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Abstract—The development of new technologies is
responsible for the generation and storage of continuous
and massive amounts of data. Such type of data is
known as data stream. The analysis of data streams may
be advantageous in many fields, like bioinformatics,
medicine, companies and others, as it may result in
important information about the data. In this work,
we propose a new software tool for Data Visualization
that permits the analysis of the evolution of clusters
in real time during the data streaming. The proposed
visualization tool is add-on for SAMOA, a new variant
of MOA (Massive Online Analysis) for massive data
streams mining and processing distribution.

Index Terms—Data Mining, Data Streams, Data Vi-
sualization.

I. Introduction

THE constant evolution and usage of Information Te-
chnology has changed the way people communicate

and solve personal and professional problems. Due to this
usage, daily generated data has been gathered from the
interaction between customers and organization, social re-
lations in network among friends or bank transactions [1].
The ability to gather and analyze those data in real time
is called data stream [2].

The challenge of working with Data Visualization in this
context is to analyze the data type quickly, so that we can
find patterns and help decision making [3]. Moreover, the
data stream may be finite or infinite. Such unpredictability
of the data volume makes its analysis even more costly. [4].

Mechanisms that are able to automatize the data analy-
sis processes are necessary and in this scenario we employ
data mining techniques. Data mining is made of artificial
intelligence and statistical techniques whose aim is to
extract useful information from a determined amount of
data that is either stored or in a continuous stream [5].

One of the techniques that can help identify patterns
in data is data clustering. It is a set of unsupervised
methods that intends to group objects according to their
characteristics. This can be achieved through dissimilarity
or similarity metrics among the analyzed objects [6].

One of the characteristics of data streams is that they
can be infinity, that is, it is not possible to store them.

After a given analysis, data must be discarded so that new
data can be received. This volatility makes it more difficult
to recognize new trends in groups, for data cannot be
reprocessed. The only stored knowledge is the information
on the groups themselves [4].

There are techniques in literature that were created to
detect changes in data flows. M-DBScan [7], for instance,
compares the entropy, that is, the degree of uncertainty of
a new group with the entropy of the previously generated
groups. The change in entropy characterizes a change in
the data pattern. The goal of this paper is to make it
possible to visualize the data behavior during the flow,
independently of the occurrence of changes. Therefore, we
did not use clustering techniques to detect the changes.

Once the data was clustered, it was necessary to analyze
the results in order to recognize the patterns and ex-
tract knowledge from them. Nevertheless, the analysis
of abstract data is not intuitive. Data visualization has
come to facilitate the understanding and the perception
of certain characteristics together with the abstract data.
The human perception system is sensible to differences in
colour, size, shapes and distances among objects. Hence,
data visualization uses graphic resources to illustrate the
data attributes. This helps the user realize the similarities
and differences among them [8].

This paper intends to resent a visualization tool cal-
led 2D Data Stream Viewer, developed to help identify
patterns and trends in data gathered in a continuous
stream. There are some platforms to analyze data streams,
two of which we highlight: Apache Spark Streaming and
SAMOA (Scalable Advanced Massive Online Analysis) [9].
Spark Streaming is a distributed analysis platform and a
recent extension of the platform Apache Spark [10]. The
SAMOA platform, on the other hand, is a distributed
platform to analyze continuous data flows and also a
data mining library for continuous data flows. As an
advantage, SAMOA allows for data analysis in real time.
This characteristic impacts on low latency when dealing
with huge data amounts. The platform Spark Streaming,
on the other hand, stores parts of the data in batch for
posterior analysis [10].

The visualization tool proposed here is a complement
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to the SAMOA platform. SAMOA contains a distributed
and massive version of the KMeans clustering algorithm,
which is implemented and adapted to the continuous flow
model. Differently from other algorithms such as DBSCAN
[11], SLINK and its variations [12], which have quadratic
computational complexity, the KMeans algorithm has li-
near complexity [5]. Hence, the data processing times for
this algorithm is more scalable than others data clustering
algorithms. Because of this, we use the KMeans algorithms
when grouping data streams. The clustering results allow
for the gathering and storage of necessary information to
illustrate the proposed visualization tool.

