Zn de-a lungul ligandului bpe este egală cu 13.651 Å.

Fig.5. Fragment al polimerului coordinativ 15.

Fig.4. Fragment al împachetării cristaline în **13**. Moleculele oaspete de DMF sunt arătate în modul "spațios".

În complexul { $[Cd(HCOO)_2(NioxH_2)bpe]\cdotDMF$ }_n (13) [11] la fiecare ion de metal coordinează doi anioni formiat în mod monodentat, o moleculă de NioxH₂ prin atomii de azot oximici și doi liganzi bipiridilici bpe [10]. Atomii de oxigen carboxilici necoordinați la centrul metalic sunt implicați în legăturile de hidrogen O–H···O cu grupele hidroxil oximice. Folosind programul PLATON [24], au fost calculate golurile accesibile pentru solvent în cristalul ipotetic 13. După îndepărtarea *DMF* s-a obținut valoarea 427.5 Å³ sau 16.5% pe unitate de volum a celulei, care indică posibilitatea de a include molecule suplimentare de solvent în spațiul dintre lanțuri (Fig.4).

Combinarea NioxH₂, a liganzilor piridilici flexibili bps și a sărurilor de zinc sau cadmiu a permis obținerea polimerilor coordinativi 1D [Cd(CHOO)₂(NioxH₂)bps]_n (14) [11],

 $[Zn(CH_3COO)_2(NioxH_2)bps]_n$ (15) [11],

 $[Cd(CH_3COO)_2(NioxH_2)bps]_n$ (16) [11].

La fiecare ion de metal coordinează două grupe carboxilice în mod monodentat, o moleculă de NioxH₂ prin atomii de azot oximici, conducând astfel la formarea ciclului chelatic din

cinci membri și doi liganzi piridilici neutri cu funcție "punte" (Fig.5). Atomii de oxigen carboxilici necoordinați la centrul metalic sunt implicați în legăturile de hidrogen O–H…O cu grupele hidroxil oximice, dând naștere astfel platformei bazale extinse a metalului cu formarea a două inele din șase membri unite prin hidrogen.

Extinderea compuşilor **14-16** prin intermediul ligandului bps în formă unghiulară [unghiul C–S–C este în intervalul $102.4(2) - 105.2(1)^{\circ}$] generează lanțuri elicioidale cu chiralitate opusă, care se întinde de-a lungul axei cristalografice *b*.

În continuare, din sistemul MSO₄·nH₂O (M=Zn, Cd) – NioxH₂ – bpy/bpe au fost obținuți polimerii $\{[Zn(SO_4)(NioxH_2)bpy]0.5H_2O:DMF\}_{\infty}$ (17) [12], $\{[Cd(SO_4)(NioxH_2)bpy](NioxH_2)(H_2O)_3\}_n$ (18) [9], $[Zn(SO_4)(NioxH_2)bpe]_{\infty}$ (19) [12]și $[Cd(SO_4)(NioxH_2)bpe]_{\infty}$ (20) [12]. Pe lângă faptul că liganzii bipiridinici creează premise pentru asamblarea lanțului polimeric, determinant este și aportul anionilor sulfat, care de asemenea au rolul de punte, legând lanțurile polimerice între ele. În 17 și 18 între lanțurile polimerice sunt incluse molecule de solvent sau NioxH₂, fapt ce indică la ideea că complecșii acestei serii ar putea poseda cavități intermoleculare și, respectiv, proprietăți adsorbante (Fig.6).

Extinderea structurii prin intermediul punților formate de anionii sulfat, axele binare elicoidale generează elici homochirale de dreapta. Distanțele Zn…Zn dintre atomii uniți prin $SO_4^{2^-}$ sunt egale cu 5.456 Å. Pasul elicoidal este egal cu parametrul rețelei *b*, care are valoarea de 9.230 Å. Elicele adiacente sunt interconectate

