
Revista de Sistemas de Informação da FSMA
 n. 9 (2012) pp. 3-15

http://www.fsma.edu.br/si/sistemas.html

3

Abstract — In this paper, an overview on subjects and its
matching reference books for the teaching of two algorithm
classes in undergraduate courses on Computer Science, Computer
Engineering, Information Systems, Computer Science Teaching,
Software Engineering and other similar ones is given.
Complementary literature for these subjects are also
recommended.

Keywords — algorithm teaching, data structure teaching.

I. INTRODUCTION

Lgorithms are a fundamental subject for a Computer
Science student to learn. No matter whether he intends to

go into Graduate School or to find a job in the ID industry, he
will have to work (either directly or indirectly) with the
implementation of algorithms to solve computational problems
he will have to deal with.

Therefore, it is of the utmost importance that those students
learn this subject thoroughly. In order for a graduate in
Computer Science, Computer Engineering, Software
Engineering and Computer Science Teachers School to have
an adequate introduction to algorithms, the following subjects
on algorithms re suggested:

(1) basic information on algorithms, variables,
constants, variable types, conditional structures, loop
structures, arrays and matrices, records, files and
pointers;

(2) abstract data types, lists, queues, stacks, priority
queues, recursion, algorithms execution time
comparison, sorting algorithms, array search
algorithms, hashing and hash tables;

S. L. Gonzaga de Oliveira is a full professor at the Computer Science
Department at the Federal University of Lavras, Phone: +55-35-3829-
1545/1945 (e-mail: sanderson@dcc.ufla.br).

(3) concepts and mathematical properties of trees,
binary and –n-ary trees, tree traversal methods, binary
search trees, balanced trees and Huffman code;

(4) heaps and external sorting, red-black trees, B-
trees and its variations, introduction to digital search,
introduction to graphs, algorithms for graphs and
string matching algorithms;

(5) algorithms exactitude, algorithm analysis,
asymptotic notation, recurrence resolution, paradigms
and techniques for the project of algorithms,
polynomial reduction and NP-Completeness.

The choice of these subjects is based on a mix (detailed
extension) of recommendations coming from the reference
curricula from the Brazilian Computer Science Society (SBC,
2012a) and Association for Computing Machinery (ACM,
2012) for the courses we are studying.

When discussing algorithms and data structures, one may
consider the fact that these reference curricula are dated from
1970 and 1980, especially on the works of authors such as
Knuth, Aho, Hopcroft and Ullman. This is due to the fact that
these authors were major contributors in the consolidation of
several of the topics at hand. On the other hand there is a need
to adequate the teaching to the IT market needs (including the
scientific careers), which will be guaranteed solely by the
constant update that these societies perform on their curricula.

A recommendation from these entities may be considered
enough to include a topic on a graduation course.
Nevertheless, in this paper the topics concerning items 4 and 5
are specified and detailed. Hence, justifications for the
inclusion of each subject matter are discussed throughout the
text.

An Overview on Subjects and Reference
Literature for Two Algorithm Classes

Sanderson L. Gonzaga de Oliveira

A

Gonzaga de Oliveira , S. L. / Revista de Sistemas de Informação da FSMA n. 9 (2012) pp. 3-15

4

In the SBC Reference Curriculum (2012ª) it is stated that
“the way this content will be taught in a course is established
by the didactic and pedagogical project and is at least as
important as the simple distribution of topics into subjects”.
Besides, this document states that “given the strong
dependence between the curricular grid and the didactic and
pedagogical project, these elements should be created
together”. At the undergraduation level, it is suggested that the
topic presentation follows (at least approximately) the given
order. Depending on the depth to which each topic is taught, it
is possible that some of the topics may be absent from a single
semester subject. For instance, we can either select the topics
of items 2 and 3 that are more pertinent in a single semester
subject or present them in two semesters. In the latter, the
subjects can emphasize algorithm implementation.

 It is possible that some of these items are covered in
Computer Science undergraduation courses. On the other
hand, Computer Engineering, Information Systems, Computer
Science Teaching and Software Engineering should cover
most of the items, depending on the graduate profile intended.

 Graduates from Computer Science courses must not have
only a superficial understanding of algorithms and data
structures, because they are the foundation of a software
implementation. For instance, a software engineer must know
deeply requisite analysis, project patterns and systems
architecture, testing, software quality and business modeling,
among other topics. Nevertheless, for a software engineer,
knowledge on data structures is also relevant, because he will
probably will also work on software development, create the
systems projects and managing teams, which imply on
knowledge on how the technician develop the systems in order
to achieve high quality.

 The same can be said about a graduate from an Information
Systems course, which intends for its graduate course to work
in corporate either middle or high management. For Computer
Science graduates, the need for this knowledge is more
obvious, given that their course provide skills to them to work
in all activities related o IT and communications in
corporations.

 The focus of the previous paragraphs on market oriented
careers does not mean that a scientific researcher does not
need to understand deeply the science and the application of
algorithms. After all, the scientific career is based on the
ability to solve complex scientific and computational problems
and it is impossible to solve them without the basic knowledge
on Computer Science, among which we must include
algorithms and data structures.

 It is reasonable to assume that a graduate that follows a
scientific career is able to be a good non academic
professional. The advantages in the presentation of these
contents to non academic professionals have already been
discussed and will be further explored in this document.

 The topics presented in this introduction (which will be
subject to further detailing in this document) may be
understood as the basic subjects necessary for the graduate to

become a good IT professional. Nevertheless, we do not claim
that this list is exhaustive and other additional topics may be
included in this list, according to the needs perceived by
instructors from analysis on the market where the graduates
will work.

