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A Review of Dynamic Models Used in Simulation of
Gear Transmissions

The investigation of relevant scientific literature regarding gear model-
ing enabled us to discover a significant number of papers dating back
several decades and continuing to the present, The purpose of the dy-
namic models was quite diverse, but all modeling efforts share the goal
of replicating the complex physics of power transmission through gear
Interaction. This paper investigates the relevant aspects regarding the
dynamic modeling of gear transmissions, starting with the simplest
model (1DOF), then developing it into a model with three degrees of
freedom (3DOF) and finishing with six degrees of freedom model
(6DOF).
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1. Introduction

Because the gears are critical components of any rotating machine, they have
received a considerable amount of attention regarding their dynamic modeling,
being published a significant number of papers concerning this problem [1], [2].
The objectives of dynamic modeling of gear transmissions varied past five dec-
ades, from vibration controlling and noise analysis, to the study of transmission
error and stability analyses [3], [4]. The final scopes of dynamic modeling of gears
could be summarized as follows:

- Analysis of contact and bending stress;

- Reduction of superficial wear as for example pitting;

- Study of transmission efficiency;

- Study of noise radiation;

- Influence on other parts of the transmission, particularly bearings;

- Natural frequencies of the system;

- Studies regarding the vibratory motion of the system;

- Studies of reliability and life cycle.
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2. Dynamic Model with One Degree of Freedom (1DOF)

Figure 1 show a typical dynamic model with one degree of freedom (1DOF)
used for the mesh investigation of a gear pair system. The gear transmission is
modeled as a pair of discs, connected along the mesh line by a spring and a
damper.

The model takes into account influences of the static transmission error which
is simulated by a displacement excitation e(t) at the mesh. This transmissions error
arises from several sources, such as tooth deflection under load, non-uniform tooth
spacing, tooth profile errors caused by machining errors as well as pitting, scuffing
of teeth flanks. The mesh stiffness c,(t) is expressed as a time-varying function.
The gear pair is assumed to operate under high torque condition with zero back-
lash. Effects of friction forces at the meshing interface are neglected on the basis
that in particular, the coefficient of friction is low (approx. 6%, according to [5]).
Furthermore, the viscous damping coefficient of the gear mesh d, is assumed to be
constant.
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Figure 1. 1DOF dynamic model for a gear pair system

The differential equations of motion for this system can be expressed in the
form:

310, +1,C, (D[ 1@y + 1,0, +e(t)] +1,d, [P + 1,0, +E()] =M, (1), (1)
JoP, +1,C, (O[rads + 1,0, + ()] +1,,d, [ + 1,0, +E(1)] = M, (1), (2)
where @, , @, ¢ (i=1, 2) are rotation angle, angular velocity, angular
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acceleration of the input pinion and the output wheel respectively. J, and J, are the
mass moments of inertia of the gears. M, (t) and M,(t) denote the external torques
load applied on the system. r,, and r,, represent the base radii of the gears.
By introducing the composite coordinate
q=ruf 1y, (3)
equations. (1), (2) yield a single differential equation in the following form:

Mgd+c,(Ha+d,q=F(t)-c,(et)—d&t), (4)

;]lJZ > ,and F(t) - mred(lvll(t)rbl + MZ(t)rsz- (5)
JlrbZ + JZrbl Jl JZ

where: m, =

For a specific gear-pair, the mesh stiffness c (t) can be approximately repre-
sented by a truncated Fourier series:

K
c(t)=co+ Y cxcos(kast +yi ), (6)
k=1

where @), is the gear meshing angular frequency and K is the number of terms of

the series.

Generally, the components of the meshing error are not identical to each gear
tooth and consequentially, they will produce excitation movements periodical to
the rotation speed of the wheel (repeated every time the respective tooth is in
contact). Therefore, the excitation function e(t) can be represented by a Fourier
series with the mains frequency corresponding to the rotation speed of the wheel.
If it is considered that the errors are located only at teeth of the pinion, e(t) can be
written as:

I

e(t)=> ejcos(int +a;), 7)
/=1
where w; is the angular speed (rotation frequency) of the pinion.
When it is assumed that:

1 =w =congt, P, =w, =const, d,= 0, ¢(t)= ¢, the dynamic transmission er-

ror of the gear pair q is equal to the static deformation of the teeth under the con-

stant load qe.

Therefore:

q = Ip1f1 + rp2$2 = qo, (8
So that, Eqg. (4) becomes:

MyeqG+Co(£)g+d,G-F(t)=0. 9)

Based on the above, the vibration of a gear pair can be written as a differen-
tial equation of the form:

MreqG +C,(t)q +d,G - F(t) =0, (10)

167



where:
f(t)=coqo -[c,(t)-cole(t)-de(t). (11)

Taking into account four dominant coefficients ¢y, ¢, ¢, ¢3 in the Fourier se-
ries of the mesh stiffness, Eq. (6) can be written as:
3 3
C(t)=Co+ Y i coslhkayt +y ) =Co+ Y (Cx coS kayt + 3y sinkaw,t), (12)
k=1 k=1

where w, =z, .