STUDIA UNIVERSITATIS MOLDAVIAE, 2014, nr.6(76) Seria "Științe reale și ale naturii" ISSN 1814-3237 ISSN online 1857-498X p.124-129

prin intermediul liganzilor "punte" bpy pentru a genera un strat chiral. În polimerul **17** moleculele de apă sunt fixate în straturi prin intermediul legăturilor de hidrogen OH…O formate cu anionii sulfat coordinați. Moleculele de DMF dintre straturi se intercalează între fragmentele piridinice ale liganzilor bpy. Polimerul 2D

 ${[Zn(SO_4)(NioxH_2)bpy]0.5H_2ODMF}_{\infty}$ și polimerul 1D de tip scară

${[Cd(SO_4)(NioxH_2)bpy](NioxH_2)(H_2O)_3}_n$

reprezintă izomeri pseudo-supramoleculari [12] descriși de aceeași formulă moleculară generală [M(SO₄)(NioxH₂)bpy] (M=Zn, Cd), dar diferă prin modurile de coordinare a anionului sulfat, fiind legat prin modul μ_1 , μ_2 în primul caz și prin modul μ_2 în cel de-al doilea caz; ca urmare, acești compuși diferă prin dimensionalitatea structurilor lor polimerice. Cu toate acestea, ambii complecși, din cauza

Fig.6. Împachetarea straturilor de-a lungul axei b în 17. Solvenții sunt prezentați în mod "spațios".

coordinării ligandului voluminos NioxH₂ la centrul metalic, reprezintă materiale poroase cu goluri completate cu solvenți polari (H₂O, DMF) în **17** sau de amestecul alcătuit din apă și NioxH₂ liberă în **18**, fixate în rețelele cristaline prin legăturile de hidrogen și interacțiunile de tip , π - π stacking".

În compuşii $[Zn(SO_4)(NioxH_2)bpe]_n$ (19) și $[Cd(SO_4)(NioxH_2)bpe]_n$ (20) liganzii bpe adoptă conformații de tip *trans* cu unghiurile de torsiune C–CH₂–CH₂–C practic egale și cu unghiurile diedre dintre inelele piridil puțin diferite, acestea fiind egale cu 176.86° și 22.88° în 19 și cu 176.17° și 27.60° în 20.

Similar compusului 17, elicele din 19 și 20 sunt legate de anionii sulfat tetraedrici, fiind în cristalul chiral 20 exclusiv de stânga, iar în cristalul centrosimetric 19 - atât de stânga, cât și de dreapta. Lanțul polimeric elicoidal în 19 este extins de-a lungul direcției*b*cu pasul elicei de 9.34 Å și de-a lungul direcției*a*în 20 cu pasul elicei de 9.58 Å. În ambele structuri pașii elicoidali sunt egali cu parametrii celulelor elementare corespunzătoare. Liganzii "punte" bpe interconectează elicele de stânga în straturi chirale în 20, iar în 19 elicele de dreapta și de stânga formează straturi cu chiralitate opusă. Aranjarea stratului chiral în aceste două structuri este similară celei din compusul 17.

Concluzii

A fost elabortă strategia evoluției de la complecși dioximici mononucleari spre bi- și polinucleari în baza liganzilor bipiridinici. Complecșii cuprului sunt *bis*-dioximici, iar cei ai zincului și cadmiului sunt *mono*-dioximici, ceea ce permite resturilor acizilor formic/acetic/sulfuric să păstreze legăturile trainice cu generatorul de complex. Compoziția și structura complecșilor asamblați se află în dependență de natura cationului meta-lului, ligandului punte, restului acid și a solvenților utilizați în sinteză.

Bibliografie:

