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Abstract

The spin resolved conductance in a quantum ring with one input and two output leads in the
presence of the Rashba spin-orbit interaction (RSOI) and the Dresselhaus spin-orbit interaction
(DSOI) has been studied. The conditions needed for perfect spin polarization including the value of
the Rashba and Dresselhaus coupling strength and the values of the electron energy are investigated
coupled strongly with the leads. Our calculations are performed using the non-equilibrium Green’s
function method and Griffith boundary condition in the framework of the tight binding model. It is
shown that the spin-polarized transport and polarizability can be controlled by the RSOI and/or
DSOI in the effects of applied magnetic field treading the ring, but also on the bias applied between
the input and output leads. Results of this paper can be used in designing perfect spin inverters.
The effects of relative positions of the drain electrodes on the perfect spin polarization are also
investigated.
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Introduction

During last few decades, there has been a lot of efforts, both theoretically an experimentally,
to make electronic devices as small as possible. After invention of the spin field transistor in
designing a spin field effect transistor by Datta and Das [1], there has been a growing interest in a
new branch of physics named as Spintronics or spin-based electronics [2—3]. Unlike electronic
devices which are based on charge of the electrons, Spintronics devices are based on spin of the
electrons. One of major goals of Spintronics is generation of spin-polarized currents from an
unpolarized charge current and their appropriate manipulation in a controllable environment. An
effective way to attain this goal is due to interaction between the spin of the electron and orbital
degree of freedom and magnetic properties. A good example to study such kind of effects is a
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mesoscopic system such as quantum rings formed at the interface of semiconductor hetero
junction structure, typically have size scales between the nanometer and few micrometers. In these
systems have dimensions smaller or comparable to the phase coherent length and electrons have
high mobility and long spin coherent time, so they support several quantum interference effects
which can be controlled by external electric and magnetic fields. In a nutshell, mesoscopic rings
provide a good platform for Spintronics application. In these mesoscopic systems, there are two
different ways of creating and changing spin polarization: Zeeman interaction and spin orbit
interaction (SOI) [4]. These studies are focused on the role of spin orbit interaction (SOI) in
nonometric device patterned in a two-dimensional electrons gas (2DEG). In general, there are two
different source of electric field causing SOI in solid state systems: impurities in the conduction
layer and lack of inversion symmetry. The SOI due to the impurities is usually very weak in
epitaxially grown semiconductor quantum wells and can be neglected in practice. Therefore,
semiconductor mesoscopic rings are ideal candidates for investigating SOI effects, so they are
promising building blocks for designing nanodevices in electronic and spintronic engineering and
have promising applications in design of spin-based digital logic devices.

During the past few years great efforts have been devoted to overcome the fundamental
obstacles in the realization of spintronic devices, such as semiconductor mesoscopic ring for
investigating SOI effects and the filtering of pure spin-polarization current. There are two types of
SOIs, which are relevant for semiconductor spintronics. In 1995, Rashba first introduced the SO
coupling [5], this kind of SOI is caused by the structure inversion asymmetry of a 2-DEG system.
The strength of RSOI depends on the crystal composition in the quantum well and it is the largest for
narrow gap semiconductor which makes it often an excellent approximation to neglect the
contribution due to impurities and the other mechanism (DSOI). On the other hand, SOI created by
structural inversion asymmetry (SIA) electrons moving through a lattice and the structure of which
dose did not have inversion symmetry, feels an asymmetric crystal potential and the resulting spin-
splitting of the conduction band was demonstrated analytically by Dresselhaus. Therefore, this kind
of SOI which exist in zinc blended structure and due to SIA is known as Dresselhaus SO (DSOI) [6].
Therefore, the competition between these SOI mechanisms leads, in general, to complex behavior of
the spin dynamics. In the last few years, the persistent current flowing in normal metal rings
threaded by magnetic flux without leads was also considered by Loss and Goldbart in 1991 [7].
Nitta et al. proposed spin interference devices in 2003. This device was a one-dimensional ring
connected with two conductor leads [8]. In 2008 Kalman et al. introduced another one-
dimensional Spintronic with three-terminal quantum ring [9]. The effects of Rashba spin—orbit
and magnetic flux on charge and spin currents in a quantum ring with three leads, has been
investigated using the S-matrix method by Shelykh et al [10], and spin splitting has been
investigated theoretically in a one dimensional quantum ring with three leads in the presence of the
Rashba spin—orbit interaction by Foldi et al., using the wave guide theory [11]. Recently, logical
gate responses of mesoscopic rings connected symmetrically to two external leads in the presence
of the Aharonov-Bohm (AB) magnetic flux and external gate voltages have been studied; however,
the results are not suitable for spintronic circuits since the total and not spin resolved conductance
has been investigated. Also, AB flux penetrated the ring plays a crucial role for whole logic gate
operations [12].

