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Abstract – Goggle and other list-based web 

services like Yahoo, Twitter and Facebook present their 

n-item results in m pages, where m 1. The list can be 

represented as a path Pn(V, E) of order n and size n – 1, 

where Pn is particularly a sequence of n distinct nodes 

v0, v1, ..., vn–1  V and (n – 1) links (0, 1), (1, 2), ..., (n–

2, n–1)  E. When users are not satisfied with the first 

few nodes, they will conduct a walk W, often with jumps, 

that goes back and forth along Pn until they find the kth 

node, 0 k < n, that satisfies their search. The simple 

walk can be modeled as a sequence of non-distinct 

nodes in Pn, but modeling it with jumps is difficult 

because there are no links in Pn to allow the jumps 

between two non-adjacent nodes. To model this user 

behavior, the path is alternatively modeled as a 

sequence of m (m/n–1)-power of Pm/n's separated by 

P2's, which is termed here as a path with jumps Jm,n. 

With this new representation for the list, W can be 

modeled as a simple walk over Jm,n. 

In reality, the final walk W is an evolution of the 

time-progressed s sub-walks W(0), W(1), ..., W(s–1), where 

W(t) is a walk that was developed up to time t <s. This 

means that W(q)  W(r) or W(q) ⊏ W(r), q < r, where the 

symbols  and ⊏ represent the subset and prefix 

relations, respectively. These relations are true when 

Jm,n is static at best or under steady state at worst. 

However, Jm,n is likewise dynamic. In this paper, a path 

with jumps as a special graph is introduced, the 

analysis of its dynamics is presented, and its possible 

application to modeling user behavior in most popular 

web services is discussed. 

Keywords – paths, walks, jumps, user-behavior 

modeling, web services 

I. INTRODUCTION 

The start of the new millennium has seen the 

proliferation of various online services as a result of the 

ever-improving information and communication 

technologies (ICT). In fact, one among the many 

products of the so called ICT-boom is the Internet, 

which became in recent years a seemingly ubiquitous 

yet pervasive in the lives of humans who use it. 

Humans, in their natural tendency to be with fellow 

humans, constantly strive to be connected with each 

other by defying their physical spatial differences 

through ICT. Examples of online services that have 

gained global popularity, among many others, are 

Google
®
 (www.google.com), Yahoo!

®
 

(www.yahoo.com), Facebook
®
 (www.facebook.com), 

and Twitter
®
 (www.twitter.com). These services provide 

the Internet users a list of information that, through a 

computer program, is either “pulled” by the users from 

the providers or “pushed” automatically by the 

providers to the users. Pulled information means that 

the users initiate the request for information from the 

providers, while pushed information means that the 

providers send the information without the explicit 

initiation from the users. 

In cases of Google and Yahoo!, the user-pulled 

output is a list of items that the providers thought as 

relevant suggestions to the users' requests for 

information. In cases of Facebook and Twitter, the 

provider-pushed output is a list of posts of other users 

presented in a non-increasing chronological order. In 

any of these services, the list can be intuitively seen as a 

“graph” (see Definition 1), while the adjacencies 

between any two items in the list, for all items, is 

represented as a 0-1 matrix called the adjacency matrix 

(see Definition 2). 
 

Definition 1. A graph G(V,E) of order n and size 

m is composed of a set of n nodes V  = {v0, v1, 

…, vn–1} and a set of m links E = {(j, k)| vj, vk  

V} that define the adjacency of any two nodes in 

V [1]. 
 

Definition 2. The adjacency matrix of a graph G 

of order n is a 0-1 matrix A whose (j, k)th  

element Aj,k is 0 if nodes vj and vk are not adjacent 

to each other (i.e., there does not exist a link that 

connects them), and Aj,k is 1 if nodes vj and vk are 

adjacent. For an undirected G, m = ½ jk Aj,k, 

while for a directed G, m =  jk Aj,k [1]. 

In this paper, the nodes were treated as the items in 

the list, while the links represent the adjacency of the 

nodes. The n-item result is usually presented as a non-

increasing order of relevance to the pulled or pushed 

information. Thus, in the graph representation of the 

list, v0 is the first item touted to be the one with the 
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highest relevance from among the n items. This is 

followed by v1 with the second highest relevance, and 

so on up to vn–1 which represents the item with the 

lowest relevance. The adjacency between the jth and the 

(j+1)th items are connected by the link  (j, j+1), 0  j 

< n–1. In an example Google search result for the query 

“paths with jumps” shown in Figure 1a, n=5,320,000 , 

m=10 and v0 is presented as the first item in the list. 

