
Revista de Sistemas de Informação da FSMA
n. 9 (2012) pp. 45-53 http://www.fsma.edu.br/si/sistemas.html

A Comparative Study of Multithreaded Applications
Performance in Different Scenarios

Alex G. C. de Sá, MSc student in Computer Science, UFMG ,
Marluce R. Pereira, Professor at the Computer Science Department, UFLA,

Pedro M. Moura, MSc student in Computer Science, UNICAMP and
Luiz Henrique R. Peixoto, MSc student in Computer Science and Technology, UNIFEI

Abstract—This paper presents a comparative study
of the performance of multithreaded applications in
different scenarios. These applications use the concept
of threads to solve tasks. To make each scenario being
evaluated were considered four factors: threads pro-
gramming platform (or library), operating system, ope-
rating system architecture and the priority of running
processes. We analyzed the performance obtained in
mathematical applications in a multicore processor.
The runtime operations and the number of parameters
were used in comparative performance. Results showed
that the factors referred to are actually relevant to the
parallelism inherent to multicore architectures.

Index Terms—Performance, Parallelism, Compari-
son, Multicore, Multithreaded Applications.

I. Introdução

PARALLEL computing arose with the main goal of
diminishing the time to solve high computational

cost problems whose resolution was not feasible time-wise,
either because of its time or space complexity. Meteoro-
logy, Mathematics, Bioinformatics, Chemistry and Physic
are some of the examples of the current challenges that
demand a great effort in computational processing. These
areas use algorithmic models to treat complex problems
that need a huge amount of calculations. In this case, the
time to obtain a solution for the problem at hand may be
one of the the key issues in research.

Even though scientific problems require more processing
power, there is a growing difficulty in keeping up with
Moore’s Law [9], that forecasted that processors would
have their capacity doubled every 18 months. The reason
for this difficulty is the inherent physical limitations in
the reduction of transistors size inside processors. These
limitations cause the impossibility for the industry to in-
crease the processor’s potential, resulting in a stabilization
to processors speed.

In order to avoid the limitation in chips fabrication,
the alternative was simply to multiply the number of
processing cores in the processor. Nevertheless, with those
new parallel architectures, there is the growing need to use

Corresponding Author: Alex G. C. de Sá alexgcsa@dcc.ufmg.br

parallel programming concepts in order to use the most of
these platforms processing capacity.

There are basically two different ways to get better
performance implementing concurrent applications. The
first approach is through the creation of processes, with
all the communication made through messages, which
are responsible for keeping all the necessary information
for the programs, including register content and memory
space [4]. The second approach uses thread, which are
also known as light processes [12]. These threads exchange
information only through shared memory and can be up
to 20 times faster in their creation time when compared
to processes [1].

This paper presents a study and an analysis of how to
get better performance in parallel applications based on
the second approach, that is, using threads. Our main mo-
tivation was to know which are the factors influencing the
gain or loss of performance in applications with multiple
threads (multithreading). We studied four different fac-
tors: operating systems (Windows versus Linux), differen-
ces between operating system architectures (32 bits versus
64 bits), usage of distinct thread manipulation libraries
(PThreads versus WinAPI) and change on the process
scheduling priority (common priority versus maximum
priority). This way, we can understand which is the best
way to model high computational cost problems and which
of the applicable internal and external factors influences
the most the performance.

These factors may improve or impoverish a concurrent
application performance, but this depends on the context
of the application. Hence, this work is clearly justified
by the analysis we perform on different application types
under this perspective.

One point that must be stressed is that the WinAPI,
in its thread manipulation functionalities, offers simi-
lar operations to those of POSIX-Threads. Nevertheless,
the implementations cannot be compared, since WinAPI
source code in proprietary. The lack of ways to compare
the source code justifies (and motivated) an experimental
analysis of the applications that used the concurrent pro-
gramming paradigm using for programmatic application
interfaces.