In this paper, we use the Landauer framework of ballistic transport and demonstrate that the
spin perfect polarized current can be controlled by the Rashba and Dresselhaus spin-orbit
interaction and the magnetic flux ¢ [Aharonov-Bohm flux (AB)]. This magnetic flux add spin-
dependent geometric phases to the electron wave function in the ring and lead to the so-called
Aharonov-Casher (AC) effect [13], which is the relativistic cousin of the AB effect. In the AB effect
[14], the electron wave function acquires a geometric phase after traveling the ring threaded by an
AB magnetic flux. P Spin sensitive quantum interferences under the influence of the AB and AC
effects make the quantum rings to have a practical significance for designing nano-electromagnetic
spin devices, such as spin switches, detectors, spin transistors, filters [15—20], and scalable devices
for quantum information processing. So, the scattering theory has been used to calculate the spin
transmission. In this paper, both of the RSOI and DSOI exist simultaneously and behave like in-
plane momentum-dependent effective magnetic fields. So, we consider a mesoscopic ring with
three-leads formed in terms of both the Rashba and the Dresselhaus SOIs, the AB flux, and the
electron energy, at a two-dimensional electrons gas, and try to present the full spin polarization
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criterion for it. It is shown that this system can act as a perfect spin filter only in the presence of
both of RSOI and DSOI. We calculated spin depended transmission coefficients analytically and
the effects of coupling between the leads and rings on spin transport properties are taken into
account. The scheme of the paper is as follows. In Sec. II, a theoretical model is presented.
The eigenvalue problem in the presence of the Rashba and Dresselhaus spin—orbit interaction is
solved analytically and the spin-dependent transmission coefficients are obtained. In Sec. III, the
numerical results based on the equations derived in Sec. II are presented and discussed.
The conditions that result in perfect spin polarization are determined in detail and the effects of
each system parameter such as the electron energy and the magnetic flux on the spin polarization
are investigated. Finally, a summary is given in Sec. IV.

Theoretical Model

We consider a mesoscopic ring with three leads as shown in Fig. 1. The system is mapped
onto a one-dimensional virtual lattice. The left lead acts a source (S) and the two right leads act as
drains (d; and d.). In the tight-binding model, an electron can jump from one site to the nearest
neighbor sites with a hopping energy matrix [t].

Fig. 1: A schematic view of a three-terminal semiconductor mesoscopic ring

The total Hamiltonian for the system can be written as:
H:EwHﬂ+Echq
where, H, with p = ¢, s, d;, d, is the Hamiltonian of isolated ring, source leaded, up drain lead, and
down lead, respectively, it is the sum of contrib. form the ring, H., and H,; with g = =5,d;,d; is the

Hamiltonian due to the coupling between the ring and the source lead, up drain lead, and down
drain lead, respectively. In this paper, we consider source and drains electrodes consist of the same
materials.

In the absence of the electron-electron and electron-phonon interaction, H, and H__, can be

written as follow:
N

H|5= E ] l{EiClTGE.C-l—C.lT [t]EExCH.l_ Ci-r_'_l[t]TE_ixCiJ
=

Hy, = —th( C-lTGDCHl + C-Liﬂuct} p=-s,dy,d;

L
H.q = —toClopCi+huc. with(P,k) = (1,15), (N + 1,1d), (2N + 1,1d,)
where 7, is the 2 x 2 identity matrix in the spin space, Anderson-like on site disorder energy strength
£;. In the two component operator c: = (c;q‘, cﬂ}, c;;{c:ﬂ] is the creation operator (annihilates) of an
electron on the site i with spin-state. The RSOI and DSOI strength t% and t2, respectively, and [t]
is a matrix 2 x 2, which is given by [21, 22]:

[t] = tog +i[tR cosp; — tPsin B;]o, + i[tR sin B; — tP cosBi]oy
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We consider 3N atomic sites on the ring (Fig. 1), ox and oy are the Pauli matrices. The Peierls
phase factor e** with (2"1,"3 W) 'ﬁj%describes the influence of the magnetic field in terms of the

magnetic flux @, threaded by the ring, and @5 = he /. is the flux quantum.