Notice that in the list, the first and the fourth items may 

be treated by human users as the same since they refer 

to the same information (i.e., lattice paths with an 

infinite set of jumps). For the computer, however, they 

are different since they have different uniform resource 

locators (i.e., www.fpsac.org and lipn.univ-paris13.fr) 

Figure 1b shows the corresponding graph representation 

of the list, with nodes v0, v1, …, vn –1 that represent the 

items in the list and links (0, 1), (1, 2), …, (n–3, n–2) 

that provide adjacency between the nodes. 
 

 
(a) A Google list of items from a user-pulled query. 

 
(b) The Path P5,320,000. 

Figure 1. (a) An example list of items returned by Google from an information pulled by 

a user who queried for the topic “paths with jumps.” In this example, n=5,320,000 while 

(not shown) m=10. (b) The corresponding graph representation of the list of items in (a). 
 

In the graph representation of a list such as the one 

shown in Figure 1b, the nodes v0 and v1 are connected 

by the link (0, 1), the nodes v1 and v2 by the link (1, 2), 

and so on up to nodes vn–2 and vn–1 connected by the link 

(n–3, n–2). In general, any adjacent nodes vj and vj+1 are 

connected by the undirected link (j, j+1). This kind of 

graph is unique compared to other graphs because of the 

simplicity of the topology it induces. Such a special 

graph is called a “path” defined as follows: 
 

Definition 3. A path Pn of order n is a sequence 

of n distinct nodes v0, v1, …, vn–1 connected by a 

sequence of (n–1) links (0 ,1), (1, 2), …, (n–3, n–

2) such that any adjacent nodes vj and vj+1 are 

connected by the link (j, j+1), 0  j < n–1 [1]. 
 

The behavior of users upon encountering a list of 

information is to scan the presented items to quickly 

look for those that will satisfy their search criteria 

starting at v0. Usually, the users are already satisfied 

with the first few items in the list. However, for users 

who have posted their search queries incorrectly, they 

will search deeper into the list, exhibiting a behavior 

that usually combines an item-by-item scan with jumps 

that go forward and backward into the list. An example 

user action with forward and backward jumps is the list 

of items whose visualization is shown in Figure 2b. In 

this example, the original path is P5 (i.e., path of order 

n=5) and the user action over P5 starting at v0 and 

ending at v0 is a list of visited nodes (v0, v1, v3, v2, v4, v3, 

v0). Note that in the example, v0 and v3 are visited twice 

and the order of visit does not obey the adjacency 

imposed by the original path P5 shown in Figure 2a. 

Such a behavior may be represented as a special graph 

called a “walk” defined as follows: 
 

Definition 4. A walk Wn of order n is composed 

of n distinct nodes and is a sequence of 

alternating nodes and links, beginning and ending 

with a node, where each node vj is incident to a 

link (i, j) that precedes it and a link (j, k) that 

follows it in the sequence, and where the nodes vj 

and vk that respectively precede and follow a link 

(j, k) are the end nodes of that link [1]. 
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Figure 2. (a) An example path with n=5 called P5. (b) A possible user behavior on P5 

represented as a graph with numbered arrows. The arrow represents the direction of the 

user's visit while the number on an arrow represent the order of the visit. 

 

The graph shown in Figure 2b may be seen as a walk 

of order n=5 (alternatively W5). It can be seen here that 

W5 has more links than P5, and the links may jump from 

one node to a non-adjacent node in the original P5. For 

example, the respective nodes in the pairs v1 and v3, v2 

and v4, and v3 and v0 were made adjacent by the jumps 

in W5, but they are not adjacent in P5. In general, Wn 

may be generated by recording the nodes traversed by a 

user over Pn. However, the jumps in Wn may not be 

easily modeled with Pn because Pn lacks the links to 

make the user behavior modeling possible. Thus, there 

is a need to define a “path with jumps” to allow the 

jumping behavior. Additionally, a new definition is 

proposed here as follows: 

Definition 5. A walk on a path WPn of order n is 

a walk that obey the node adjacency of a path Pn.  

