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Hasan Jamali, Adel Asakereh 

A Statistical Comparison of Nine Rock Failure Criteria 

Today the rock failure criteria have a wide range of usage for determin-
ing the stress conditions around underground structures and slope sta-
bility methods .In this study we examine nine different failure criteria by 

comparing them to published polyaxial test data ( 1 2 3σ σ σ> > ) for 

five different rock types at a variety of stress states. several article have 
published about this subject  with different  criteria and rock data cur-
rently. For this purpose we need a factor named Least Mean Standard 
Deviation Misfits. In this paper we used all of them and try to gather 
them and present general result. Result of this article shows that poly-
axial criteria has more accuracy. 
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1. Introduction 

A number of different criteria have been proposed to describe brittle rock fail-

ure. In this study we aim to find which failure criterion, best describes the behavior 
of each rock type by minimizing the mean standard deviation misfit between the 

predicted failure stress and the experimental data. several papers  are published, 

Colmenares et al compared seven criteria for five different rock types at a variety 
of stress states by associated misfits[1]. Thomas Benz et al [2] introduced the 

quantitative comparison of the six failure criteria follows the methodology intro-
duced in[1]. In [2] more criteria and rock types are evaluated. In this article at first 

we present 9 rock failure criteria. They are Mohr–Coulomb (MC), The orginal 

Hoek–Brown, The Hoek–Brown criterion- edition 2002, HBMN, Mogi (1967), Mogi 
(1971), Drucker–Prager(DP), Modified Wiebols and Cook(MW), Modified Lade(ML). 

We also introduce Least mean standard deviation misfits and strength data of five 
rock types. Finally we calculate misfit of rock types for nine criteria and Interpret 

results and compare all of criteria with [1] and [2]. 
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2. Nine Rock Failure Criteria 
2.1. Mohr-Coulomb Criterion 

The Mohr–Coulomb (MC) failure criterion is one of the earliest and most trust-
ed failure criteria for soils and rocks [3]. Failure is assumed when in any (failure) 

plane the shear stress reaches the failure shear stress maxτ which is given by a 

functional relation of the form Eq (1): 
 

                          
niS σµτ += 0                                           (1)  

Where 0S is the shear strength or cohesion of the material and 0µ  is the coef-

ficient of internal friction of the material. Since the sign of τ  only affects the slid-

ing direction, only the magnitude of τ  matters. The linearized form of the Mohr 

failure criterion may also be written as Eq (2): 
 

301 σσ qC +=                                            (2) 
 

Where 
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where 1σ  is the major principal effective stress at failure, 3σ is the least prin-

cipal effective stress at failure, C0 is the uniaxial compressive strength and ϕ  is 

the angle of internal friction equivalent to 
0t a n ( )a µ . This failure criterion as-

sumes that the intermediate principal stress has no influence on failure. The yield 
surface of this criterion is a right hexagonal pyramid equally inclined to the princi-

pal-stress axes. The intersection of this yield surface with the p-plane is a hexa-

gon. 

2.2. The Hoek-Brown Criterion 

This empirical criterion uses the uniaxial compressive strength of the intact 

rock material as a scaling parameter, and introduces two dimensionless strength 

parameters, m and s . After studying a wide range of experimental data, Hoek 

and Brown [4] stated that the relationship between the maximum and minimum 

stresses given by Eq (4): 
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where m  and s are constants that depend on the properties of the rock and on 

the extent to which it had been broken before being subjected to the failure 

stresses 1σ  and 3σ . 

 While these values of m obtained from lab tests on intact rock are intended to 
represent a good estimate when laboratory tests are not available, we will com-

pare them with the values obtained for the five rocks studied. For intact rock mate-
rials, 1s = . For a completely granulated specimen or a rock aggregate, 0s =  

[5].  

 2.3. The HE Hoek-Brown Criterion (Eddition 2002) 

At failure, the generalized HB criterion [5] relates the maximum effective 

stress, 1σ  to the minimum effective stress 3σ through the functional relation: 

a
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σ

σσ
                            (5) 

where bm extrapolates the intact rock constant im  to the rock mass as Eq (6): 
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ciσ is the uniaxial compressive strength of the intact rock. s and a  (Eq (7),( 8)) 

are constants which depend upon the rock mass’s characteristics: 
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The geological strength index (GSI), introduced by Hoek, provides a system 
for estimating the reduction in rock mass strength under different geological condi-

tions. Finally, a factor which quantifies the disturbance of rock masses. It varies 

from 0 (undisturbed) to 1 (disturbed) depending on the amount of stress relief, 
weathering, and blast damage as a result of nearby excavations. 