If the excitation function e(%) is expressed by its first two terms of the Fourier
series, we have:

2
e(t) = Zek cos( kant +ay ). (13)
k=1

Substituting the expressions (12) and (13) in equation (11), we obtain:

3
f(t)=coh +dze10d Sin(eat + ) + 20,650 Sin(2e4t +a) —% Z{kaOS[( Kz~ et - a] +
k=1
+8i ik ~1)aat -]+ +6i cod(ka + Vaat + an + Sy sifl(ka +eat e} =14
3
—% (écod|(ka -~ 2)eat - o] + 8y sitl( ke ~ 2)eat ~ o] + & cod (ke + 2)eat + ] +
k=1

+ 3, siff(kz +2)eat + )

Based on the analytical form of the functions ¢,(%), respective 7#t) and using
the harmonic balance method, the solution of the differential equation (10) can be
approximated by the expression:

3 3
q(t)=a+ Y (a cosart + b sinkart) + > |agy - Cosha ~2)art + by o Sinfka ~2)eat +
k=1 k=1
+ 8z 1 COS(KZ ~ L)At + by 1 SiN(kZ —~ L))l + Gy COS(kZ )AL + Dy SiN(KZ )0 E + - (15)

+ 8z 11, COS(KE + 1)t + By SN(KZ, + 1)t + Bz 4 COS(hZ, + 2)0t + Biy 1 ST(KZ + 2]
3. Dynamic Model with Three Degrees of Freedom (3DOF)

When the stiffness respective the elasticity of the shafts and the bearings
cannot be neglected, a dynamic model with tree degrees of freedom has to be
considered.
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Figure 2. Dynamic model with three degrees of freedom (3DOF)

Such a model is shown in figure 2. Same as at the 1 DOF model, the gear
mesh is modelled as a pair of discs, connected along the mesh line by a spring and
a damper. In addition to the 1 DOF model, the shafts and the bearings are consid-
ered elastic, each of the discs being supported by a spring and a damper, having
elastic constants c¢; and c,, respective the viscous damping coefficients d; and
d,.Forthermore, the backlash between the teeth of the pinion and the gear is not-
ed with 2b. The gear mesh stiffness ¢,(t) and the static transmission error e(t) are
considered time varying, while the viscous damping is noted with d,.

Dynamic transmission error is defined:

Ya(t) =y1+rp@1(t) = Vo —rpapa(t). (16)

The difference between the dynamic transmission error yy t)and the static
transmission error e(t) is given by the relation:

Y (t)=yi+rpapi(t) = yo—rpopa(t) —e(t). (17)
The meshing force can be written as:
Fy=c,(t)Of(y)+d, y(t), (18)

where f(y) is a nonlinear function used for the description of the gear pair with
backlash.
Assuming an equal repartition of the gap between teeth, 7)) can be written

as.
y-b y>b,
f(y)=1 0 Iylsb, (19)
y+b y>-b.
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The differential equations of motion can be written as follows:
my+diy1+dy+cy +c,(E)f(y)=0
Myyo+dyyo=d,y+Coyr—C,(t)f(y)=0 ' (20)
MpegV =~ MgV 1+Mpeg Vo +d ¥ +C,(E)f(y)=F

where:
J,J
_ 172
7 red* Tir2 + J,r?
p2 "72'p . (21)
Mi(t)r My(t)r ..
F(t):m,ed( 1(J1) O+ Z(JZ) bz]—mrede(t)

The system of equations (20) can be written in matrix form as follows:
m 0 0 ||Ji| |dt O d,||yi| e O ¢ (t) || ya | |O
0 m 0 [Wjp|+0 dy =d, |y, [+ 0 & —c,(E)|U y, |=|0|. (22)
~Myeq Mreg Mreq| | V 0 0 d, ||y 0 0 ¢, (t)]||f(y)] |F
According to [2], a dimensionless form of the Eq. (22) can be obtained, by
assuming following simplifications. Let:

e(t)=e;cos(wt+¢,)+epcos(wt +¢p), (23)
c,(t)=cp+tcycos(at +¢) , E:C—a, (24)
Cm

where  is the main excitation frequency of the transmission error respective of
the stiffness of the gear transmission.

— y(t) . ci -
f(V/):V,-(f):—’b ; w; = _ml,- i=1,2 (25)

- y(t) Cm -
t)="—"-%; = ; t =w,t 26
y(t) 5 wy e wy (26)

d d d, d d,

= ; = 1620 = ; = ; $33= 7 (27
{11 e, {13 2, $22 2, $23 2, 33 - (27)

2
_ ) _ W _ Mpeq _ Mg 1.7 L .
6’11-%: € =—7 1 C13=—%; Cp3 =—2%; cg3=1+kacos(at +¢); (28)
wh m my

Wn
with the excitation frequency vector w="Y (29)
Wp
= F, €; ,— €y ,
Frp=—»il_, F, =7a(a))2; F, :71’(54))2. (30)
M req by
So that:
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F=Fp+Fycos(c +¢,)+Fycos(t +¢,). (31)
Eqg. (22) can thus be written in dimensionless form:

100 |\/t)| [én O é&a||ya(t)] |cu O e ||f(y)] |0
0 1 0/fyp(t)|+2M10 & —Ea|Mya(t) |+ O 2 —Coatas|f(y2)|=| 0], (32)
-11 1)) yt) 0 0 || /Nt)| |0 0 a3 [|f¥)] |F
with:
y-1 y>1
Fo=t2=0 0 -1sysy, (33)
y+1 y >-1.