In this paper, a new graph topology based on paths is 

proposed. This graph topology is termed “path with 

jumps,” denoted as Jn, specifically created to allow a 

simple walk on a path that can model user behaviors. In 

reality, the user's walk over Jn is a time-progressed s 

sub-walks W(0), W(1), …, W(s–1), where W(t) is a walk that 

was developed up to time t s. If the nodes and links in 

the W(i)'s are seen as elements of a set, then this means 

that W(i–1)  W(i), 0 < i s–1 (where the set relational 

symbol  means the set on the left is a subset of the set 

on the right). Alternatively, if the sequence of nodes and 

links in the W(i)'s are seen as characters in a string, then 

W(i–1) ⊏  W(i), 0 < i s–1 (where the string relational 

symbol ⊏  means the string on the left is a prefix of the 

string on the right). Notice here that in general, the final 

walk W(s–1) is both a superset and superstring of all 

previous walks W(j) (i.e., W(s–1)  W(j) and W(s–1) ⊐ W(j), 

0 < j s–2). 

The subset and prefix relations of any W(j)'s to any 

W(k)'s, j < k, are true when the underlying Jn topology is 

non-changing (or static) at best, or under steady state at 

the worst. In reality, however, Jn is likewise time-

progressed (i.e., dynamic). Thus, this paper also 

presents the inherent complexities of a dynamic Jn, 

where the jumps are preserved. Finally, this paper 

discusses the utility of such a graph for modeling user 

behaviors in example online services such as Google 

and Facebook. 

II. THEORETICAL PRINCIPLES 

This section presents the rudimentary graph 

principles that were used to support the definition of the 

proposed path with jumps. These principles are node 

distance, power of paths, step paths, line paths, path 

complement, and jump of a path, each discussed in its 

own subsection. 

A. Node Distance 

Given an undirected graph G(V, E), the distance di,j 

between any pair of nodes vi and vj that are both in V is 

the minimum number of links that one can go through 

when visiting the nodes from vi to vj. If vi and vj are 

adjacent, then di,j = 1. If vi and vj are non-adjacent, but 

the pairs vi and vk and vk and vj are, then one can go 

from vi to vj through vk and di,j = 2 (Figure 3a). If one is 

to take the distances between all possible node pairs in 

G, then the maximum distance is called the diameter of 

G [2], denoted as G). Thus, Pn) is Pn's size n–1 

(Figure 3b).  

B. Power of Paths 

In a branch of mathematics called graph theory, the 

kth power of an undirected graph G, denoted as G
k
, is 

another graph that has the same set of nodes V, but the 

difference is that in G
k
, two nodes vi and vj are adjacent 

when their distance di,j in the original graph G is at most 

k [3]. In fact, the powers of a graph G has the same 

nomenclature as that of the exponentiation of numbers 
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such that G
2
 is called the “square of G”, G

3
 is called the 

“cube of G,” and so on. This general principle is used to 

define the power of paths as follows: 

 

Definition 6. The kth power of Pn, denoted as 

(Pn)
k
, is a graph with V and that connects all pairs 

of nodes vi and vj, where di,j  k.  

 

Figure 3c shows the kth powers of P5, where 2  k  4. 

Notice here that one can iteratively build (P5)
4
 from 

(P5)
3
, (P5)

3
 from (P5)

2
, and (P5)

2
 from P5. Notice further 

that (P5)
4
 is a complete graph of order 5, denoted in the 

literature as K5 [1]. In general, any (Pn)
k
 can iteratively 

be built from (Pn)
k–1

, and that (Pn)
n–1

 is actually Kn. 

Since there will be no other distance greater than Pn), 

then it is assumed that (Pn)
k
 for all k > Pn) is 

undefined. 

C. Step of Paths 

The kth step of a path Pn, denoted as (Pn)
[k]

, is a 

graph that has the same V as Pn, but its link set E is the 

link set of (Pn)
k
 less the link set of Pn (Equation 1). 

Figure 3d shows the kth steps of P5, for all 2  k  4. 

Notice that the 2-step of P5 resulted in two separate 

paths P2 with nodes v1 and v3, and P3 with nodes v0, v2, 

and v4. It is easy to see that in general, a 2-step of Pn 

results in Pn/2 with odd-numbered nodes from Pn and 

Pn/2 with even-numbered nodes from Pn. A k-step of Pn 

for k > 2 results in a connected graph with cycles. For 

example, (P5)
[3]

 in Figure 3c is a connected graph with 

cycles. 

