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Abstract 
The spin resolved conductance in a quantum ring with one input and two output leads in the 

presence of the Rashba spin-orbit interaction (RSOI) and the Dresselhaus spin-orbit interaction 
(DSOI) has been studied. The conditions needed for perfect spin polarization including the value of 
the Rashba and Dresselhaus coupling strength and the values of the electron energy are investigated 
coupled strongly with the leads. Our calculations are performed using the non-equilibrium Green’s 
function method and Griffith boundary condition in the framework of the tight binding model. It is 
shown that the spin-polarized transport and polarizability can be controlled by the RSOI and/or 
DSOI in the effects of applied magnetic field treading the ring, but also on the bias applied between 
the input and output leads. Results of this paper can be used in designing perfect spin inverters. 
The effects of relative positions of the drain electrodes on the perfect spin polarization are also 
investigated. 
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Introduction 
During last few decades, there has been a lot of efforts, both theoretically an experimentally, 

to make electronic devices as small as possible. After invention of the spin field transistor in 
designing a spin field effect transistor by Datta and Das [1], there has been a growing interest in a 
new branch of physics named as Spintronics or spin-based electronics [2–3]. Unlike electronic 
devices which are based on charge of the electrons, Spintronics devices are based on spin of the 
electrons. One of major goals of Spintronics is generation of spin-polarized currents from an 
unpolarized charge current and their appropriate manipulation in a controllable environment. An 
effective way to attain this goal is due to interaction between the spin of the electron and orbital 
degree of freedom and magnetic properties. A good example to study such kind of effects is a 
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mesoscopic system such as quantum rings formed at the interface of semiconductor hetero 
junction structure, typically have size scales between the nanometer and few micrometers. In these 
systems have dimensions smaller or comparable to the phase coherent length and electrons have 
high mobility and long spin coherent time, so they support several quantum interference effects 
which can be controlled by external electric and magnetic fields. In a nutshell, mesoscopic rings 
provide a good platform for Spintronics application. In these mesoscopic systems, there are two 
different ways of creating and changing spin polarization: Zeeman interaction and spin orbit 
interaction (SOI) [4]. These studies are focused on the role of spin orbit interaction (SOI) in 
nonometric device patterned in a two-dimensional electrons gas (2DEG). In general, there are two 
different source of electric field causing SOI in solid state systems: impurities in the conduction 
layer and lack of inversion symmetry. The SOI due to the impurities is usually very weak in 
epitaxially grown semiconductor quantum wells and can be neglected in practice. Therefore, 
semiconductor mesoscopic rings are ideal candidates for investigating SOI effects, so they are 
promising building blocks for designing nanodevices in electronic and spintronic engineering and 
have promising applications in design of spin-based digital logic devices. 

During the past few years great efforts have been devoted to overcome the fundamental 
obstacles in the realization of spintronic devices, such as semiconductor mesoscopic ring for 
investigating SOI effects and the filtering of pure spin-polarization current. There are two types of 
SOIs, which are relevant for semiconductor spintronics. In 1995, Rashba first introduced the SO 
coupling [5], this kind of SOI is caused by the structure inversion asymmetry of a 2-DEG system. 
The strength of RSOI depends on the crystal composition in the quantum well and it is the largest for 
narrow gap semiconductor which makes it often an excellent approximation to neglect the 
contribution due to impurities and the other mechanism (DSOI). On the other hand, SOI created by 
structural inversion asymmetry (SIA) electrons moving through a lattice and the structure of which 
dose did not have inversion symmetry, feels an asymmetric crystal potential and the resulting spin-
splitting of the conduction band was demonstrated analytically by Dresselhaus. Therefore, this kind 
of SOI which exist in zinc blended structure and due to SIA is known as Dresselhaus SO (DSOI) [6]. 
Therefore, the competition between these SOI mechanisms leads, in general, to complex behavior of 
the spin dynamics. In the last few years, the persistent current flowing in normal metal rings 
threaded by magnetic flux without leads was also considered by Loss and Goldbart in 1991 [7]. 
Nitta et al. proposed spin interference devices in 2003. This device was a one-dimensional ring 
connected with two conductor leads [8]. In 2008 Kalman et al. introduced another one-
dimensional Spintronic with three-terminal quantum ring [9]. The effects of Rashba spin–orbit 
and magnetic flux on charge and spin currents in a quantum ring with three leads, has been 
investigated using the S-matrix method by Shelykh et al [10], and spin splitting has been 
investigated theoretically in a one dimensional quantum ring with three leads in the presence of the 
Rashba spin–orbit interaction by Földi et al., using the wave guide theory [11]. Recently, logical 
gate responses of mesoscopic rings connected symmetrically to two external leads in the presence 
of the Aharonov-Bohm (AB) magnetic flux and external gate voltages have been studied; however, 
the results are not suitable for spintronic circuits since the total and not spin resolved conductance 
has been investigated. Also, AB flux penetrated the ring plays a crucial role for whole logic gate 
operations [12]. 

