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ABSTRACT

Let spt (n) denote the total number of appearances of the smallest part in each
partition of n. In 1988, Garvan gave new combinatorial interpretations of
Ramanujan’s partition congruences mod 5, 7 and 11 in terms of a crank for
weighted vector partitions. This paper shows how to generate the generating
functions for spt(n), elaborately and also shows how to prove the relation
among the terms spt (n) and. In 2008, Andrews stated Ramanujan- type
congruences for the spt- function mod 5, 7 and 13. The new combinatorial
interpretations of the spt- congruences mod 5 and 7 are given in this article.
These are in terms of the spt- crank but for a restricted set of vector partitions.
The proofs depend on relating the spt- crank with the crank of vector
partitions.
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INTRODUCTION

We give some related definitions of spt(n), vector partitions, M (m, n) , M, (m, t, n), and
(Z, X)Oo . We discuss the generating function for spt (n) and prove the Theorem 1 in terms
of M s(m, n) and also establish the relation among the terms spt (n), M s(m, n) and

a)(;z) . In this paper how to prove the Theorems: 5/ spt(5n +4),7/ spt(?n +5),and

13/ spt(13n+6) with the help of examples. These Theorems are the combinatorial

interpretations of Ramanujan’s famous partition congruences mod 5, 7 and 13. The proofs
of the Theorems 2, 3 and 4 depend on relating the spt- crank but for a restricted set of
vector partitions.
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SOME RELATED DEFINITIONS

spt(n): spt(n) is the total number of appearances of the smallest parts in all the partitions of
n, like:

n spt(n)
1 1 1
2 2,1+1 3
3 3,2+1,1+1+1 5
4 4,3+1,2+2,2+1+1, 1+1+1+1 10
5 5 4+1,3+2,3+1+1, 2+2+1, 2+1+1+1, 1+1+1+1+1 14

Vector partltlons[Garvan (2013)]:
Let, P denotes the set of partitions and D denotes the set of partitions into distinct parts.

The set of vector partitions V is defined by the Cartesian product,V = DxPxP.

For a partition 77 , denote S (7[ ) as the smallest part in the partition with S (¢) =0 for
the empty partition. We denote the following subset of vector partitions,

S= {f'r = (ﬂl,ﬁz,ﬂS)eV 1< S(ﬂ1)< o and S(ﬂl)é min(S(ﬂz),S(ﬂ'g))}.
For 7€S we define the weight @, by o (7_2: ) = (— 1)#(”1 - , the crank
(7_2:) Z#(ﬂz)—#(ﬂ3) and |7_Z:| =

M, (m, I’l) : The number of vector partitions of n in S with crank m counted according to
the weight @ is denoted by
Ms(m,n) so that M4 Za)

€S ‘ﬂ"

, where ‘72' j‘ is the sum of the parts of 7 e

M S(m,t, n) : The number of vector partitions of n in S with crank congruent to m
modulo ¢ counted according to
the weight @ is denoted by M (m, t, n), so that;

M (m,t,n)= ZM (kt+m,n)= > a(7)
Zreeill@z)zm(modt)

and (z;x), =(2), = Lim(z;x), = TT0-2x") =(1-2)1-2){L-2)... where

n—o =1

>

X <1.

GENERATING FUNCTION [GARVAN (1986)]

n

= (T = =S
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X X2 X

I A o R e

=X+ 3%x% +5x3 +10x* +14x° + 26x° +...
=spt(D)x + spt(2)x* + spt(3)x° +...

3

B Xn (X n+1; X)oo
Theorem 1: ZlmZ_OOM m, n z"x" Z(ZX X) (Z 1X“;X)w
Proof: If t>1 then, (th?(;)xzzl;lxx)toi X)

x‘(l—x”l)(l x”z)(l X'
(l—zxt)(l—zx”l) (1 z’lx‘)(l z’lx‘”) .

z (— 1)#(”1)— : x‘ﬁl‘ > z#(ﬂz)x‘ﬁz‘ ) z_#(ﬁs)x‘ﬂg‘ [Andrews (1985)]

ﬂ'lED IIZGP 7r3eP
Slr t t<S(r) t<S g
_ Zw(ﬁ:) Zcrank(;r) |7 \
T2 ”3) S
S ﬂl)l

So that; 3 Al X) =3 Y of7) 2
=1 (ZX X) (Z X" X) e
— Za) cranl«(;r

7=y, 705,703 )ES

Corollary 1: For N >1, Spt Z Z co(;r )

Proof: If z =1 from above we get;

gmins(m,n)X" = Yo(#)x" :i 3 o(7) X"

7i=(my, 705,703 )€S t=1 7
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n

< ( nH. x) < X
z( ":X), iX ). nz—;‘(l—x“)z(x”*l;x)oo

Equating the coefficient of X" we get;

spiln)=_ S olz)= M (mn)

€S ‘7[‘

ie, spt(n ZM mn)= > o7)

€S ‘7[‘

Theorem 2: M S (k,5,5n + 4) = M

= ispt(n)xn
n=1

, for 0<k<4.