E((Pn)
[k]

) = ( E((Pn)
k
) ∩ E(Pn) )'  

D. Line Paths 

The line path    (Pn) of a path Pn is another path that 

represents the adjacencies between the links of Pn [4]. It 

is easy to see that   (Pn) is of order n – 1, and that the 

line of   (Pn), denoted as    (   (Pn)) or its shorter 

alternate   
2
(Pn), is a path Pn–2 whose node set is the 

same as that of Pn less the two endpoints v0 and vn–1 of 

Pn. In general,   
k
(Pn) is Pn–k, where k < n; if k is odd 

then  V (  
k
(Pn))  E(Pn), while if k is even then 

V(ℒ k
(Pn)) = ( V(Pn) ∩ {v0, v1, ..., vk/2–1, ..., vn–k/2, ..., vn–2, 

vn–1} )', which is V(Pn) less the k end nodes of Pn. Figure 

3e shows the corresponding line path of P5.  

E. Path Complement 
The complement of a path Pn, denoted as (Pn)

c
, is a 

graph such that the node set V of Pn is also the node set 

of (Pn)
c
 but the link set of (Pn)

c
 is the link set of Kn less 

the link set of Pn. [1]. It is easy to see that (Pn)
c
 is 

nothing but (Pn)
[n–1]

. Figure 3d also shows the path 

complement of P5. 

F. Jump of a Path 

The jump of a path Pn, denoted as J(Pn), is a 

graph that is (    (Pn))
c
 [5]. Note here that the node 

set of J(Pn) is defined over the link set of Pn. 

Figure 3f shows J(P5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. (a) Node distance di,j between two nodes vi 

and vj with node vk between them. An example path P5 

showing: (b) its diameter P5)=4; (c) its three powers, 

namely (P5)
2
, (P5)

3
, and (P5)

4
; (d) its three steps (P5)

[2]
, 

(P5)
[3]

, and (P5)
[4]

; (e) its line ℒ(P5); and (f) its jump 

J(P5). Notice that K5 = (P5)
4
 and (P5)

c
 = (P5)

[4]
. 

 

III. PATHS WITH JUMPS 

In this section, the development of a new graph 

called path with jumps is discussed. Prior to its 

definition, two new graph definitions based on Pn are 

proposed. These graphs are respectively called the 

jumpsteps of a path, and the combined jumpsteps of a 

path, defined in their own subsections. 

A. The Jumpsteps of a Path 

A new proposed graph called the kth jumpstep of a 

path Pn  is defined as follows: 

 

Definition 7. The kth jumpstep of Pn, denoted as 

JSk(Pn), is a graph with the same node set V as Pn 

but its link set is defined as E(JSk(Pn)) = (E((Pn)
k
) 

∩ E((Pn)
k–1

) )'. 
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Figure 4a shows the kth jumpsteps of P5, for all 2  k 

 4. It is easy to see that alternatively, E(JSk(Pn)) = ( 

E((Pn)
[k]

) ∩ E((Pn)
[k–1]

) )'. This is trivial because the 

difference between E((Pn)
k
) and E((Pn)

[k]
) is E(Pn). The 

2nd jumpstep of Pn is also (Pn)
[2]

, which provide the 

basis for JSk(Pn). Just like (Pn)
[2]

, JS2(Pn) results into 

two disjoint Pn/2 and Pn/2. JS3(Pn) results into three 

disjoints paths namely two Pn/3's and one Pn/3. In 

general, JSk(Pn) results into k disjoint Pn/k's. In an 

extreme case, JSn–1(Pn) results into one P2 with nodes v0 

and vn–1 connected to each other, and (k – 1) P1's. 

B. The Combined Jumpsteps of a Path 

Each of the individual jumpsteps of any Pn may be 

combined either to recreate the other graphs discussed 

above or to form a new graph. For example, the 

combined 2nd and 3rd jumpsteps of Pn is a recreation of 

the 3rd-step of Pn, while the combined 2nd and 4th 

jumpsteps of Pn is a whole new graph. Intuitively, the 

combined 2nd, 3rd, and up to (n–1)th jumpsteps of Pn is 

(Pn)
[n–1]

. Throughout this paper, the combined jumpsteps 

of Pn is denoted as JS{B}(Pn), where B is a non-negative 

integer whose binary representation is n-long, wherein 

its least significant bit is always 0 and its kth bit is 1 if 

JSk(Pn) is included in the combination, 1 < k  n. For 

example, if the  2nd and 4th jumpsteps of Pn is to be 

combined, then the 2nd and 4th bits of the n-long binary 

representation of B is set to 1, while the other bits are 

set to zero resulting to 10102 which is 1010. The 

combined jumpsteps is denoted  JS{10}(Pn). If for 

example the 4th and 5th jumpsteps are to be combined, 

then the combination is denoted JS{24}(Pn). Figure 4b 

shows JS{10}(P6) and JS{24}(P6) as examples. 