For simplifying reasons, the “-" sign above the variables in the Eq. (32) and
(33) will be neglected and, therefore, the equation (32) becomes:

1 00| |j(t) &1 0 &3 || nt)| a1 O axss||f(y)] |0
0 1 0|Myp(t)|+200 & ~&3|fya(t) |+ 0 Cp —Cogla3 |PF(y2) |=| 0| (34)
-111)|yt) 0 0 &G || Mt)| |0 0 a3 ||f(y)| |F

As a first step, the three second order differential equation are converted in
six first order differential equations by using the Runge-Kutta method.
For this purpose, g variable is introduced as follows:

q = ql/ q2/ q3/ q4/ qS/ qG}T = {yll yl/ y2/ y2/ Yy, y}T (35)
Thus, Eq. (34) can be written in matrix form as follows:

g=Hg+cx3f(gs)A+B (36)
whereA is the matrix of the nonlinear coefficients:
A={0, -c13, 0, cx, O, ‘C13‘C23‘C33}T (37)
B is the vector of load (forces):
B=poooo Ff (38)

and H is the matrix of the linear coefficients:

0 1 0 0 0 0
-c1n 2% O 0 O -$13
0 0 0 1 0 0
H= (39)
0 0 -c» -2, 0 $23
0 0 0 0 0 1
|=C11 —2811 € 2 0 =133~ 233)

Eqg. (36) can be solved by using the MATLAB software, with which can be al-
so performed a simulation by using the facilities offered by the SIMULINK tool.
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4. Dynamic Model with Six Degrees of Freedom (6DOF)

When the influence of the driving, respective driven machine cannot be ne-
glected, it has to be choosing a mathematical model with six degrees of freedom.
Such a model is shown in figure 3.
No, PMo

Driving machine g

Symbols:
J- moment of inertia;

- rotation angle; d.
M (t)- torque moment;

D- damping constant of connecting shaft;

C- elastic constant of connecting shaft;

m- mass

z- teeth number; b
r,- base radius; -
d- damping constant of the bearing;

c- elastic constant of the bearing;

e(t)- displacement excitation;

c,(t)- gear mesh stiffness;

d,- damping coefficient of the gear mesh.

Ja, my, 73

Driven machine

It OMa

Figure 3. Dynamic model with six degrees of freedom (6DOF)

Generalizing those presented in the chapters 2 and 3 of this paper, as well as
on the theoretical considerations of the forced damped vibration, it can be con-
cluded that the equation of motion of a dynamic system, which includes a gear
transmission can be written in following form:

- PENCONCIRG w

[M]- Matrix of masses; [D]- Matrix of damping’s;  [C]- Matrix of stiffness;

g - vector of deplacements; £ -vector of force.

For the 6 DOF dynamic model, the elements of Eq. (40) can be written, ac-
cording to [5], as follows:
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W—ZM" 0 0 0 0 0
Tp1
0 4 '32‘71 0 0 0 0
Tp1
0 4, 0 0 0 , (41)
2
]
m 4 U ps
red 0 0 0 — 0 0
;2
b1
0 0 0 0 m, 0
0 0 0 0 0 m,
4Dy _4|:IDM0 0 0 0 0
2 2
M1 M1
4o +& dzmbz 0 dﬁz _diz
24 40y 2 2
4Dyy  d, 0y | _4MDya _d; Oy dy Oy |3 (42)
1 ra Al r2 20y 20y
ol et
Cz UMreq 4MDpa 0 0
12
bl
- symmetric— d; +d, -d,
d, +d,
41C mo _4Cwmo 0 0 0 0
;2 (2
b1 bl
4Cmo +Ciz _cszZ 0 Cﬁz _Ciz
2 4Ty 2 2 | 43
4[(:Ma +Cz Db2 _4[CMa _Cz Db2 Cz Db2
[C]:i ra 4ly ra 20 20y
C
’ 4 Cva 0 0
;2
b1
- symmetric — cp+cC, -C,
Cy +CZ
g={ ¥ A
q=19mo 91 92 Pma V1 V2i - (44)
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5. Conclusions

Mathematical models attempt to include the essential parameters of natural
phenomena in systems of equations or in systems of differential equations in order
to predict the evolution of the observed system.

The basic principle in formulating a scientific model (modeling) is to reduce
complexity, by trying to make the truth describable and understandable through
simplicity.

The present paper presented relevant aspects regarding the dynamic model-
ing of gear transmissions. Starting with the simplest model (1DOF), developing it
by considering factors as bearing, shaft, driving and driven machine, until the
mathematical model with six degrees of freedom (6 DOF) was reached.
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