Proof: We prove Theorem 2 with an example. There is a table of the 16 vector partitions

7 €S with |77'| =4 as follows:

Table-1
Vector partitions of 4 Weight a)(ii) Crank (7? )

( 4, ¢’ ¢) +1 0

(3+1,4,9) -1 0
#,=(13,9) +1 !
7y (1! ¢!3) 1 .
7 =(2.2,4) *1 1
7t =(2,9.2) s -
7 =2+11L¢) -1 !
7 =(2+1,41) -1 -
7y =(11+2,9) +1 2
7o =1Lp1+2) +1 -2
7, =(112) +1 0
7, =021) +1 0
Ty =(L1+1+1,9) *1 X
7, =L gl+1+1) +1 -3
i = (11410 + !
i = (L11+1) + -
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From the table we get,
M, (0,5.4)= (7, )+ (7, )+ o7y, )+ o7y, ) =1-141+1=2.
Similarly, M (0,5,4)= M (15,4)= M (2,54)=M(354)=

_,_spt(4)
M, (454)=2= p5 .

spt(5n +4)

Hence, M N (k,5,5n + 4) = ,for 0 <k <4 .Hence, the Theorem.

We can find the following relations from above table:
M (0,5,4) =+1-1+1+1=2,

M, (L5,4) =+1+1-1+1=2,

M (2,5.4) =M (~3,5,4)=+1+1=2,

M (3,5,4) =M (-2,5,4)=+1+1=2,

M, (4,5.4) =M (~15,4)=+1+1-1+1=2.

So that we can see that, M ¢ (M, n)> 0 for all 1 and n.

Mg (m,n)=Mg(~=m,n) and Mg(m,t,n)=M(t-m,t,n).

spt(7n+5)
7

Theorem 3: Ms(k,7,7n+5): , for 0<k<6.

Proof: We prove the Theorem 3 with an example. There is a table of the 32 vector

partitions 7 € S with |7_Z: | =5 as follows:

Table-2
Vector partitions of 5 Weight 60(77) Crank (7?)
7, =(5.¢.9) " °
#,=(14,4) +1 !
=14 g i
7, =(23.9) +1 !
Ty = (2'¢'3) 1 -
7y =(13+1,¢) *1 2
7 =L¢.3+1) +1 -2
7, = (1,31) + 0
7, = (113) + 0
7y = (12.2) +1 0
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7, =[12+2,9) +1 2
7, =1L42+2) +1 -2
7y =11+1+2,9) +1 3
7y =Lpl+1+2) +1 -3
7 = ([11+12) +1 1
7 = ([1,21+1) +1 -1
7y =(L1+21) +1 1
7 =[111+2) +1 -1
Fo=L1+1+1+1,9) +1 3
T =(Lp1+1+1+1) +1 -3
Ty =(L1+11+1) +1 0
Ty =[11+1+11) +1 2
Ty =(LL1+1+1) +1 -2
oy =(1+31,0) -1 +1
s =(1+3,¢,1) -1 -1
T = (1+4,4,0) 4 0
iy =(2+3¢,9) - 0
Ty =(2+1,2,0) -1 1
Ty =(2+1,0,2) -1 -1
i =(2+111) -1 0
Ty =(2+11+1,9) -1 2
Ty =(2+141+1) -1 -2

From the above table we get,

M, (0,7,5) = +1+1+141+1-1-1-1=2

M
M
M
M
M

(L,7,5)=+141-1-141+1=2

<(2,7,5)=+14141-1=2

s(37.5)
.(4,7,5)
.(57,5)

(-4,7,5)=+1+1=2

M
M, (=3,7,5)=+1+1=2
M

o(-2,7,5)=+1+141-1=2
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M, (6,7,5)= M((~1,7,5)=+1+1-1-1+1+1=2
Sothat, M¢(0,7,5)= M(1,7,5)= M(2,7,5)= M((3,7,5)=

M, (4,7,5)= M (5,7,5)= M, (6,7,5)=2= Sp;(5).

spt(7n+5)

Hence, M N (k,7,7n + 5) = ,for 0 <k < 6. Hence, the Theorem.