45



SÁ, A. G. C.; PEREIRA, M. R.; MOURA, P. M. et al. / Revista de Sistemas de Informação da FSMA n. 9 (2012) pp. 45-53

This article is structured as follows. Section I introduced
this paper. In order to understand how the concurrent
applications were modelled, Section II explores the rele-
vant characteristics of both PThreads and WinAPI plat-
forms. Section III reports on works related to this paper
and Section IV presents the methodology we used, that
is, the problems used for the performance analysis of both
libraries and the main project decisions. Section V presents
the results with a brief discussion for every situation and,
finally, Section VI closes this article with the conclusions
we came to and the possible challenges for a future work.

II. Thread based programs

THIS section introduces the library PThreads and
the WinAPI programming platform, so that the

reader can understand how we modelled and developed
the applications used in this paper.

A. PThreads

The main idea behind using threads consists in dividing
a single program into several different parallel tasks, so
that the heavy work gets done quicker [8]. Nowadays,
the POSIX standard for threads in Linux is commonly
used based on the standard library PThreads (POSIX-
Threads). This library offers an interface for the creation
and manipulation of threads, that execute on a pro-
gram [1]. PThreads is standardized for the C programming
language.

When the PThreads library was created, its developers
sought to keep the principles outlined by the UNIX sys-
tem kernel creators, imbibing them into the library. One
of those principles, for instance, states that the context
switch between related processes must be fast enough to
deal with each segment at the user level in a kernel thread.
Kernel processes may have different relationship levels, but
the PThreads specification demands sharing of almost all
resources [5].

Besides supplying an interface, the PThread standard
specifies several services to support multithreaded applica-
tions, such as support to specific functions, error detection
and managing functionalities [10]. Nevertheless, there are
many services that are optional in the library implemen-
tation, which can make on implication quite different from
the other. In Figure 1, we present the software layers for a
PThread using application, based on a diagram in which
the communication process between application, PThreads
library and operating system are defined.

According to Figure 1, only C based programs can use
directly the PThreads library. Any other programming
language requires an interface for PThread in order to
pass the parameters correctly, execute type conversions
and other adjustments that depend on the language or
the compiler. PThreads contains a set of functions whose
interface and functionality are defined in the POSIX-
Threads standard. The PThreads code executes partially
in user mode and inside the critical sections, operate in
kernel mode. This is a guarantee of mutual exclusion

Fig. 1. PThread software layers for an application [10].

between threads. The implementation uses several UNIX
standard libraries and also some kernel calls.

It is important to point out that the PThreads li-
brary defines functions, types and constants in the C
programming language. In this paper, we used the header
file pthread.h.

B. WinAPI

The Windows Application Programming Interface
(WinAPI) is a programming platform that is supplied
with all versions of the Windows operating systems. Its
implementation is proprietary, with all rights reserved to
Microsoft.

According with Bodnar [2], the WinAPI allows through
its source code interface to create several kinds of appli-
cations. This platform was created specially for the C
and C++ programming languages. Besides, it is the most
direct way to create applications in Windows.

Figure 2 presents the four basic components of the
WinAPI.

Fig. 2. The four basic components of the WinAPI [2].

In Figure 2, the Base Services supply access to the Win-
dows basic resources, which include file system manipula-
tors, devices, processes, threads, records and errors.The
Graphics Device Interface (GDI) is an interface to work
with graphics. It is used to interact with graphic devices

46



SÁ, A. G. C.; PEREIRA, M. R.; MOURA, P. M. et al. / Revista de Sistemas de Informação da FSMA n. 9 (2012) pp. 45-53

such as printer, monitor or a file. The User Interface offers
functionalities to create windows and controls requested
by an application. The Network Services offer access to
network resources of the Windows operating system.

Complementing the last reference, Spinellis [14] reports
that the WinAPI functionalities can be divided into eight
categories:

• Managing and administration
• Diagnostics
• Graphics and multimedia
• Networks
• Security
• System services
• User interface

The thread and processes functionality used in this
paper fit into the category System services.

III. Related Work

THE work of Silva and Yokoyama [13] has the goal
of comparing the performance of threads libraries.