- BIRKELBACH, F., WEYHERMULLER, T., LENGEN, M. et al. Linear trinuclear oximato-bridged complexes Mn^{III,IV}MMn^{III,IV} (M=Zn, Cu or Mn): synthesis, structure, redox behavior and magnetism. In: *J. Chem. Soc., Dalton Trans*, 1997, p.4529-4537. ISSN 1477-9226
- BISHOP, M., LEE, A., LINDOY, L. et.al. Self-assembly of hydrogen-bonded supramolecular structures based on the neutral pseudo-macrocyclic complex bis(dimethylglyoximato)copper(II). In: *Supramol. Chem.*, 2005, vol.17, p.37-45. ISSN 1061-0278
- BRESCIAN-PAHOR, N., FARCOLIN, M., MARZILLI, L.G. et al. Organocobalt B₁₂ models: axial ligand effects on the structural and coordination chemistry of cobaloximes. In: *Coord. Chem. Rev.*, 1985, vol.63, p.1-125. ISSN: 0010-8545. ISSN 0010-8545
- 4. CANPOLAT, E., KAYA, M., YAZICI, A. Synthesis and characterization of Co(II), Ni(II), Cu(II) and Zn(II) complexes with a new vic-dioxime (E,E)-N-hydroxy-2-(hydroxyimino)-N-(4-{[(2-phenyl-1,3-dioxolan-4yl)methyl]amino}butil) ethanimidamide. In: *Russ. Journ. Coord. Chem.*, 2004, vol.30, no.2, p.87-93. ISSN 1070-3284
- 5. CHAKRAVORTY, A. Structural chemistry of transition metal complexes of oximes. In: *Coord. Chem. Rev.*, 1974, vol.13, p.1-46. ISSN 0010-8545

STUDIA UNIVERSITATIS MOLDAVIAE, 2014, nr.6(76)

Seria "Științe reale și ale naturii" ISSN 1814-3237 ISSN online 1857-498X p.124-129