Section II presents a theoretical foundation on the de-
velopment of visualization tools and clustering algorithms.
In Section III, we present the development and the func-
tionalities of the proposed tool. Finally, Section IV will
present some final considerations.

II. Theoretical Foundations

IN this section we present some of the main concepts
used in the development of the proposed tool. Among

them, concepts on data streams, grouping techniques, and
an introduction on data visualization techniques and the
usage of human vision to detect patterns.

A. Data Stream

There are applications that when executed demand
the data to be gathered and processed in real time. In
those cases, storage and queries in persistent conventional
databases tables are not viable [13]. It is also not possible
to use techniques such as sampling, due to the fact that
there is not a defined amount of data to be received. These
characteristics define the data stream [5].

Formally, the definition of a data stream consists on
a sequence of points X1,....,Xk, where k is not known.
Each Xi arrives at time T1,...,Tk, and each point has d
dimensions and can be written as Xi = (Xi1,...,Xid) [14].
In the data stream processing, we need to deal with

transient value tables, which are filled with data collected
in a continuous stream. This gathering phase is known
as the online phase. After filling the tables, an analysis
of the gathered data is performed, a step known as the
offline phase. Data analysis begets a knowledge that must
be stored for future decision making. Finished the offline
phase, data is deleted from the tables so that new data
can be gathered. The tables are transient because they
store the data only for a small interval, until the data is
analyzed and discarded or persisted into a data base. This
transience is the difference between flow analysis to the
analysis of data stored in persistent tables [4].

This data volatility makes it more difficult for the
analysis to find satisfying results. Considering that the
data is available for a short span of time and those are
discarded or persisted, it becomes impossible to process
them again in due time. This makes it more difficult to
adapt to new decision models that may come with new

characteristics of the received data [15]. In order to decre-
ase those difficulties, we will present some functionalities
of the visualization tool 2D Data Stream Viewer that
are used for the perception of new characteristics in a
continuous data flow in Section III.

B. Data Clustering

Human beings have the ability to categorize and group
objects around them as they see them. One example is
an employee at a crop whose goal is to separate fruits
according to their sizes. Hence, small fruits will be in a
separated group from big and average ones. This task is
performed relatively easy by most people. Similarly, data
mining has techniques able to group objects according
to their similarities, techniques that are knows as data
clustering.

The clustering techniques intend to find similarities
among objects within a data set [16]. This process is
performed through the calculation of distances in the n-
dimensional data space, where data dimension is given
by the number of attributes contained in the set. Even
though it may sound simple, there is subjectivity in the
definition of what is a group [5]. For example, Figure 1
shows that there are several ways to group the same data
set. Figure 1(a) represents the original data set, Figure
1(b) shows two distinct groups and Figure 1(c) shows three
distinct groups. In this example, each point belongs fully
to a single group, but there are algorithms that deal with
group overlaying, in which a point can belong to more
than one group. In this paper we will deal only with strict
groups, that is, groups for which there is no overlaying.

Fig. 1. Different ways to group the same data set.
Source: Adapted from [5].

There are different types of data clustering [17]. Among
the most common are the ones based in prototypes, where
the objects are more similar to the prototype of its group
and less similar to the prototypes of the other groups.
There is also density based clustering, in which objects
are grouped according to their concentration in the n-
dimensional space, that is, the high density of objects
forms groups. Another type of clustering is based on
graphs, where there are nodes (objects) that are connected
by edges that represent the relationship among them.
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C. Kmeans

Kmeans is a partitional clustering algorithm based on
prototypes [18]. Kmeans tries to find the groups through
centroids that are formed by the averages of the objects
within the same group. Some type of similarity is used
to define groups, so that an object is more similar to the
objects in its group and less similar to objects in another
data cluster.

The Kmeans algorithm has simple characteristic and is
implemented in many ways in literature. The parameter
k, which indicates a priori the number of groups we seek
in the clustering process, must be defined by the user of
estimated. One of the techniques to estimate the value of 𝑘
uses evolutionary algorithms [19]. In Table I we present the
steps to implement the classic Kmeans algorithm, where
the attribute 𝑘 is an input parameter defined by the user.
Figure 2 illustrates an example of the execution of the
Kmeans algorithm for 𝑘 = 3.