The libraries compared were the GNU Pth [7], the Pro-
tothreads [6] and the PM2. Marcel [16]. During the com-
parison performed in this work, basic management, syn-
chronization, initialization and union functions for thread
functioning were evaluated. Operations that demand a lot
or a little CPU and a lot of a little input and output (CPU
Bound/IO Bound) also were evaluated. Nevertheless, the
performance of the manipulation libraries was only mea-
sured based on run time averages, varying the number of
operations and the amount of threads in the problem. This
way, it is not analyzed in this reference the real parallelism
achieved by multicore architectures. This could be done
based on the usage of program performance metrics such
as speedup. This is the main difference from the work by
Silva and Yokoyama and the work described in this paper.

Torelli and Bruno [17] propose an approach similar to
this work. It described a comparison between two different
parallel programming tools, OpenMP and PThreads. The
tests were performed in the symmetric multiprocessor
(SMP) that has four processors and shared memory. An
Euclidian distance transformation algorithm, that is used
in image processing, was used to compare the results. The
main idea in this related work was to evaluate and compare
the type of explicit type of thread based programming
(PThreads) with the directive based programming model
(OpenMP). The results indicated that the PThreads tool
has a smaller execution time. Besides, it was seen that the
larger the image, he better the performance achieved by
the tool.

The difference from this work to the one from Torelli
and Bruno is the fact that in the latter they did not
analyze and compare different applications or scenarios
(operating systems and architectures). They only varies
the size of the image to which the Euclidian distance
transformation algorithm was applied. There are several
types of applications and other scenarios in which different
results could be found. In the present work, these points
are widely discussed in the Section V.

Penha et al. [11] present a performance evaluation of
different paradigms and programming languages using
multithreading. They also performed their study com-
paring digital image processing algorithms. In this refe-
rence they compared both procedural and object oriented
paradigms, as well as the C++ and Java programming
languages. In this paper they observed that the procedural
paradigm achieved better results than the object oriented
one, considering only the C++ programming language.
Another important point to stress was that the Java
language outperformed the object oriented C++.

The difference from our work to this reference is that
we did not compare different paradigms and programming
languages. We only used the C programming language, in
the procedural paradigm. In spite of its many interesting
notes, Penha et al. did not fully explore the concepts on
multicore architecture and did not contemplate many re-
levant factors, such as the usage and the study of different
multithreading programming interfaces for the C language
(or any other chosen language); different performance of
parallel application in different operating systems; the
study of the impact of a change in the operating system
architecture and the difference in execution time and
amount of performed operations when we change the
process scheduling priority, which is orchestrated by a
multithreading application.

Therefore, this work is relevant because it observes in
minutiae the inherent real parallelism applications that
execute on multicore processor and also because we ana-
lyze several different factors that have an influence on the
performance of those applications.

IV. Methodology

IN order to analyze the performance of a set of thread
based concurrent applications, four factors were evalu-

ated. There factors determine scenarios that influence the
performance of an application.

The first factor is the supporting operating system, con-
sidering the applications implemented both in the Linux
and in the Windows environments.

For both operating system we used two distinct archi-
tectures, which consisted in the second factor. Tests on the
applications were performed both in the 32 bits and in the
64 bits architectures.

Considering that the applications were compiled and
executed in two different operating systems, a third factor
became relevant. Two differnt platforms from concurrent
applications programming were used - the WinAPI for
the Windows environment and the PThreads for Unix-like
systems.

Finally, the fourth factor is different from the others be-
cause it uses different priorities in the processes execution.
A thread based process will be scheduled with common
priority (configure by the operating system) and maximum
priority (configured before execution).

Table I presents the configurations described, specifying
what will be each scenario, that is, what factors are
evaluated in each of the scenarios.

47



SÁ, A. G. C.; PEREIRA, M. R.; MOURA, P. M. et al. / Revista de Sistemas de Informação da FSMA n. 9 (2012) pp. 45-53

TABELA I
Scenarios evaluated and their factors

Scenario O.S. Architecture Platform Priority
1 Ubuntu 11.04 32 bits PThreads Common
2 Ubuntu 11.04 32 bits PThreads Maximum
3 Ubuntu 11.04 64 bits PThreads Common
4 Windows 7 32 bits WinAPI Common
5 Windows 7 64 bits WinAPI Common
6 Windows XP 32 bits WinAPI Common

Due to the incompatibility of development standards
between the Gnome C Compiler and the Windows 64 bits
architecture, we performed tests only in its 32 bits version,
in spite of the operating system 64 bits architecture

Another issue that should be pointed out is that in
order to evaluate the applications both in the Windows
and Linux operating systems we needed to adapt the
implementations, specially in the choice of thread mani-
pulation platform and in the change of operating system
architecture.