 

 

 

Figure 4. (a) The kth jumpsteps of P5: JS2(P5), JS3(P5), and JS4(P5); and (b) the combined 

2nd and 4th jumpsteps of P6, and 4th and 5th jumpsteps of P6. 

C. Paths with Jumps 

The new graph presented here, called a path with 

jumps, is arguably different from J(Pn). For one, J(Pn)'s 

node set is defined over E(Pn), and the path with jumps 

is by no means bigger in degree and in size than J(Pn). 

A path with jumps is defined as follows: 

Definition 8. A path of order n with m 

jumps, denoted as Jn,m,k,d, is a sequence of m 

Pk-separated JS{B}(Pd)'s, where d = n/m – (m 

– 1)k/2 + 1 and k  2.  

 

 

To visualize this new graph, Figure 5a shows a path of 

order n=8 with m=2 jumps. Here k=2, so the jump 

separator is P2, while the two jumps JS{6}(P4) have 4 

nodes and are both K4. Note that P2 shares its only two 

nodes with both JS{6}(P4)'s. This example is denoted 

J8,2,2,4 and is also called a dumbbell graph in graph 

theory [6]. One may see that Jn,m,k,d is a generalization of 

the dumbbell graph for even m > 2. This is because for 

an even m > 2, one can see m/2 dumbbell graphs that 

are separated by Pk's (Figure 5b). 
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Figure 5. (a) An example path with jumps J8,2,2,4, and (b) another example J19,4,3,4 

showing two dumbbell graphs joined by a P3, where the dumbbell graphs themselves 

are two P3-separated JS{2}(P4)'s. Note that a P3 shares its two end nodes with the two 

JS{2}(P4)'s. 

IV. TOPOLOGY-PRESERVING DYNAMIC PATH 

WITH JUMPS 

Figure 6a shows a snapshot of the 7th page of a 

Google query result for the information pull “Katy 

Perry.” Note that Katy Perry is the world's most popular 

celebrity based on the number of Twitter followers [7]. 

It is easy to infer from the figure that the list has 

n=329,000,000. The default setting for a Google search 

has each page lists m=10 items. The snapshot is already 

(partly) annotated with nodes indexed from 141 through 

149. The 329M-item Google list can be modeled as 

Jn,m,2,10 over which will allow a simple walk by users.  

 

 

Figure 6b, on the other hand, shows the snapshot of 

the same 7th page after some time with a noticeable 

change for item 145. Although not shown in the figure, 

the previous item 145 was moved as item 146. This 

means that the new item 145 was just inserted to 

displace the old item 145. This also means that the 

previous nth item is now the (n + 1)th item, for all n > 

145. Thus, the model is now Jn+1,m,2,10 but the topology 

is still the same, particularly for a very large n. In 

general, an insertion of a node into, a deletion of a node 

from, or a movement of a node within the path makes 

the path with jumps dynamic, yet its topology is 

preserved.

 
(a)  

 
(b) 

Figure 6. (a) An example 7th page of a list of items returned by Google from an 

information pulled by a user who queried for the topic “Katy Perry.” (b) The same 

example 7th page of the “Katy Perry” list but with an inserted item. 
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Since n is very large and m is very small, the generated path in real-world modeling results in a very long path. 

To simplify the visualization, the graphical representation used in power graph analysis in the domain of 

computational biology is utilized here [8]. The diagrammatic representation of the three primitive motifs, the 

biclique, the clique, and the star, used in power graph analysis is shown in Figure 7(a). Notice that the biclique is 

nothing but a complete bipartite graph. The power graph representation of Jn,m,2,10, where each JS{B}(P10) is a K10, is 

shown in Figure 7(b). 

 

(a)  

 

(b)  

Figure 7. (a) The primitive motifs of a power graph analysis; and (b) The power graph 

representation of Jn,m,2,10, where each JS{B}(P10) is a K10., before and after a 

node insertion or a node deletion. 

Two questions need to be asked when analyzing the 

dynamics of Jn,m,k,d: (1) what is the cost of node 

insertion?; and (b) what is the cost of node deletion? 