TABELA I
Classic KMeans algorithm

Classic KMeans algorithm
1: Choose k initial centroids randomly defined
by the user.
2: Calculate the distance from each object to its centroids.
3: Attribute each object to its closest centroid.
4: Calculate the average for each group and design new positions
to the centroids.
5: Repeat steps 2, 3 and 4, until no centroid changes
position

Source: Adapted from [18].

Fig. 2. Example of the execution of the KMeans algorithm. (a)
Each element was designed to one of three groups randomly and
the centroids (larger circles) of each group were calculated (b) The
elements were now reassigned to the groups whose centroids were
closest to them (c) The centroids were recalculated. The groups are
already in their final form. If not, we would repeat steps (b) and (c)
until they were.

Source: [6].

Proximity relations or similarity metrics are used to
define the real distance between objects and the cen-
troids [18]. The most known and used metrics are a
derivation of the Minkowski metric[6], which is given by
the following formula:

𝑑(𝑥, 𝑦) = 𝑞

⎯⎸⎸⎷ 𝑡∑︁
𝑖=1

(𝑥𝑖 − 𝑦𝑖)𝑞 (1)

A Minkowski metric with 𝑞 = 2 is the widely known
euclidian distance, which seeks similarities among objects
in euclidian space. When 𝑞 = 1 we have the Manhattan

distance (also called block city distance)[5]. In this paper
we implemented a KMeans algorithm adapted to work
with data in a continuous flow in the distributed platform
SAMOA, presented in the next section. In the similarity
calculations, we used the euclidian distance. The adapta-
tions implemented in the algorithm are described in the
Subsection III-A.

D. SAMOA

The Scalable Advanced Massive Online Analysis (SA-
MOA) is a distributed platform that includes a library
of data stream mining algorithms. SAMOA is capable
of adapting to different distributed processing platforms,
including S4 and Storm [9].

SAMOA has some implemented algorithms, among
them the Clustream clustering algorithm. Clustream,
which also is referred as a framework, has two processing
phase for data stream: Online and Offline. The Online
phase is the process of summarization of the points that
arrive continuously for the analysis phase. The offline
phase consists of clustering the collected points in the
previous phase [14]. Additionally, SAMOA also guarantees
to its users the easy implementation of new algorithms for
data analysis and also allows to develop connections to
other platforms [9].

Given that the clustering analysis is a complex task,
a single technique to solve clustering problems is not
enough [5]. Hence, one of the goals of this work was to
increase the number of clustering algorithms available for
SAMOA. At Subsection III-A we describe the implemen-
tation of the traditional KMeans algorithm adapted for
continuous flow.

The SAMOA platform has plugins for the capture of
different synthetic and real data streams. Real data de-
monstrate a situation or application from the real world.
Usually, those data sets are stationary, that is, they are
stored in a data repository. When referring to a continuous
flow, data come in different time intervals, from one or
more sources and are processed in real time. An example
of a real application is the one from Yahoo, which uses the
SAMOA platform to detect spams in e-mails [20].

On the other hand, synthetic data, at least theoretically,
simulate a random and undefined sequence of points. This
randomness is configurable, which guarantees a flexible
data generation and allows us to simulate flows with
different configurations [21]. Hence, the synthetic data
flexibility became relevant to the experiments performed
in this research, allowing us to test the visualization tool
proposed with different data configurations.

The difference when using artificial data is that they
are generated already normalized. With the algorithm
implemented in the SAMOA platform, the plugins for
real data are already available. The adaptation of the
algorithm to analyze real data depends on the preproces-
sing and normalization of the raw data gathered. Once
preprocessed, the real data can be grouped and analyzed
as well as the artificial data.
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E. Data Visualization

Data visualization is a field from Graphic Computing
that intends to help the user analyze and understand
abstract data [22]. These data sets are usually gathered
through mining a large data set [23]. Using this techniques
takes advantage of the human visual system for the task
of identifying patterns and trends present in the data ci-
teCard1999.