Next we describe the set of applications we used. Four
different problems were used to estimate the performance
in the presented scenarios: calculation of millions of integer
operations per second (MIPS), calculation of millions of
floating point operations per second (MFLOPS), calcu-
lation of π using Leibniz’s method and the calculation
of a defined integral using the trapezes rule. In order to
even the situations in the tests performed, all quantitative
variables for calculations and iterations were the same
from one scenario to another. The four problems used to
develop the performance comparison are described in more
detail in the next subsections.

A. MIPS

The Millions of Integer Operations Per Second (MIPS)
algorithm seeks to estimate the number of integer ope-
rations a machine can calculate in a certain period of
time. The problem uses all types of operations (sum, sub-
traction, division and multiplication) performing the same
load on all operation types. In the simply multithreaded
method, each created thread performs a calculation in
parallel and in the end the result is integrated. The number
of operations in our tests amounted to ten billion (1E+10).

B. MFLOPS

The Millions of Floating Point operations Per Second
(MFLOPS) is similar to MIPS, with the difference that the
operations are performed on fractions stored in floating
point format, that have larger computational cost. The
number of operations in our tests amounted to one hun-
dred million (1E+8).

C. Leibniz Method

Leibniz method uses a Taylor expansion, whose sum
tends to the value of π4 . This series is shown in Equation 1.
The Leibniz method was parallelized dividing ranges of

terms between the threads, and having each thread calcu-
late the value of its range and then adding up the final
results when all threads are synchronized. In the end, the
final result is multiplied by four. The calculations amount
to a billion (1E+9) series terms.

∞∑
n=0

(−1)
n

2n+ 1
= 1 − 1

3
+

1

5
− 1

7
+

1

9
− · · · =

π

4
(1)

D. Integral using the trapeze rule

The trapeze rule is a method used to find an approxima-
tion of the result of a defined integral. The integration area
is the region under the curve defined by a curve f(x) and
bounded by points such as a and b. The method consist in
dividing the integration are into N trapezes with height h,
dividing the whole area and the final value of the integral
is the sum of the area of all trapezes under the curve.
(Equation 2).∫ a

b

f(x)dx = h ∗
N−1∑
i=0

(
f(xi) + f(xi+1)

2

)
(2)

For the tests, we used one hundred million (1E+8)
trapezes in each execution. The function used to calculate
the integral was f(x) = x3 + x2 + 2x+ 1 and the limiting
points where a = 1 and b = 2.

E. Other project decisions

The source code for the described problems were imple-
mented using the C programming language and compiled
with GCC 4.5 in both operating systems. The operating
systems used were Ubuntu 11.04, Windows XP Service
Pack 3 and Windows 7 Service Pack 1. At Linux we used
the header file pthread.h for the PThreads library and at
Windows, the header file windows.h was used to invoke the
threads with WinAPI platform. The computer used was
an AMD PhenomTM II X4 B95 with 2,99 GHz processor
clock and 3,00 GB RAM.

For the developed code to control correctly the number
of operations/interactions specified in the previous subsec-
tions, the amount of threads and the process priority (as
maximum or normal), we created scripts that manipulated
the executable file created by the compiler, adjusting each
of their parameters. Repetition loops also were coded in
order to execute the tests several times.

In order to schedule a process with maximum priority
in Linux, we used the following command:

nice -n -20 EXECUTABLE <PARAMETERS>.

The command nice sets the priority, determining that
the executable creates a process with the highest or lowest
priority from the beginning of the process. In this case, we
used a priority equals to -20, the highest one available in a
UNIX-Like system, where the priority remains inside the
interval -20 to 19.