Either change can affect the nodes in Pk. In cases of k=2 

and node insertion, for example, the left end node of 

any P2 along the path with jumps, formerly a node of 

the clique Kd at the left, will become the right end node 

of P2 after insertion and become a node of the clique at 

the right. The node moves to the right, severs d – 1 links 

from the left Kd, and connects to d – 1 links to its right. 

In case of deletion, the reverse happens: The node 

moves to the left, severs d – 1 links from the right Kd, 

and connects to d – 1 links to its left. 

The worst case will happen if the start node v0 gets 

deleted or replaced by a new node. Since there are (m – 

1) P2's in the whole Jn,m,k,d, then the cost C of the change 

(either node insertion or node deletion) is (using some 

equalities defined in Definition 8):  

C = 2 (m – 1)(d – 1)

(m – 1)(n/m – (m – 1)k/2) 

O(n) (2) 

V. APPLICATIONS 

The utility of  Jn,m,k,d to provide a graph for walking 

on a path as an easy model of a user's behavior 

traversing the list of items in the Google search result is 

underscored here. In fact, the development of the path 

with jumps was aided by the Google example. In reality, 

however, the dynamism in the Google example only 

takes into consideration those changes with node 

insertion. Examples of dynamic paths with jumps to 

model the results of other web services, which not only 

include node insertion but node deletion and node 

movement as well, are those of The Pirate Bay and 

Facebook. Other web services, of course, can also be 

modeled but these two (aside from Google) were 

selected because of their popularity among the Internet 

users. 

A. Node Deletions in TPB 

The Pirate Bay (www.thepiratebay.se), popularly 

known as TPB, is a website the provides magnet links 

[9] to torrent files used in a content distribution network 



Asia Pacific Journal of Education, Arts and Sciences  |  Vol. 1, No. 2  |  May 2014 
_________________________________________________________________________________________________________ 

68 
P-ISSN 2362 – 8022 | E-ISSN 2362 – 8030 | www.apjeas.apjmr.com 

called the BitTorrent network [10]. When a user pulls 

information from this service via a query for a torrent 

file, the service returns a list of n items in m pages, 

similar to how Google returns the information pull. 

However, aside from item insertion, the dynamic list 

also experiences item deletion. Since Google only 

experiences node insertion, then those nodes that are 

located to the left of the insertion will have indeces that 

are higher than the previous indeces before the 

insertion. In constrast to Google, the node index of the 

path with jumps representation of the list for TPB may 

either go up and down. The dynamic of TPB is much 

more difficult to model because of the unpredictability 

of when a node will be inserted into or deleted from the 

list. 

B. Node Movements in FB 

Facebook (FB) experiences both node insertion and 

node movement in its path with jumps representation of 

the list of posts. One of the most complained difficulty 

in traversing this list is the automatic movement of the 

post to the top of the list while the post is being read. 

This provides frustrations to users who would scroll to 

the top again just to continue reading the moved post. 

Modeling movement of items with the list is rather easy 

because a node movement along the path is not a basic 

change compared to node insertion and deletion. Node 

insertion and deletion are both fundamental changes. 

Node movement can be modeled as a simultaneous 

deletion of a node vk with an insertion of the same node 

vk at the start of the path. 

VI. SUMMARY AND CONCLUSION 

This paper introduces a new graph definition called 

path with jumps, denoted as Jn,m,k,d. This new graph 

provides an easy modeling for user's behavior utilizing 

web services that provide a list of items that are either 

pulled by the user or pushed by the service to the users. 

The dynamics of Jn,m,k,d was discussed, which include 

node insertion, node deletion, and node movement. 

Node deletion usually happens in the dynamic list of 

Google. Node insertion and deletion happen in the 

dynamic list of torrent files in TPB, while node 

insertion and node movement happen in the dynamic 

list of posts in FB. Both node insertion and deletion 

were considered fundamental changes in  Jn,m,k,d, while 

node movement is not a fundamental change. However, 

node movement can be modeled as a concurrent node 

deletion and node insertion at the top of the list. 

Whether the change is node insertion or deletion, the 

cost of dynamism in Jn,m,k,d is always O(n), where n is 

the number of items in the list. 

The following were contributed in this work: (1) 

defined walk on a path (Definition 5); (2) proposed a 

new graph called the the kth jumpstep of a path 

(Definition 7); (3) proposed a new graph called the 

combined jumpsteps of a path; (4) proposed a new 

graph called path with jumps (Definition 8); (5) 

discussed the topology-preserving dynamic path with 

jumps (Section IV); and (6) provided example web 

services whose users' behavior may be modeled by 

these proposed graphs. 
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