 2.4. The HBMN Criterion  

The HBMN criterion extends the generalized HB criterion as described above, 

with the spatial mobilized plane concept of Matsuoka and Nakai (MN) [6]. The de-
viatoric shape of the MN criterion is assigned to the HB criterion by setting: 
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)(, tHBcHBMN ppLMqf −−=                           (9)  
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and L varies between 1 and , ,/e MC c MCM Mδ = for Triaxial compression and ex-

tension, respectively [13]: 
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where the lode angleθ  is defined as 
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and
2J and

3J  are the second and third invariants of the deviatoric stress tensor, 

respectively. 
 

 
 2.5. Mogi 1967 Empirical Criterion  

 
Mogi [7] studied the influence of the intermediate stress on failure by per-

forming confined compression tests (
1 2 3σ σ σ> = ), confined extension tests 

(
1 2 3σ σ σ= > ) and biaxial tests (

1 2 3 0σ σ σ> > = ) on different rocks. He recog-

nized that the influence of the intermediate principal stress on failure is non-zero, 

but considerably smaller than the effect of the minimum principal stress .When he 

plotted the maximum shear stress (
1 2( ) / 2σ σ−  as a function of 

1 2( ) / 2σ σ+ for 

failure of Westerly Granite, he observed that the extension curve lied slightly above 

the compression curve and the opposite happened when he plotted the octahedral 
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shear stress octτ as a function of the mean normal stress
1 2 3( ) / 3σ σ σ+ + (for 

failure of the same rock. Therefore, if (
1 2 3( ) / 3Bσ σ σ+ + ) is taken as the ab-

scissa (instead of (
1 3( ) /σ σ+ ) or (

1 2 3( )σ σ σ+ + )), the compression and the 

extension curves become coincidental at a suitable value of b: Mogi argued that 

this b value is nearly the same for all brittle rocks but we will test this assertion. 
The empirical criterion has the following formula as Eq (15): 

]2/)[(2/)( 321131 σσσσσ ++=− Bf                               (15) 

where β  is a constant smaller than 1. The form of the function 
1f  in Eq. (21) 

is dependent on rock type and it should be a monotonically increasing function. 

This criterion postulates that failure takes place when the distortional energy in-
creases to a limiting value, which increases monotonically with the mean normal 

pressure on the fault plane. The term 
2bσ  may correspond to the contribution of 

2σ to the normal stress on the fault plane because the fault surface, being irregu-

lar, is not exactly parallel to s2 and it would be deviated approximately by 

arcsin( )B  

 
 2.6. Mogi 1971 Empirical Criterion  

 
Mogi [7]proposed two functional relationships for rock failure, of which only 

the latter (Mogi 1971 criterion [21]) is considered here. In this, Mogi relates the 

octahedral shear stress at failure to the sum of the minimum and maximum princi-
pal stresses: 
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where f is a monotonically increasing function. Plotting octτ against 

,2 1 3( ) / 2mσ σ σ= +  for different experimental data reveals that a linear function f 

readily gives satisfactory results, e.g. [2]. The linear Mogi criterion can be written 

as: 
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Considering that in triaxial conditions 
1 3q σ σ= − and that 2 / 3oct qτ = ,the 

linear Mogi parameters a and b relate to the Coulomb shear strength parameters 

c and ϕ  in triaxial compression and extension as Eq(18): 
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 2.7. Drucker-Prager Criterion 

 
 The von Misses criterion may be written in the following way as (19): 
 

2
2 kj =

                                              (19) 

where k is an empirical constant. The extended von Mises yield criterion or 

Drucker–Prager criterion was originally developed for soil mechanics [8].The yield 
surface of the modified von Mises criterion in principal stress space is a right circu-

lar cone equally inclined to the principal-stress axes. The intersection of the p-

plane with this yield surface is a circle. The yield function used by Drucker and 
Prager to describe the cone in applying the limit theorems to perfectly plastic soils 

has the form 

12

1

2 jkj α+=                                                    (20) 

Where α and k  are material constants. The material parameters α  and k  

can be determined from the slope and the intercept of the failure envelope plotted 

in the 1j  and 1/ 2
2( )j space. α  is related to the internal friction of the material and 

k is related to the cohesion of the material, in this way, the Drucker–Prager crite-

rion can be compared to the Mohr–Coulomb criterion. When 0α = ; Eq. (24) re-

duces to the Von Mises criterion. 