In, is periodic boundary condition imposed by 3N + 1 = 1. We assume source and drains
electrodes consist of the same materials. We consider linear transport regime conductance G of the
interferometer can be obtained using the Landauer conductance formula [23, 24]:

_E oF
G = R T’F"?’

where T, is the transmission probability of an electron across it can be expressed in terms of

- !
Green’s function and its coupling to the side-attached electrons by [25]: T,y = Tr [Ff G G! ],
where G, and G are respectively the retarded and advanced Green’s function. Here 'Y and

1",;7f describe the coupling of the source and drains (d = d; + d.). The coherent transport is then

calculated using the Landauer’s formula and the retarded Green’s function of the ring is computed
as:

Gc = (E+ - Hc _EPEPj_l

where E*is complex energy for one way to incorporate the boundary into the equation and self-
energy Ep describes the effect of the leads on the conductor of E?, with p = s,d,,d> being the self

energy of the source and drains electrodes. The %, calculated as X, t7 g,t,, where t, = —t,a,

and g, = — 1 r’t,., e'*o% where tp consists of ring-lead interaction and the g, is the surface Green’s

function of the electrodes and ko satisfies the relation E = —2t, cos(kya). Therefore, the
conductance of the ring is obtained as the Landauer equation.

Results and Discussion

We consider different conditions and several cases in numerical calculation that make our
system a perfect spin polarization. Before going into discussion, let us use first assign the values of
different parameters which are used for our numerical results. We will present results for a ring
described by N = 110 sites and in the strong coupling regime where the strong of ring-to-coupling,
t, is comparable to the hopping strength, t, in the system (we take t = 1 as the energy scale). We
suppose that the incoming electrons can be sum of spin-up and spin-down with equal amplitude
and the geometry leads is a symmetric geometry i.e. ¢; = @, = @5. Therefore, the geometry can be
defined as Tlr = T:L and TlL = T:T.

Firstly, we analyzed the transport as function of the electron Fermi energy and SO

interaction. Fig. 2 shows the spin-up and spin-down transmission probabilities as a function of the
electron Fermi energy for fixed non-vanishing values of RSOI (t* = 0.135) and the values of

DSOIs. In the presence of the half-integer values of DSOI (the first and last panel) there is a little
difference between spin-up and spin-down conductance. This is due to the SOI-induced phase shift
which leads to the complete destructive interference between outgoing beams coming from the
lower and upper out leads of the ring. We examined that this is also true for others values of DSOIs.
By increasing the strength of DSOI in Fig. 2, from top to the third panel, the degeneracy between
spin-up and spin-down transmission is removed and there will be a modulation in the changes
between spin-up and spin-down conductance. Therefore, the resulting spin polarization will
increase. By the third to last panel with increasing the strength DSOI, the amplitudes of spin-up
and spin-down transmission probability decrease and their degeneration increases. Therefore, by
increasing the strength of DSOI, the spin polarization in which this goes to zero.
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Also, we can see in third panel that perfect spin polarization occurs in values of t¥ = 0.225.
The maximums and minimums of T'and T'occurs at E=0 and E = —0.192 & 0.204,

respectively. In such point where TT =T+ =1 with filter spin in the absence of flux magnetic

through the ring and in zero conductance energy. There is not only one value of SOI strengths that
results perfect spin polarization. In order to obtain the aforementioned specific values of DSOI and
RSOI strength, we presented in Fig. 3, the contour map of spin polarization plotted in t*—¢" plane
for E = 0.01 [the first panel], E = 0.18 [the second panel] and E = 0.22 [the third panel]. It can
be observed that the system under consideration has nonzero spin polarization only when

difference between t® and t?is small.
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FIG. 2: Spm-up (solid curves) and spin-down (dashed curves) transmission probabilities versus the Fermi
energy for various values of . for fixed values t#=0.135.