Data visualization uses basic elements that the human
perception system can quickly assimilate, such as colour,
size, shape, proximity and movement [8]. The fact that the
human being realizes those characteristics quickly allows
us to use them to represent each data attribute. Hence,
it is possible not only to assimilate them quickly, but also
to represent a large amount of data at once. When large
amounts of data are presented visually, it is possible to
realize groups, gaps, maxima, minima and several other
characteristics [8].

Getting a visual representation of the data set can be
generalized into an automated process. The abstract data
is gathered, the Data Visualization tool processes this data
and generates to the user a representative image [24].
Figure 3 illustrates this process.

Fig. 3. General process to generate a visual representation of the
data.

Source: Adapted from [24].

Several visualization tools are found in the literature
with the goal of making the process of analyzing abstracts
data sets more intuitive. This includes the usage of dif-
ferent visualization techniques [25], as those oriented to
pixels, hierarchical, graph based and others.

Given the existence of several gathering processing and
data analysis methods, the visualization tools are not yet
capable of illustrating some specific analysis situations, as
in the case of data stream analysis.

Considering the main 2D graphic visualization tools
found in literature, as Weka [26], MGV [27] and Polaris
[28], the three tools use data stores into persistent tables
for processing and visualization. Weka implements several
algorithms for data mining, such as classification, cluste-
ring, association and result validation, but does not allow
the gathering and visualization of data stream.

For visualization of data streams, [29] proposes a mul-
tidimensional scaling technique whose goal is to decrease
the computational time necessary to process the gathered
data and draw the result of the continuous flow into a
2D graphic. Nevertheless, the technique does not allow
the visual following of the stream in order to visualize
changes and trends in the time line in which the stream

was gathered. This work develops a 2D Data Visualization
tool that is a complement to SAMOA. This tool allows the
analysis data that was gathered and clustered in a data
stream. In Subsection III-B we present the details of the
development of this tool.

III. Development and Presentation

IN this section we will describe the steps needed to
adapt the KMeans algorithm to the data stream model

and the necessary data storage that will be used in the
visualization tool. We will also present the development
of the visualization tool 2D Data Stream Viewer and the
functionalities implemented in this tool.

A. Clustering algorithm

We chose the SAMOA platform to develop the KMeans
algorithm adapted to a continuous flow and this gave us
some advantages. The first one is that the platform has the
function of keeping a network communication abstraction
that is need in conventional distributed systems. Hence,
the developers need only to elaborate the application logic
without worrying about the necessary network protocols.
The second advantage is that the platform is developed
with the Java programming language. Like all languages
that support the reusability concept of the object oriented
paradigm, it is possible to develop new applications in Java
without code redundancy.

Table II shows the steps of the Kmeans adapted to data
stream. While the classic algorithm requires the user to
predefine the parameter 𝑘, which represents the amount of
groups to be found, this version of the algorithm expects
three different parameters: 𝑘, 𝑥 and 𝑡.

As in the classic algorithm, parameter 𝑘 is the number
of groups to find. Parameter 𝑥 is the maximum amount of
data that can be clustered at once before being discarded.
An idea is to limit the value of 𝑥 to the size of the
available working memory, but the value can be defined
arbitrarily. Parameter 𝑡 limits the maximum amount of
time the algorithm will wait while gathering data. If the
amount 𝑥 of data is not gathered in time 𝑡, the clustering
phase starts using only the data that has already been
gathered.

These parameters have important roles in the context of
the data stream analysis. Since we do not know the amount
of data which will be received, parameter 𝑥 prevents a
memory overflow or simply divides the flow into standard
size batches. Parameter 𝑡 solves the potential idleness of
the algorithm. If the data stream terminates or goes into
a long pause, limiting the time 𝑡 prevents the algorithm
from going idle for a long time. Hence, if the algorithm is
idle for a time 𝑡, the clustering process is initiated.
In this paper, the instances are generated by SAMOA’s

RandomRBFGeneratorEvents class and its attributes are
normalized within the interval [0,1]. The instances are
generated simulating a data stream but the number of
instances may be defined by the user. Defined by the
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TABELA II
KMeans Algorithm for Data Flow