 2.8. Modified Wiebols and Cook Criterion  

 
Zhou [9] presented a failure criterion, which is an extension of the Circum-

scribed Drucker–Prager criterion (described later) with features similar to the effec-

tive strain energy criterion of Wiebols and Cook . The failure criterion described by 
Zhou predicts that a rock fails if 
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where 1j is the mean effective confining stress and 1/ 2 1/ 2
2 (3 / 2) octj τ= ; where 

octτ is the octahedral shear stress. The parameters A, B, and C are determined 

such that Eq. (14) is constrained by rock strengths under triaxial (
2 3σ σ= ) and 

biaxial (
1 2σ σ= ) conditions. 

 2.9. Modified Lade Criterion  

In the modified Lade criterion developed by Ewy[10], Doing all the modifica-

tions and defining appropriate stress invariants the following failure criterion was 

obtained by Ewy: 
 

η+= 27/)( '
3
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                                            (24) 
Where 
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whereS and η are material constants. The parameter S is related to the co-

hesion of the rock, while the parameter η represents the internal friction. These 

parameters can be derived directly from the Mohr–Coulomb cohesion 0S and inter-

nal friction angleϕ . 

 3. Least Mean Standard Deviation Misfits 

 This factor is one of the most important in Statistic concepts. we can use this 
factor for comparison of criteria[11].The least mean standard deviation misfit 

within this study is calculated as follows: Let m  be the number of test series 

(i.e., tests with identical ( 3σ ), n  be the number of data points per series, and 

i and j  the indices for test series and data point per series, respectively. Then, 

the standard deviation of a failure criterion in test series i  is as Eq(27): 

∑ −=
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j
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s 2
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1 σσ

                                  (27)     

where 1,
test

jσ is the tested maximum stress at failure for data point j  and 1,
calc

jσ is 

the calculated one. Finally the mean standard deviation misfit is calculated as the 

arithmetic mean of all calculated standard deviations for a specific rock type: 
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 4. Strength Data 

 The five rock types investigated were amphibolite from the KTB site, Dunham 
dolomite, Solenhofen limestone, Shirahama sandstone and Yuubari shale. The 

polyaxial data of these rocks were obtained from published works [1],[2]. 

 5. Result 

 In this part we want to calculate and gather values of misfits in past works. 
The mean standard deviation misfit is a scalar indicator of how precisely a failure 

criterion can predict rock failure. An ideal criterion in an ideal test environment 
would yield no misfit. Generally, the higher the precision of a criterion, the lower 

the resulting misfit. With the help of the calculated misfits, the merits of non-linear 
and intermediate principal stress dependent failure criteria are now analyzed using 

direct comparisons. Table 1 and figure 1 show value misfits values for 5 rock types 

clearly. 
Table 1. 

 

criteria Rock 
Dunham 
dolomite 

Solenhofenlimeston Shiahamasandston 
Yuubari 
shale 

KTB 
amphibolite 

MC 56 37 11 13 113 

Mogi(1967) 42.1 29.8 13.2 10.3 95.2 

Mogi(1971) 27.9 19.4 14.1 11.5 112.6 

Original HB 56.2 37.4 8.7 13 89.9 

HB(2002) 56 37 9 13 89 

HBMN 21 21 7 9 64 

ML 27 23 13 13 90 

MW 27 25 12 12 76 

DP 51.6 35.9 28.3 21 161.54 
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Figure. 6. Least mean standard deviation misfit for 5 rock types (MPa). 

 6. Summary and Conclusions 

 A comparison of these misfits revealed the enhancements that are possible in 

defining rock failure criteria as non-linear in qp −  space and dependent on inter-
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mediate principal stress. The new HBMN criterion which incorporates both of these 
features in one failure criterion consequently gave the overall least misfit in this 

study, original HB and HB(2002) have close misfits. The HB criterion is curved, 
whereas the MC criterion is linear. Comparing the misfits of the MC to the misfits of 

the HB criterion shows that the non-linear criterion always yields equal or less de-

viation from the test data. failure criteria MC,HB, Mogi(1971) and HBMN of have 

identical shapes in the qp − plane and differ only in their deviatoric shape, a clear 
reduction of the misfit can be seen when the intermediate principal stress is con-

sidered in the failure criterion. Generally, the shape of the HBMN criterion is closer 
to experimentally observed rock failure behavior than the shape of the Mogi crite-

rion. The criterion with the overall least misfit in the current benchmark test is the 

HBMN criterion. 
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