- 6. CHAUDHURI, P. Homo- and hetero-polymetallic exchange coupled metal-oximates. In: *Coord. Chem. Rev.*, 2003, vol.243, p.143-190. ISSN 0010-8545
- COROPCEANU, E.B., CROITOR, L., BOTOSHANSKY, M.M., FONARI, M.S. "Wheel-and-axle" binuclear Cu(II) dioximates mediated by 1,2-bis(4-pyridyl)ethane: synthesis and X-ray study. In: *Polyhedron*, 2011, no.30, p.2592-2598. ISSN 0277-5387
- COROPCEANU, E.B., CROITOR, L., WICHER, B. et al. Synthesis, Spectroscopic and X-ray study of [Cu₂(Hdmg)₄(γ,γ'-dipy)]₂(H₂dmg)₄ and [Cu₂(Hdmg)₄(γ,γ'-dipy)][Cu(Hdmg)₂(γ,γ'-dipy)](γ,γ'-dipy)(H₂dmg)₂. In: *Inorganica Chimica Acta*, 2009, no.362, p.2151-2158. ISSN 0020-1693
- CROITOR, L., COROPCEANU, E., JEANNEAU, E. et al. Anion-induced generation of binuclear and polymeric Cd(II) and Zn(II) coordination compounds with 4,4-bipyridine and dioxime ligands. In: *Crystal Growth & Design*, 2009, vol.9, p.5233-5243. ISSN 1528-7483
- CROITOR, L., COROPCEANU, E., SIMINEL, A. et al. Synthesis, structures, and luminescence properties of mixed ligand Cd(II) and Zn(II) coordination compounds mediated by 1,2-bis(4-pyridyl)ethane. In: *Inorganica Chimica Acta*, 2011, no.370, p.411-419. ISSN 0020-1693
- CROITOR, L., COROPCEANU, E., SIMINEL, A. et al. 1,2-Cyclohexanedionedioxime as a useful co-ligand for fabrication of one-dimensional Zn(II) and Cd(II) coordination polymers with wheel-and-axle topology and luminescent properties. In: *Cryst.Eng.Comm.*, 2012, no.14, p.3750-3758. ISSN 1499-8033
- 12. CROITOR, L., COROPCEANU, E., SIMINEL, A. et al. Polymeric Zn(II) and Cd(II) Sulfates with Bipyridine and Dioxime Ligands: Supramolecular Isomerism, Chirality, and Luminescence. In: *Crystal Growth & Design*, 2011, vol.11, p.3536-3544. ISSN 1528-7483
- 13. FRASSON, E., BARDI, R., BEZZI, S. Structure of copper-dimethylglyoxime at low temperature. In: *Acta Cryst.*, 1959, vol.12, p.201-205. ISSN 1600-5368
- KAWATA, S., KITAGAWA, S., MACHIDA, H. et al. Oxamide oxime-based copper(II) coordination polymers. Two- and three-dimensional structures controlled by dicarboxylates. In: *Inorg. Chim. Acta*, 1995, vol.229, p.211-219. ISSN 0020-1693
- KOMAN, M., MARIASSY, M., ONDREJOVIC, G. Structure of bis(3,4-hexanedione dioximato)bis(thiourea)copper(II). In: Acta Cryst. C., 1990, vol.46, p.2041-2043. ISSN 2053-2296
- KUBEL, F., STRAHLE, J. Die Kristallstructur von polymerem Bis(dimethyl-glyoximato)-pyrazin-eisen(II). In: Z. Naturforsch., 1983, vol.38, p.258-259. ISSN 0932-0776
- KUBEL, F., STRAHLE, J. Polymere Dimethyl- und Diphenylglyoximatocomplexe des Cobalt und Eisens mit Pyrazin als Brückenligand. Die Kristallstruktur des Bis(dimethylglyoximato)pyrazin-cobalt(II). In: Z. Naturforsch, 1981, no.36, p.441-446.27. ISSN 0932-0776
- KURTOGLU, M., ISPIR, E., KURTOGLU, N., SERIN, S. Novel vic-dioximes: Synthesis, complexation with transition metal ions, spectral studies and biological activity. In: *Dyes and Pigments*, 2008, vol.77, p.75-80. ISSN 0143-7208
- LIU, X.-W., CHU, S., WANG, X.-Q. et al. Crystal structure of a new oximato-bridged one-dimension(1D) chainlike copper complex polymer {[Cu₄(dmg)₂(Hdmg)₂(H₂dmg)₂(H₂O)₂](ClO₄)₂}∞. In: *Inorg. Chem. Commun.*, 2002, vol.5, p.1086-1089. ISSN 1387-7003
- NANDA, P.K., RAY, D. Synthesis and crystal structure of a cis-oxime-oximate bridged tetra coordinated open-book shaped new dicopper(II/II) complex [Cu₂(μ-Hdmg)₂(Hdmg)]ClO₄: First report of unusual oxime OH bridging. In: *Inorg. Chim. Acta*, 2005, vol.358, p.4039-4044. ISSN 0020-1693
- 21. RASTON, C.L., SKELTON, B.W., WHITE, A.H. Structure and bonding in the neutral and anionic forms of dimethylglyoxime and its complexes. In: *Aust. J. Chem.*, 1980, vol.33, p.1519-1528. ISSN 0004-9425
- RUIZ, R., SANZ, J., CERVERA, B. et al. Oximato complexes. Part 1. Solution study, synthesis, structure, spectroscopic and magnetic properties of polynuclear copper(II) complexes containing dimethylglyoxime. In: *J. Chem. Soc. Dalton Trans.*, 1993, p.1623-1628. ISSN 1477-9226
- RUIZ, R., SANZ, J., LLORET, F. et al. Oximato complexes. Part 2. Dinuclear dimethylglyoximato complexes of copper (II) with a new co-ordination mode of the oximate ligand. In: *J. Chem. Soc. Dalton Trans.*, 1993, p.3035-3039. ISSN 1477-9226
- 24. SPEK, A.L. Single-crystal structure validation with the program PLATON. In: *J. Appl. Crystallogr.*, 2003, vol.36, p.7-13. ISSN 1600-5767
- КОРОПЧАНУ, Э.Б., КРОИТОР, Л., ЧУМАКОВ, Ю.М., ФОНАРЬ, М.С. Синтез и строение комплекса [Cu₂(DfH)₄(γ,γ²-dipy)] DMF. В: Кристаллография, 2009, том 54, № 5, с.883-886. ISSN 0023-4761
- СИМОНОВ, Ю.А., ДВОРКИН, А.А., МАЛИНОВСКИЙ, Т.И. и др. Кристаллическая и молекулярная структура катена-µ-йодо-(1,2-циклогександион-диоксим)меди(I). В: Доклады АН СССР, 1982, том 263, №5, с.1135-1138. ISSN 0869-5652

Prezentat la 18.11.2014