In the Windows environment, we used the following
command to determine the maximum priority to the
process:

48



SÁ, A. G. C.; PEREIRA, M. R.; MOURA, P. M. et al. / Revista de Sistemas de Informação da FSMA n. 9 (2012) pp. 45-53

start /high EXECUTABLE <PARAMETERS>.

The command start can initiate a process with a specific
priority, which will remain constant until the end of the
process. In the case of the applications we developed, the
parameter high was used to determine that the process
priority in the highest. Windows is limited in its priority
classes, allowing only the following types: low, bellownor-
mal , normal (normal), abovenormal, high and realtime.

V. Results and Discussions

EACH problem was executed 33 times with one, two,
three and four simultaneous threads and the average

execution time was calculated, as shown in figures 3 to
6. The number of executions was chosen in order to find
statistically significative results. The highest number of
threads was chosen because it was equal to the number
of cores in the processor used in the tests. This real, the
real parallelism inherent to this architeture can achieve the
best results.

For the graphics in Figures 3, 4, 5 and 6, the legends
have the definitions from Table I. Each scenario in that
table has a different factor that is under evaluation in this
work.

Tables II, III, IV and V also use the same legends it
their lines. Their columns expose the speedup for each
number of threads, that is, the performance gain using two,
three and four threads when compared to the sequential
execution with a single thread.

For all the graphics the results are based on averages.
For this reason, we consider in the graphics the 95%
confidence interval. This was done in order to determine
the precision of the performed measurements, that is 95%
of the times those programs were executed, the results
were the same, considering the margins in the confidence
intervals. This can be illustrated in each bar of the graphics
by a solid black bar that delimits the maximum and
minimum in that interval.

The results showed that the executions had a small stan-
dard deviation, given the small margins in the confidence
intervals. There was a high standard deviation and in the
confidence intervals in the execution of MFLOPS in all
execution scenarios, with the highest values in the three
and four threads scenario, which indicates a problem with
thread scheduling in the process (user level threads) as the
number of executable lines grows. This can be explained
by the amount and type of operations (high precision) in
this problem. In the graphic in Figure 4 this increase can
be seen in details.

In Figure 3, in all execution scenarios the results showed
that increasing the number of threads, so would the num-
ber MIPS. The Scenario 6 showed close to 5,32% more
MIPS than the other scenarios.

In terms of speedup, when increasing the number of
threads, there was also an increase in performance in the
same proportion in all evaluated scenarios, which can be
seen in Table II. In this case, no specific scenario performs
best.

Fig. 3. Results for MIPS.

TABELA II
Speedup for MIPS

MIPS 2 threads 3 threads 4 threads
Scenario 1 1,99836 2,99522 3,98812
Scenario 2 1,99999 2,99439 3,97763
Scenario 3 1,99400 2,98604 3,97917
Scenario 4 1,99767 2,99662 3,98881
Scenario 5 1,99826 2,99513 3,99230
Scenario 6 1,99440 2,98423 3,98073

For the results in Figure 4, we can see that increasing the
number of threads, the number of MFLOPS executed also
increased in all contexts. Nevertheless, the Scenario 3 in-
creased this number 7,25% more than the other scenarios.

Fig. 4. Results for MFLOPS.

Another point seen in Figure 4 is that in spite of the
fact that Scenario 5 has the second largest number
of MFLOPS executed, the speedup (Table III) that it
achieved was highest than the one achieved by Scenario 3.
Since both systems use 64 bits architecture, both benefit
from the execution of this application, for several variables
in this problem perform operations with floating points,
that perform better in this architecture.

49



SÁ, A. G. C.; PEREIRA, M. R.; MOURA, P. M. et al. / Revista de Sistemas de Informação da FSMA n. 9 (2012) pp. 45-53

In the MFLOPS application we can also see that ex-
ceptions occurred that influenced the performance, given
that the speedup achieved was not stable. The more stable
speedup was found in Scenario 6. In Scenario 4 for four
threads and in Scenario 6 for three threads we could see
superlinear speedups. The Table III presents the speedup
for the MFLOPS application.