KMeans Algorithm for Data Flow
1: Gathers the data from the stream until the table of size 𝑥 be
filled or time 𝑡 is reached.
2: If this is the first iteration, choose 𝑘 initial medoids
randomly. From the second iteration on, consider the centroids
from the previous iteration.
3: Calculate the distance from each object to the centroids.
4: Attribute each object to the closest centroid.
5: Calculate the average for each group and attribute new
positions to the centroids.
6: Repeat steps 3, 4 and 5 until no centroid changes position.
7: Calculate the SSE from each generated group and the total
clustering SSE.
8: Store into a file the final centroid positions, the amount of
objects in each group, the SSE for each group and the total
clustering SSE.
9: Deletes the gathered data, return to step 1 and repeat all
the algorithm until the stream is over.

developers of the platform, each object generated by this
class always has two dimensions.

Besides the traditional steps that are similar to the class
KMeans algorithm, in the first execution of the algorithm
the position of the 𝑘 centroids are chosen by the position of
𝑘 random medoids, that is, by the position of 𝑘 elements
stored in the database. After executing the KMeans, we
store the final centroids for each cluster, the number of
objects, SSE (sum squared error) of each dimension of the
individual clusters, and the SSE of the total clustering.
After that, the objects are deleted so that new ones can
be gathered and a new clustering process can start.

SSE is one of the most common metrics in the evalu-
ation of clustering algorithms [5]. The calculation of the
SSE of a group is given by Equation 2.

𝑆𝑆𝐸𝑔𝑟𝑜𝑢𝑝 =
∑︁
𝑥∈𝐶𝑖

𝑑𝑖𝑠𝑡2(𝑚𝑖, 𝑥) (2)

In this formula, 𝑥 is a point that belongs to group
𝐶𝑖, and 𝑚𝑖 is the position of this groups’s centroid. The
calculation of the SSE of the entire clustering is given by
the sum of the 𝑘 SSE found in the groups, as shown by
Equation 3.

𝑆𝑆𝐸𝑡𝑜𝑡𝑎𝑙 =

𝑘∑︁
𝑗=1

∑︁
𝑥∈𝐶𝑖

𝑑𝑖𝑠𝑡2(𝑚𝑖, 𝑥) (3)

In our application, the SSE is calculated also for each
attribute dimension. For instance, for two dimensional
data, we store the SSE for each group, as shown in
Equation 2 and also the SSE of the dimension 1 for each
group and the SSE for dimension 2. Equation 4 shows
how the calculation of the SSE is performed for a single
dimension. The SSE for dimension 𝑡 is the sum of the
squared distances of dimension 𝑡 to the point 𝑥 until
the dimension 𝑡 of the centroid 𝑚𝑖. This calculation is
performed for all 𝑑 dimensions of the data.

𝑆𝑆𝐸𝐷𝑖𝑚𝑡
=

∑︁
𝑥∈𝐶𝑖

𝑑𝑖𝑠𝑡2(𝑚𝑖𝑡 , 𝑥𝑡) ∀ 𝑡 ∈ 𝑑 (4)

The metric is important to evaluate the quality of the
performed clusterings. The smaller the SSE for a group,
the smaller the points dispersion and the better is the the
group. The SSE for each dimension are also calculated
because they allow us to verify in each dimension the
data is more scattered. Besides the SSE, there are other
cluster quality metrics such as homogeneity, group density,
intragroup maxima and minima values and others.

From the second clustering of the data stream, the initial
centroids are no longer random. We will use the final
positions of the centroids in the last clustering performed.
This is done so that there are no exchange in positions
among two or more centroids. This makes it possible, when
using the visualization tool, to realize the change of a
specific cluster during the data stream. The information
on the clusters are stores sequentially in a history log.
At the end of each clustering process, the text file with
extension “.vjm” is updated with information on the new
clustering performed. This extension was created specially
for the visualization tool, allowing us to differentiate the
files supported by the tool from the traditional text files.