In this paper, we use the Landauer framework of ballistic transport and demonstrate that the 
spin perfect polarized current can be controlled by the Rashba and Dresselhaus spin-orbit 
interaction and the magnetic flux φ [Aharonov-Bohm flux (AB)]. This magnetic flux add spin-
dependent geometric phases to the electron wave function in the ring and lead to the so-called 
Aharonov-Casher (AC) effect [13], which is the relativistic cousin of the AB effect. In the AB effect 
[14], the electron wave function acquires a geometric phase after traveling the ring threaded by an 
AB magnetic flux. P Spin sensitive quantum interferences under the influence of the AB and AC 
effects make the quantum rings to have a practical significance for designing nano-electromagnetic 
spin devices, such as spin switches, detectors, spin transistors, filters [15–20], and scalable devices 
for quantum information processing. So, the scattering theory has been used to calculate the spin 
transmission. In this paper, both of the RSOI and DSOI exist simultaneously and behave like in-
plane momentum-dependent effective magnetic fields. So, we consider a mesoscopic ring with 
three-leads formed in terms of both the Rashba and the Dresselhaus SOIs, the AB flux, and the 
electron energy, at a two-dimensional electrons gas, and try to present the full spin polarization 
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criterion for it. It is shown that this system can act as a perfect spin filter only in the presence of 
both of RSOI and DSOI. We calculated spin depended transmission coefficients analytically and 
the effects of coupling between the leads and rings on spin transport properties are taken into 
account. The scheme of the paper is as follows. In Sec. II, a theoretical model is presented. 
The eigenvalue problem in the presence of the Rashba and Dresselhaus spin–orbit interaction is 
solved analytically and the spin-dependent transmission coefficients are obtained. In Sec. III, the 
numerical results based on the equations derived in Sec. II are presented and discussed. 
The conditions that result in perfect spin polarization are determined in detail and the effects of 
each system parameter such as the electron energy and the magnetic flux on the spin polarization 
are investigated. Finally, a summary is given in Sec. IV. 

 
Theoretical Model 
We consider a mesoscopic ring with three leads as shown in Fig. 1. The system is mapped 

onto a one-dimensional virtual lattice. The left lead acts a source (S) and the two right leads act as 
drains (d1 and d2). In the tight-binding model, an electron can jump from one site to the nearest 
neighbor sites with a hopping energy matrix [t]. 

 
   
 

 
 
 
 

Fig. 1: A schematic view of a three-terminal semiconductor mesoscopic ring 

 
The total Hamiltonian for the system can be written as: 

                    
where, Hp with  is the Hamiltonian of isolated ring, source leaded, up drain lead, and 
down lead, respectively, it is the sum of contrib. form the ring, , and  with  is the 

Hamiltonian due to the coupling between the ring and the source lead, up drain lead, and down 
drain lead, respectively. In this paper, we consider source and drains electrodes consist of the same 
materials. 

In the absence of the electron-electron and electron-phonon interaction, , can be 

written as follow: 

 
where  is the  identity matrix in the spin space, Anderson-like on site disorder energy strength 

. In the two component operator ,  is the creation operator (annihilates) of an 

electron on the site i with spin-state. The RSOI and DSOI strength , respectively, and  
is a matrix , which is given by [21, 22]: 
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We consider 3N atomic sites on the ring (Fig. 1), σX and σY are the Pauli matrices. The Peierls 

phase factor  with describes the influence of the magnetic field in terms of the 

magnetic flux , threaded by the ring, and  is the flux quantum. 
In, is periodic boundary condition imposed by 3N + 1 = 1. We assume source and drains 

electrodes consist of the same materials. We consider linear transport regime conductance G of the 
interferometer can be obtained using the Landauer conductance formula [23, 24]: 

  

, 

 

where  is the transmission probability of an electron across it can be expressed in terms of 

Green’s function and its coupling to the side-attached electrons by [25]: , 

where  and  are respectively the retarded and advanced Green’s function. Here  and 

describe the coupling of the source and drains (d = d1 + d2). The coherent transport is then 

calculated using the Landauer’s formula and the retarded Green’s function of the ring is computed 
as: 

 

 

 
where E+ is complex energy for one way to incorporate the boundary into the equation and self-
energy describes the effect of the leads on the conductor of with p = s,d1,d2 being the self 

energy of the source and drains electrodes. The calculated as , where  

and , where tP consists of ring-lead interaction and the gp is the surface Green’s 

function of the electrodes and k0 satisfies the relation . Therefore, the 

conductance of the ring is obtained as the Landauer equation.  
 