TABELA III
Speedup for MFLOPS

MFLOPS 2 threads 3 threads 4 threads
Scenario 1 1,95273 2,87901 3,98785
Scenario 2 1,94719 2,79152 3,78374
Scenario 3 1,92784 2,79359 3,89541
Scenario 4 2,01294 2,97793 4,10829
Scenario 5 2,00000 3,00323 3,93656
Scenario 6 2,00283 3,07327 3,96040

In the π calculation problem using Leibniz method,
there was a performance gain for two, three and four
threads. The confidence interval was also small, showing
a certain stability in the executions. This can be seen in
Table IV, where the speedup found was always close to
the capacity limit of the four core processor.

TABELA IV
Speedup for Leibniz

Leibniz 2 threads 3 threads 4 threads
Scenario 1 1,98469 2,97873 3,95099
Scenario 2 1,98974 2,98022 3,97332
Scenario 3 1,98717 2,97128 3,95378
Scenario 4 1,99813 2,99383 3,98998
Scenario 5 1,99771 2,99461 3,98846
Scenario 6 2,00055 3,00082 3,99713

In Figure 5 we can understand that given that the
operations in the Leibniz method are similar to the ones
in MFLOPS (floating point operations), we can justify the
smaller execution time for Scenario 3.

Fig. 5. Results for Leibniz.

In the problem of finding the integral solution using the

trapeze method, the behavior of all solutions was almost
the same in all the evaluated scenarios. As can be seen
in the graphic in Figure 6, few behavior changes occurred
when the executions were performed.

Fig. 6. Results for Integral.

Considering the speedup results shown in Table V, there
were performance gain with two, three and four threads.
We can see from that table that the results were also
close to the four core processor capacity. The exceptions
in performance achieve can be related to the operating
system scheduling method.

TABELA V
Speedup for integral

Integral 2 threads 3 threads 4 threads
Scenario 1 1,99378 2,98423 3,98439
Scenario 2 1,99809 2,98152 3,94500
Scenario 3 1,99736 2,99384 3,99304
Scenario 4 1,99674 2,98969 3,98805
Scenario 5 1,99824 2,99309 3,97724
Scenario 6 1,99913 2,99543 3,98352

Analyzing the results for Scenario 1 and for Sce-
nario 2 we can see that in almost all executions of
the four problems, the performance from Scenario 2
was inferior. The difference between both scenarios was
that the second uses a priority coded by the operating
system. We can find a possible explanation in the work of
Carissimi et al. [3], where it is reported that in several
case forcing a maximum priority for the application is
not ideal. Since this priority is configured by the user,
the same can compromise the performance, given that it
does not consider the current scheduling queue and other
important factors in the operating system that exploit the
characteristics of the hardware architecture.

We can also consider that the type of thread used in
this work was the user thread type that is controlled by
the process [15], what reinforces this explanation.

Therefore, if an application creates four threads (as we
did in this work) in a process scope and the user configures

50



SÁ, A. G. C.; PEREIRA, M. R.; MOURA, P. M. et al. / Revista de Sistemas de Informação da FSMA n. 9 (2012) pp. 45-53

it to have maximum priority throughout its execution, it
is possible that when one of the processor cores free, an
idle thread is immediately scheduled to execute its tasks
in that core, without any respect for the system process
scheduling needs and also for the thread scheduling queue
controlled by the process. This way, if the aforementioned
thread was performing in another processor core or if it
was necessary for another process to execute automatically
in the current core, the context switch for core exchange
can increase the latency in the execution of the process as a
whole, because this new condition can affect the standard
configuration of the operating system (virtual memory
descriptors, scheduler queues and other data structures),
compromising its performance.

If the user leaves the scheduling to the operating system,
it can use its supervision and event forecasting capabilities
to expect the end of a task in there processor where
the waiting process or thread wants to execute and this
wait may be smaller than the context switch time for
the processing core. Hence the global execution time may
decrease, increasing the performance.

To validate this result and its explanation, new tests
were performed in all scenarios, with the exception of
Scenario 2, which already presents an excellent result
with maximum execution priority. Table VI presents how
the results changed for each scenario, considering their
execution with maximum and common priorities.