Each data stream generates a single “.vjm” file. During
the data stream, several clusterings are performed, each
one of them with a piece of the data stream. The final
information on each clustering process is stored sequen-
tially in the “.vjm” file. The file is used in the 2D Data
Stream Viewer tool, allowing the user to visually analyze
the development of the clusters, since it is possible to
identify patterns and trends in the data. Figure 4 shows
how the data must be saved in the “.vjm” text file. The
texts that come after the character ‘%’ are comments.

Fig. 4. “.vjm”text file format. The first piece of data is the number 𝑘
of groups. Afterwards come the coordinates for the 𝑘 centroids of the
first clustering process. Next come the SSE ’s of the first dimension of
the 𝑘 and afterwards, the SSE ’s from the second dimension of the 𝑘
groups. Then come the SSE from the 𝑘 group and finally, the number
of objects per group.
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B. 2D Data Stream Viewer

The Java programming language was chosen to develop
the visualization tool because of its portability and the fact
that it was already used in the SAMOA platform. The tool
has three main goals: make result analysis more intuitive;
help identify the changes in data and; visualize the areas
with higher data density.

In order to make result analysis more intuitive, we used
the concepts of data visualization, where the colours and
formats of graphic representations trigger the human per-
ception system, making it easier to realize the differences
among groups. The changes in the data may be seen by the
visualization of the changes in the groups along the data
stream. This was implemented through an automation of
visualization of several groups sequentially. Visualization
of areas with higher data density was possible through the
functionality of global data plotting, that is, the plotting
of all points of data stream in a single space.

The functionalities of the tool can be accessed in a single
window, as illustrated in Figure 5. The tool works with
text files with the extension “.vjm”, which are created
during the execution of the KMeans algorithm inside
SAMOA, where each data stream generates a different
“.vjm” file, each of which contains a timestamp at which
the data stream began.

Fig. 5. Window of the 2D Data Stream Viewer tool.

We developed a functionality to open “.vjm” files, which
is done by the button “Open File”. It is possible to open
files from data streams already finished or from active
data stream. In the case of active ones, a Thread is
activated to verify modifications in the open files so that
new data can be loaded into the working memory. With
the open file and the stored data loaded into the working
memory, the coordinates X and Y of the centroids are
normalized for the graphic size, which consists of an image
of 600x600 pixels. After coordinates normalization, we plot
the data into the graphic with a distinct color for each
one of the k groups. Figure 6 shows the plotting of six
final centroids from the first clustering from a Kmeans
algorithm execution. On the top of the screen it is possible

to visualize the number of clustering illustrated in the
graphic and the total number of clusterings available for
visualization.

Fig. 6. Example of the plotting of 6 centroids from clustering 1 out
of 100 available clusterings.

The arrows in the top part of the window were developed
to navigate through the clustering history. Given that the
algorithm groups batches of data, several clusterings are
made during a single data stream. With the navigation
arrow, it is possible to go forward or backward one clus-
tering or access directly the first or last clustering of the
history.

The button “Play Motion” works as an automated se-
quence of clustering visualizations. The speed the clus-
terings are changed in the graphic is controlled by the
scrollbar“Speed”. The minimum speed between each frame
is two second and the maximum, 0.1 second. When visu-
alizing the clusterings sequentially, it is possible to have
an idea of how they change. This helps identify changes
and realize new trends in the data flow. The visualization
tool makes the changes more explicit, allowing for easier
perception than when the analysis was performed only on
the numerical results of the clusterings.

The bar “Point size” changes the number of pixels used
to represent one piece of data in the graphic. The bar uses
normalized values from 1 to 5 and in the image, each data
can be represented by a point from 1 to 81 pixels. When
the amount of data to show is relatively small, larger points
make it easier to visualize. When the amount of data is
relatively large, smaller points represent better the real
data density. Figure 7 illustrates the difference between
using smaller and bigger points in the data visualization.

Fig. 7. Example of using the bar Point size.
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The button “Global Clustering” is used to show the
centroids existing in the clustering history. this functi-
onality offers the visualization of the final densities in
the data stream. With this functionality it is possible to
realize the real tendency of the data throughout a long
period, elevating the reliability of the analysis for pattern
recognition. Figure 8 demonstrates the global clustering
for a full history.