Results and Discussion 
We consider different conditions and several cases in numerical calculation that make our 

system a perfect spin polarization. Before going into discussion, let us use first assign the values of 
different parameters which are used for our numerical results. We will present results for a ring 
described by N = 110 sites and in the strong coupling regime where the strong of ring-to-coupling, 
t, is comparable to the hopping strength, t, in the system (we take t = 1 as the energy scale). We 
suppose that the incoming electrons can be sum of spin-up and spin-down with equal amplitude 

and the geometry leads is a symmetric geometry i.e. . Therefore, the geometry can be 

defined as  and . 

Firstly, we analyzed the transport as function of the electron Fermi energy and SO 
interaction. Fig. 2 shows the spin-up and spin-down transmission probabilities as a function of the 

electron Fermi energy for fixed non-vanishing values of RSOI (  and the values of 

DSOIs. In the presence of the half-integer values of DSOI (the first and last panel) there is a little 
difference between spin-up and spin-down conductance. This is due to the SOI-induced phase shift 
which leads to the complete destructive interference between outgoing beams coming from the 
lower and upper out leads of the ring. We examined that this is also true for others values of DSOIs. 
By increasing the strength of DSOI in Fig. 2, from top to the third panel, the degeneracy between 
spin-up and spin-down transmission is removed and there will be a modulation in the changes 
between spin-up and spin-down conductance. Therefore, the resulting spin polarization will 
increase. By the third to last panel with increasing the strength DSOI, the amplitudes of spin-up 
and spin-down transmission probability decrease and their degeneration increases. Therefore, by 
increasing the strength of DSOI, the spin polarization in which this goes to zero.  
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Also, we can see in third panel that perfect spin polarization occurs in values of . 

The maximums and minimums of and occurs at  and , 

respectively. In such point where  with filter spin in the absence of flux magnetic 

through the ring and in zero conductance energy. There is not only one value of SOI strengths that 
results perfect spin polarization. In order to obtain the aforementioned specific values of DSOI and 
RSOI strength, we presented in Fig. 3, the contour map of spin polarization plotted in tR–tD plane 

for  [the first panel],  [the second panel] and  [the third panel]. It can 

be observed that the system under consideration has nonzero spin polarization only when 
difference between tR and tD is small. 

 
 
The spin polarization oscillates quasi periodically as the strength of the RSOI and DSOI 

increases, and the spin polarization occurs only in regions near the bisector of tR–tD plane, since the 
Hamiltonian of the RSOI and DSOI are equivalent. In all the panels we observe perfect spin 
polarization at specific values equal to (tR–tD), these specific values are (0.225; 0.14), (0.235; 0.13) 
and (0.215; 0.17) for all panels, respectively. In this case, as it can be seen from Fig. 3, the spin 

polarization at É=0.22  greater area than other energy values. This increase is due to the increased 
constructive interaction between the RSOI and DSOI in the amount of energy. The lower panels in 
Fig. 3, show a close up of the upper panels in the area inside the black rectangle, and show that the 
spin polarization reach unity at this specific values. Fig 3, also shows that all panels of a system 
under consideration has non-zero spin polarization only when difference between tR and tD is small. 
This feature provides a possible way to detect the strength of the DSOI since the strength of the 
RSOI can be tuned by the external electric fields and it is known that the spin polarization is an odd 

function under exchanged of the SOIs strengths; i.e. P(tR ,t D ,E )=−P(tD , tR ,E ) . 
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In the absence of magnetic flux, the presence of both RSOI and DSOI is necessary in 
order to obtain symmetric tree-terminal ring acts as a perfect spin selective device. However, 
verifying this conclusion needs a spacious search in {tR, tD, E} parameter space. We search the 
specific values of tR and tD for which perfect spin filtering conditions are established. In Fig. 4, 
we show how the spin polarization varies with the strength of the RSOI and the electron 
energy in presence of various values of DSOI strength. The RSOI behaves like an effective in-
plane momentum-dependent magnetic field. The fully spin polarized in incoming the lead will 
be changed to the spin down in the outgoing lead (d1) at large strength SOIs. For tD=0 [first 
panel], the maximums of spin polarization is 0.76 occur at tR=0.025 and same periodic values 
of the Fermi energy. Therefore, for SOI strengths equal to 0.16, there are many regions other 
than values of SOI strengths in E–tR or E–tD plane, in which the incoming electron with spin 
state down and vice versa. In this case, the system acts as a filter spin. By increasing tD the 
extremum peaks of the spin polarization shift to larger values of tR. At the special values 
tD=0.16 (seventh panel), we have a unit spin polarization for tR=0.22 and some periodic values 
of the Fermi energy. Lake of perfect spin polarization in these values can be interpreted as 
follows. When a mesoscopic ring bridges asymmetrically tree breads, the original cylindrical 
symmetric of the ring breaks due to the interplay between RSOI and DSOI which introduces a 
periodic potential the ring and consequently leads to an anisotropic spin transport. 