TABELA VI
Results with maximum priority compared to those achieve

with common priority

Scenario MIPS MFLOPS Leibniz Integral
1 <0,08971% <6,87317% <0,15905% <0,42007%
3 <0,27061% <3,87829% <0,16772% <0,81466%
4 <0,19856% <2,73659% >2,25321% >0,10840%
5 <0,23265% <2,22516% >2,22593% >0,04917%
6 <0,37546% <0,09574% >0,18584% >0,06284%

The results presented in the Table VI show that the use
of priority can increase the performance of parallel appli-
cations, but this depends on the operating system used
and on the application itself. Only the Leibniz method
and the Integral application were able to achieve a better
performance with the setting of maximum priority than
allowing the operating system to regulate this factor. For
those two applications, the superior results were found
in Windows. In all other cases, the setting of maximum
priority did not help the performance of the application,
as explained in the previous paragraphs.

VI. Conclusions

IN this work we perform a study of the performance
of parallel applications in different scenarios. Each

scenario that was evaluate considered a set of factor
that can influence the performance of those applications.
These factors are related to the operating system, the
different operating system architecture, the distinction
between platforms of parallel programming libraries and

the configuration of process execution priorities. These
mathematical applications use intensely threads to help
perform their calculations.

The results showed that the factors studies are relevant
and help the applications achieve an adequate performance
in a multicore architecture. This can be seen in the gra-
phics of execution times and number of operations and
also in the speedup tables, that show results adequate to
parallel applications, which showed the expected results in
most cases.

Besides, we saw that the application type also favours
some scenarios, that is, the data structures used by some
applications may favour or hinder its performance. For
instance, applications that manipulate huge amount of
floating point data with double precision are favoured by
64 bits architectures.

As to the process execution priority, we can state that
in most cases it hindered the performance application,
with some exceptions that depended solely on the type
of application and of the characteristics of the operating
system.

As future work, we intend to study other factors that
may influence the performance of multithreaded applica-
tions. As seen in related works, the amount of iterations
or operations may be considered a factor, for it affects the
speedup achieved. Another issue that may help clear some
question is the different processor architectures. Therefore,
the use of a certain type of operating system architecture
may be beneficial for the performance of applications
treating different multicore processor architectures.

Besides, we also intend to study this issue using known
benchmark applications in order to determine more pre-
cisely the exact influence of these factors in multithreaded
applications.

Acknowledgmentss

The authors would like to thank The Computer Science
Department at the Federal University of Lavras (UFLA)
for the technical support to this work.

Referências

[1] BARNEY, B. “POSIX Threads Programing”. Lawrence
Livermore National Laboratory. 2011. Dispońıvel em:
<https://computing.llnl.gov/tutorials/pthreads>. Acesso
em: 08/01/2012.

[2] BODNAR, J. “The WinAPI (C Win32 API, No MFC) tutorial”.
2007. Dispońıvel em <http://zetcode.com/tutorials/winapi/>.
Acesso em: 07/02/2012.

[3] CARISSIMI, A., DUPROS, F., MÉHAUT, J. and
POLANCZYK, R. V. “Aspectos de Programação Paralela
em Arquiteturas NUMA”. Minicursos do VIII Workshop em
Sistemas Computacionais de Alto Desempenho (WSCAD). 2007.

[4] CORSINI, J. F., FREITAS, L. G. and ROSSI, F. D. “Com-
parando Processos entre Unix e Windows”. Revista INFOCAMP.
Março de 2006.

[5] DREPPER, U. and MOLNAR, I. “The Native POSIX Thread
Library for Linux”. Technical Report. Red Hat, Inc. 2005.

[6] DUNKELS, A. “Protothreads - Lightweight, Stackless Threads
in C”. 2005. Dispońıvel em:<http://www.sics.se/adam/pt/>.
Acesso em janeiro/2012.

[7] ENGELSCHALL, R. S. “The GNU Portable Threads”. 2006.
Dispońıvel em: <http://www.gnu.org/software/pth/>. Acesso
em janeiro/2012.