Fig. 8. Global clustering for a full history.

The button “Information” shows the informations on
the clusters. If it is pressed while the tool is showing a
global cluster, a message window will exhibit the amount
of clusterings in the history, the number k and the total
amount of data clustered in the flow. In Figure 9 we see
the global information of a history.

Fig. 9. Information on the global clustering of a history.

When the button“Information” is pressed when the tool
is showing a single clustering, a window appears showing
the information on each centroid, the amount of data and
the variance of each group and the total variance of the
clustering. Figure 10 shows the information of a single
clustering in the history.

The visualization of the centroids as data representati-
ves may not express the real trend and density of the data.
This happens when the groups have discrepant amounts
of data or variances. Since all centroids are plotted with
the same dimensions, it is not possible to identify these
differences through the image. As a solution, we created
the checkbox titled “Simulate groups”. When activated,

Fig. 10. Information on a clustering in the history that has 5 groups.

this functionality uses the statistical concept of the normal
distribution to simulate group data. The points are genera-
ted randomly obeying the limits of a normal distribution,
which is given by the average (position of the centroids)
and the variance of each group. The simulation can be
applied in an individual group or in the global clustering.
Figure 11(a) shows a simulation of five groups in an
individual clustering and Figure 11(b) shows a simulation
of the global clustering of the full history.

Fig. 11. Simulation of a simple and global clustering withk=5

As can be seen in Figure 11, the groups represented by
colours red and purple have become intertwined in the
simulation of the global clustering. Due to this unification
and considering the data density, we can assume that these
two groups are actually a single one. Hence, the amount
of groups (k) considered should drop to only 4 different
groups. Since the value of k is defined by the user prior
to data gathering, there may be differences in the clusters
representation due to this predefined parameter.

In a first case, when the value of k is low, there may be
clusters with high variances, which is due to the presence
of hidden subclusters that are merged into a single cluster.
In a second case, when the value of k is high, there may
occur the existence of clusters that are too close and that
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could be merged into one. The tool 2D Data Stream Viewer
does not allow for the perception of subgroups for the
correction of the first case, but the simulation of the groups
and the global clustering allow for the visualization of the
intersections among clusters, allowing the use to consider
the possibility of joining them.

Figure 12 shows the simulation of a global clustering
for a single data stream for the values k=1 and k=5. In
Figure 12(a) it is possible to see a single group in the data,
without gaps or spaces among them. In Figure 12(b) it is
possible to realize that the 5 groups have become only two,
with a large gap between them. Even though it is the same
dataset, only the second case allowed for the identification
of the second group. We can say that the higher the value
of k, the higher the precision on the identification of diffe-
rent groups. Even though similar objects are represented
by different colors, visualization allows for the perception
of similarity due to their proximity.

Fig. 12. Visualization of the same data base with k=1 and k=5.

IV. Final Considerations

G IVEN that platforms and algorithms for data stream
analysis are still evolving, adapting the KMeans

algorithm is a contribution to the study of new forms of
clustering of data streams. Adapting the algorithm allowed
us to store the history of the clustered data that are repre-
sented by the centroids of the groups. This functionality
had the goal of helping future decision making based on
the behavior of data streams analyzed by the algorithm.

The 2D DataStream viewer tool made it easier to
analyze clusters and identify the changes during the data
stream generated by SAMOA. With it, it is possible to
visualize trends and simulate the data in the streaming
using only the centroids calculated during the data stream
development. Given that the clustering algorithms are de-
veloped to deal with a large volume of data, find knowledge
on them without actually storing them is a satisfactory
development. Since the tool only uses the final numerical
data from the clusterings, any clustering algorithm can be
adapted so that the results can be visualized by the tool.

As future work, we intend to perform practical usability
tests, so that the tool can become more intuitive and also
look for other possible functionalities that will make the
tool more useful. We also intend to create an API inside
the visualization tool to connect with real data flows,
allowing the tool to gather, cluster and visualize the results
with the smallest latency possible.
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