The spin polarization oscillates quasi periodically as the strength of the RSOI and DSOI
increases, and the spin polarization occurs only in regions near the bisector of t*—tP plane, since the
Hamiltonian of the RSOI and DSOI are equivalent. In all the panels we observe perfect spin
polarization at specific values equal to (t*—tP), these specific values are (0.225; 0.14), (0.235; 0.13)
and (0.215; 0.17,) for all panels, respectively. In this case, as it can be seen from Fig. 3, the spin
polarization at E=0.22 greater area than other energy values. This increase is due to the increased
constructive interaction between the RSOI and DSOI in the amount of energy. The lower panels in
Fig. 3, show a close up of the upper panels in the area inside the black rectangle, and show that the
spin polarization reach unity at this specific values. Fig 3, also shows that all panels of a system
under consideration has non-zero spin polarization only when difference between t* and tis small.
This feature provides a possible way to detect the strength of the DSOI since the strength of the
RSOI can be tuned by the external electric fields and it is known that the spin polarization is an odd

function under exchanged of the SOISs strengths; i.e. P(t*t° E}=—P[t° t*,E]
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FIG. 3: (Color online) Contour plot of spin polarization in tP— t¥ plane for various values of E. The lower panels
show a close up of the middle panels in the area inside the black rectangular, where the perfect spin polarization
occurs.

In the absence of magnetic flux, the presence of both RSOI and DSOI is necessary in
order to obtain symmetric tree-terminal ring acts as a perfect spin selective device. However,
verifying this conclusion needs a spacious search in {t%, tP, E} parameter space. We search the
specific values of t® and t? for which perfect spin filtering conditions are established. In Fig. 4,
we show how the spin polarization varies with the strength of the RSOI and the electron
energy in presence of various values of DSOI strength. The RSOI behaves like an effective in-
plane momentum-dependent magnetic field. The fully spin polarized in incoming the lead will
be changed to the spin down in the outgoing lead (d,) at large strength SOIs. For tP=0 [first
panel], the maximums of spin polarization is 0.76 occur at t*=0.025 and same periodic values
of the Fermi energy. Therefore, for SOI strengths equal to 0.16, there are many regions other
than values of SOI strengths in E—t® or E—t” plane, in which the incoming electron with spin
state down and vice versa. In this case, the system acts as a filter spin. By increasing tP the
extremum peaks of the spin polarization shift to larger values of tR. At the special values
tP=0.16 (seventh panel), we have a unit spin polarization for t*=0.22 and some periodic values
of the Fermi energy. Lake of perfect spin polarization in these values can be interpreted as
follows. When a mesoscopic ring bridges asymmetrically tree breads, the original cylindrical
symmetric of the ring breaks due to the interplay between RSOI and DSOI which introduces a
periodic potential the ring and consequently leads to an anisotropic spin transport.

So far, we have studied perfect polarization for 1= ®2= 93=120" \yith different values
of Dresselhaus and Rashba constant. Now we see the other values of s, still with the
symmetric geometry, that lead to the perfect spin polarization. Fig. 5 shows the transmission
coefficient and spin polarization as function of the electron Fermi energy for various values of
?s . It can be seen from Fig. 5 that except for the case of #3 =90,120 | other values of : that
result into the perfect polarization, depend on the magnetic flux. In the first and second
panels for values ?3=90,120 the peak of spin polarization occurs at E=—0.156,0.276 and

E=-0.8,0.8 respectively. But in the other values of #s=180,270 perfect spin polarization
not exist for any of t® and tP. Therefore, to achieve perfect spin polarization in this value
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angels of leads d; and d., should applied magnetic flux AB (Aharonov—-Bohm phase) through
the ring. This is due to the magnetic flux-induced phase shift which leads to the complete
destructive interference between the outgoing beams coming from the lower and upper leads
of the ring in the spin-down channel. So, when a mesoscopic ring bridges asymmetrically
three leads, the original cylindrical symmetry of the ring breaks due to the interplay between
RSOI and DSOI which introduces a periodic potential along the ring and consequently leads
to an anisotropic spin transport [26], i.e., the conductance is sensitive to the positions of the
incoming and outgoing leads. Therefore, perfect spin polarization will not occur in the all of
the angle of leads in the ring asymmetrically coupled to the source.