Theorem 4: spt(13n + 6) = O(TTDd 13).
Proof: We prove the Theorem 4 with an example. There is a table of the 64 vector

partitions 7 € S with |7_f| =6 as follows:

Table-3
Vector partitions of 6 Weight | Crank

o) | (%)
7, =(6,4.9) \ b
7?2 :(1+5'¢’¢) A" 0
7, =(15,¢) +1 +1
774 = (1! ¢’5) K. -1
7T :(2+41¢,¢) -1 0
Tlg = (2’¢'4) *1 -1
7 =(24.0) T
7, = (L1+4,0) +1 2
7y =L gl+4) +1 -2
7y = (1,1,4) +1 0
7, =(1,4]) +1 0
7, =1+ 4,10) -1 +1
Ty =1+4,41) -1 -1
7, =(33,9) 1 !
7 =(1,2,3) +1 -1
7o = (12,3) + 0
7ty =(13.2) +1 0
Thg —(1,2+3,¢) *1 2
Ty =L $2+3) o2
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iy =[1+2,43) -1 -1
Ty = (1"' 2,3, ¢) ! !
7?22 :(1+3!¢'2) -1 -1
7 =(1+32,¢) - !
T = ([11+31) +1 1
Ty = (LL1+3) *1 -1
s =(1+31+1,9) -1 2
By =(1+3,41+1) -1 -2
s =(1+3,11) -1 0
Ty =(2,2,2) +1 0
7?30 = (2’2 +2, ¢) *1 g
Ty = (2’¢’2+2) \ >
gy =1+2,2) -1 0
Ty =(1+21,2) -1 0
Ty =1+ 21+2,0) -1 2
T =(1+2,41+2) -1 -2
g = (L1+11+1+1) +1 -1
B =(11+1+11+1) +1 1
g = (L1+1+1+11) +1 3
e = (L11+1+1+1) +1 -3
B =@1+1+1+14+1,¢) | *1 5
Ay =Lglrl+1+141) | *1 -5
B =01+1+12) +1 2
Ty =L1+1+1+2,9) +1 4
Ty =L pLl+1+1+2) +1 -4
s =(121+1+1) +1 -2
T = (1L1+11+2) +1 0
Zp=@11+21+1) +1 0
T =(L11+1+2) +1 -2
T =(L1+1+21) +1 2
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Tioo =(1+21+1+1,9) -1 3
By =(1+2,41+1+1) -1 -3
gy =(1+21+11) -1 1
By =(1+211+1) -1 -1
Ty =(L1+2+2,0) +1 3
Fos =(Lp1l+2+2) +1 -3
g = (1L1+2,2) +1 1
T, =(1,2,1+2) +1 -1
g = (1,2 +21) +1 1
Tiso = (11,2 +2) +1 -1
B = (L1+1+3,0) +1 3
Ty =L pl+1+3) +1 -3
gy =(11+13) " 1
Ty =(1,31+1) +1 -1
7764—(1+2+3’¢1¢) 1 0

From the table we get; M ¢ (0,13,6) = +1-1-1+1+1+1+1-1+1-1-1+1+1+1 = 4,

M (L13,6)= +1+1-1+1-1-141+1-1+1+1+1 = 4,

M
M
M
M
M
M
M
M
M
M
M

5(213,6) = +1+1-141-14141 =3,
<(313,6)=+1-14141=2,

4(4,13,6)=+1=1,

<(513,6)=+1=1,

5(613,6)=0,

.(7.13,6)=0,

<(813,6)=M(~5,13,6)=+1=1,
4(913,6)=M(-413,6)=+1=1,
5(10,13,6)=M(~3,13,6)= +1-1+1+41 =2,
<(1113,6)=M(—213,6)= +1+1-1+1-1+1+1 = 3,
<(12,13,6)= M (~113,6)= +1+1-1+1-1-1+1+1 -1+1+1+1= 4.
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5 12
Y M_(m136)= > M_(m13,6)= spt(13n+6)=26, where n=0.
m=>5 S m=0 S
ie., spt(13n + 6) = O(I'T‘Od 13). Hence the Theorem.

CONCLUSION

In this study we have discussed the set of vector partitions and have discussed the
generating function for spt (n) and also have established the generating function for

M, (m, n) . We have shown a relation among the terms spt (n), M (m, n) , and a)(;z) and
have satisfied the Theorems 2, 3, and 4 with the help of examples.
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