So far, we have studied perfect polarization for  φ1=φ2=φ3=120°
 with different values 

of Dresselhaus and Rashba constant. Now we see the other values of φ
3 , still with the 

symmetric geometry, that lead to the perfect spin polarization. Fig. 5 shows the transmission 
coefficient and spin polarization as function of the electron Fermi energy for various values of 

φ
3 . It can be seen from Fig. 5 that except for the case of φ3=90,120°

, other values of φ3  that 
result into the perfect polarization, depend on the magnetic flux. In the first and second 

panels for values φ3=90,120  the peak of spin polarization occurs at É=−0.156,0.276  and 

É=−0.8,0.8  respectively. But in the other values of φ3=180,270°
perfect spin polarization 

not exist for any of tR and tD. Therefore, to achieve perfect spin polarization in this value 

 



Nanotechnology Research and Practice, 2015, Vol.(5), Is. 1 

10 

 

angels of leads d1 and d2, should applied magnetic flux AB (Aharonov–Bohm phase) through 
the ring. This is due to the magnetic flux-induced phase shift which leads to the complete 
destructive interference between the outgoing beams coming from the lower and upper leads 
of the ring in the spin-down channel. So, when a mesoscopic ring bridges asymmetrically 
three leads, the original cylindrical symmetry of the ring breaks due to the interplay between 
RSOI and DSOI which introduces a periodic potential along the ring and consequently leads 
to an anisotropic spin transport [26], i.e., the conductance is sensitive to the positions of the 
incoming and outgoing leads. Therefore, perfect spin polarization will not occur in the all of 
the angle of leads in the ring asymmetrically coupled to the source. 
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FIG. 5: Transmission coefficient and spin polarization as function of the electron Fermi 

energy for various values of φ3=90,120,180,270 , respectively. 

 
Conclusion 
We have investigated the spin transport for a quantum ring with three leads in the presence 

of the Rashba and Dresselhaus spin–orbit effect using the use of the Landauer formalism. Our 
analysis focused on the effect of both of the RSOI and DSOI simultaneously which is the case in 
practice. Indeed, in a clean AB ring coupled symmetrically to reservoirs, perfect spin polarization 
doesn’t occur in the presence of only one type of SOIs. We showed that total spin filtering with zero 

reflection is possible for strongly coupled leads with values species SOIs and φ
3  without the 

magnetic flux. In the case of symmetric geometry, to obtain perfect spin polarization, the contour 
maps of spin polarization are plotted in terms of the normalized energy, Rashba and Dresselhaus 
constant. Finally, we have also obtained the optimum values of the Rashba and Dresslhause 
constant for perfect spin polarization in the case of a special geometry for values 
φ3=90,120,180,270  and again the conditions that lead to the perfect spin polarization have been 

specified. 
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Аннотация. Изучена спиновая проводимость в квантовом кольце с одним входом и 

двумя выходами в присутствии спин-орбитального взаимодействия Рашбы (RSOI) и спин-
орбитального взаимодействия Дрессельхауза (DSOI). Также изучены условия, необходимые 
для идеальной спиновой поляризации, в том числе значения напряженности и силы связи 
при эффекте Рашбы и Дрессельхауза и значения энергии электрона. Наши расчеты 
выполнены с использованием неравновесной функции Грина и граничного условия 
Гриффита в рамках модели сильной связи. Показано, что спин-поляризованным транспортом 
и поляризуемостью можно управлять с помощью RSOI и/или DSOI при воздействии эффекта 
приложенного магнитного поля на квантовое кольцо, а также при смещении, 
прикладываемого между входными и выходными выводами. Результаты этой работы могут 
быть использованы при разработке совершенных спин-инверторов на основе современных 
полупроводниковых технологий. Также исследованы эффекты относительных положений 
стоковых электродов на спиновую поляризацию. 

Ключевые слова: трехтерминальное квантовое кольцо; эффекты Рашбы и 
Дрессельхауза. 