$pin
Polarzation

10 08 07 05 03 H2 HLO0 01 03 05 06 08B 10

Energy

tR
FIG. 4: (Color online) Contour plot of spin polarization in E — t* plane for various values of DSOI
strength tP.
t’=0.435
tP=0.485
tR=0.135
tP=0.225
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tR=0.085
tP=0.115

t’=0.435
tP=0.485

FIG. 5: Transmission coefficient and spin polarization as function of the electron Fermi
energy for various values of ¥3=90,120,180,270 respectively.

Conclusion

We have investigated the spin transport for a quantum ring with three leads in the presence
of the Rashba and Dresselhaus spin—orbit effect using the use of the Landauer formalism. Our
analysis focused on the effect of both of the RSOI and DSOI simultaneously which is the case in
practice. Indeed, in a clean AB ring coupled symmetrically to reservoirs, perfect spin polarization
doesn’t occur in the presence of only one type of SOIs. We showed that total spin filtering with zero

reflection is possible for strongly coupled leads with values species SOIs and ¢: without the
magnetic flux. In the case of symmetric geometry, to obtain perfect spin polarization, the contour
maps of spin polarization are plotted in terms of the normalized energy, Rashba and Dresselhaus
constant. Finally, we have also obtained the optimum values of the Rashba and Dresslhause
constant for perfect spin polarization in the case of a special geometry for values

93=90,120,180,270 314 again the conditions that lead to the perfect spin polarization have been
specified.
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AnHOTanuA. V3yyeHa cnuHOBasA NPOBOJUMOCTb B KBAHTOBOM KOJIbIIE C OJHUM BXOZIOM U
ZIByMsI BBIXOJIAMH B IIPUCYTCTBHU CIIMH-OPOUTAIBHOTO B3ammozeictBus Pam6sr (RSOI) u cnus-
opbutasibHOTO B3amMmoyiericTBus Jlpeccenpxaysa (DSOI). Taxke m3ydeHbI yCJIOBUs, HEOOXOAUMbBIE
JUIA UIeaJIbHOU CHMHOBOM IMOJIApM3alUM, B TOM YHCJIe 3HAUEHUs HaIpPsKEHHOCTU U CHUJIbl CBA3U
npu 3ddekre Pambpr u [lpeccesbxay3a W 3HAYeHHs SHEPTUM 3JIeKTpoHA. Hamm pacdersl
BBINIOJIHEHBI C HCIIOJIb30BAaHMEM HepaBHOBeCHON GyHKIMM I'puHA W TI'PaHUYHOTO YCJIOBUA
I'puddura B pamkax MoAen CUIbHOU cBA3U. [lokazaHo, YTO CIIUH-TIOIAPU30BAaHHBIM TPAHCIIOPTOM
U TTOJISIPU3YEMOCTHIO MOKHO YTIIPaBJIATh ¢ moMotisio RSOI u/mnu DSOI npu BosaeiictBun s dexra
MPWIOKEHHOTO MAarHUTHOTO TIOJII HAa KBAHTOBOE KOJIBLIO, a TakKKe TMpPU CMeIleHuH,
MIPUKJIA/IFIBAEMOTO MEXK/IY BXOJHBIMH M BBIXOJIHBIMHU BBIBOZIaMU. Pe3ysbTaThl 5TOM pabOThI MOTYT
OBITh MCIIOJIb30BAaHbI IIPH Pa3pabOTKe COBEPIIEHHBIX CIIMH-WHBEPTOPOB HA OCHOBE COBPEMEHHBIX
MIOJIyIIPOBOAHUKOBBIX TeXHOJIOTHH. Takke mccyieioBaHbl 3(P@EKTHl OTHOCUTEIBHBIX MOJIOKEHUU
CTOKOBBIX 3JIEKTPO/IOB HAa CIIMHOBYIO IOJIAPU3AIUIO.

KiroueBble cjioBa: TpeXTEPMHUHAJIbHOE KBAHTOBOe KOJbIO; 3bdekTsl Pambbl u
Hpeccenbxaysa.
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