51



SÁ, A. G. C.; PEREIRA, M. R.; MOURA, P. M. et al. / Revista de Sistemas de Informação da FSMA n. 9 (2012) pp. 45-53

[8] JOHNSON, P.“Pthread Performance in an MPI Model for Prime
Number Generation”. Technical report, University of Colorado.
2006.

[9] MOORE, G. E. “Cramming more Components onto Integrated
Circuits”. Readings in Computing Architecture. Editors: HILL,
M. D., NORMAN, P. J. and GURINDAR S. S. . Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA. Pages: 56-59.
2000.

[10] MUELLER, F. “A Library Implementation of POSIX Threads
under UNIX”. Proceedings of the USENIX Conference. Pages:
29-41. 1993.

[11] PENHA, D. O., CORRÊA, J. B. T., POUSA, C. R., RAMOS,
L. E. S. and MARTINS, C. A. P. S. “Performance Evaluation of
Programming Paradigms and Languages Using Multithreading
on Digital Image Processing”. Proceedings of 4th WSEAS In-
ternational Conference on Applied Mathematics and Computer
Science. 2005.

[12] SCHEFFER, R. “Uma visão Geral sobre Threads”. Revista
Campo Digit@l. Volume 2. Número 1. Páginas: 7-12. 2007.

[13] SILVA, R. R. and YOKOYAMA, R. S. “Avaliação do De-
sempenho da Utilização de Threads em User Level em Linux”.
Revista de Informática Teórica e Aplicada - RITA. Volume 18.
Número 1. 2011.

[14] SPINELLIS, D. “A Critique of the Windows Application Pro-
gramming Interface”. Computer Standards and Interfaces. Vo-
lume 20, Issue 1, Pages: 1-8. 1998.

[15] TANENBAUM, A. S. “Modern Operating Systems (3rd edi-
tion)”. Prentice Hall Press, Upper Saddle River, NJ, USA. 2008.

[16] THIBAULT, S. “PM2. Marcel: A Posix-Compliant Thread
Library for Hierarchical Multiprocessor Machines”. 2011.
Dispońıvel em: <http://runtime.bordeaux.inria.fr/marcel/>.
Acesso em janeiro/2012.

[17] TORELLI, J. C. and BRUNO, O. M. “Programação Para-
lela em SMPS com OPENMP E POSIX Threads: Um estudo
comparativo”. Anais do IV Congresso Brasileiro de Computação
(CBComp). Volume 1. Páginas: 486-491. 2004.

Alex G. C. de Sá graduated in 2011 in Computer Science by
the Federal University of Lavras (UFLA) and is currently pursuing
his studies at the Federal University of Minas Gerais (UFMG).
He has worked with Artificial Neural Networks applied to biology
(Bioinformatics) and currently has worked in several research areas,
such as Heterogeneous Systems Modelling and Simulations (emphasis
on communication), Computational Intelligence applied to Wireless
Sensor Networks and Parallel and Distributes programming.

Marluce R. Pereira is a Professor at the Computer Science De-
partment of the Federal University of Lavras (DCC–UFLA). She
has an undergraduate degree given by Federal University of Juiz
de Fora (UFJF - 1999), masters in Computer Science and Systems
Engineering given by the Federal University of Rio de Janeiro (UFRJ
- 2001) and a PhD from the same program (UFRJ - 2006). She has
experience in Science, working mainly with Parallel and Distributed
Programming, Parallel Processing, Intelligent Systems, Constraint
Logic Programming and Software Development process.

Pedro M. Moura undergraduate degree in Computer Science by
the Federal University of Lavras (UFLA - 2011) Works mainly
with Wireless Networks, Next Generation Networks and Parallel
and Distributed Programming. He is currently pursuing his graduate
studies at the State University of Campinas (UNICAMP).

Luiz Henrique R. Peixoto undergraduate degree in Computer
Science by the Federal University of Lavras (2011), where he re-
searched on Parallel and Distributed Programming, Evolutionary
Computation and GPU Programming with CUDA. He is currently
pursuing his graduate studies on Computer Science at the Federal
University of Itajubá (UNIFEI).

52