Nevertheless, understanding the topics in items 4 and 5 may
offer an important contribution to the understanding of the
following subjects, such as:

• Optimization whose probable topics are heuristics,
linear programming, simulated annealing, taboo
search, genetic algorithms, GRASP etc.;

• Artificial intelligence, whose probable topics are
notions on search algorithms, MiniMax methods,
probabilistic methods (bayesian networks, Markov
models, decision theory), machine learning, neural
networks, fuzzy logic, expert systems, etc.

The topics listed are also evaluated in the yearly tests in the
National Exam for Graduate Studies (POSCOMP)1. It can be
seen that the POSCOMP exam can guide the choice of
contents in undergraduate courses, for it shows what are the
fundamental concepts a bachelor must know in order to follow
an academic career.

In table 1 the number of questions related to topics 2, 3, 4
and 5, in the five last POSCOMP exams can be seen. In this
table, the number of questions related to the following
subjects, such as Optimization and Artificial Intelligence can
also be seen. As stated before, classes with the subjects 2, 3, 4
and 5 cover the basic topics that are necessary for the
understanding of these two subjects. In the count shown in
table 1, questions of graphs were not included because they
were considered as belonging to the disciplines Discrete
Mathematics or Graph Theory.

 The suggestions we make in this paper do not exhaust the
discussion and, obviously, each faculty must adapt the
curriculum to its local and geographical reality. As we
commented before, the topics and the depth to which it is
taught depend on the profile of the graduate as defined by
faculty. As such, if the faculty intends for the graduate to be
well prepared for a high level academic career, the topics
mentioned in items 2 to 5 are of utmost importance.

 Among dozens of undergraduate subjects, the content
included in items 2, 3, 4 and 5 have comprised between 10%
and 17% in the POSCOMP exams for the last five year. We
can consider without much of a leap of faith that the
concentration on those topics is proportional to the importance
they have in Computer Science courses.

1
 To know more about POSCOMP, we suggest visiting SBC’s

web page (2012b).

Gonzaga de Oliveira , S. L. / Revista de Sistemas de Informação da FSMA n. 9 (2012) pp. 3-15

5

Table 1: Amount of questions at the POSCOMP related to
subjects 2, 3, 4, 5 and the folowing ones (Optimization and
Artificial Inteligence – considered in columns 6) for the last 5
years.

Subject

Year

2 e 3

4

5

6

Percent when
compared to total

number of questions
in the exam

2011 5 1 3 3 ~13

2010 2 2 8 1 ~17

2009 5 3 1 1 ~13

2008 2 0 5 1 10

2007 3 0 4 3 10

Besides, the knowledge on the fundamental techniques on
algorithms is very important for non academic professionals to
develop high quality computer systems. For instance, computer
systems should not have problems coming from low efficiency
implementations and these problems can be avoided (if not
completely) if the development team knows deeply the
techniques and methods already established in the field. It is
not uncommon for those problems to arise and surely many of
them could have been prevented either they were better
developed or the developers in charge had been trained with
the basic knowledge on the items 2 to 5.

 We can assume that Brazil has the potential to become a
world power in the production of information systems and
computational techniques, shedding the status of IT consumer.
There are many current examples in which excellent ideas
arise in the academia and clearly an appropriate foundation
must be fomented.

 Therefore, the fundamental goal of this paper is to give
some information to substantiate a discussion on the issue. In
order to achieve this goal, this paper is organized as follows: in
section II the important books for bibliographic references for
the topics included in items 4 and 5 are discussed. In sections
III and IV, the possible contents for the subjects on items 4
and 5, are respectively discussed.

 In each subsection of sections III and IV there are comments
on each topic, their corresponding references and the reasons
why those topics are important for basic algorithm studies. In
the last subsection of each of those sections, the suggestions on
reference books for each topic in the section and suggested
textbooks and complementary literature are summarized. Final
thoughts are expressed in section V.

II. IMPORTANT BOOKS FOR THE BIBLIOGRAPHY OF

TOPICS LISTED IN ITEMS 4 AND 5

In this section the possible reference books for topics listed in
sections 4 and 5 are discussed. For those, the second edition of
the book written by Cormen et al (2001) has been widely used
in Brazil. There is a Portuguese version of this book but it is
less used than its English counterpart, apparently for
translation issues.

In this paper, we will comment on the third edition of this
book: Cormen et al. (2009). This book, written by Cormen,
Leiserson, Rivest e Stein (CLRS), has been the most used in
the best universities in Brazil and balances well mathematical
rigor (a fundamental aspect of demanding courses) and
didactic, for the writers have the gift of writing precisely,
clearly and objectively.

Besides, its scope is a major advantage since this book covers
most of the main computational problems, its algorithms and
data structures. It has been listed as one of the most quoted
reference in Computer Science for many years and since its
first edition it has been reprinted either every six months or
every year, each time with some corrections many of them
pointed out by its thousands of readers.

Therefore, when we read CRLS opus, we can be pretty
confident that all the subjects described are correct and we
have a strong foundation on algorithms. In the end of each of it
35 chapters the authors included descriptions in order to
provide the curious reader with references to publications in
which he can find knowledge on the state of the art of each of
the approached topics.

Given those characteristics, CRLS opus has each day
increased its standing in the academia. Therefore, there are
professors that do not even consider textbooks in those
subjects other than CRLS. In fact, in average the CLRS book
can be considered as the most adequate for an introduction to
algorithms.

 Nevertheless, in spite of the excellence of this book, if we
search the Internet we can find some criticism on it, especially
on the small number of examples and the lack of solved
exercises. Besides, there are important topics such as external
sorting that are not described in this book. For some reason
that is outside the scope of this paper, the authors could not go
any deeper (in the already 1292 page long book) in some
topics or include other relevant topics on algorithms.

Yet, in spite of the excellent quality of its presentation, there
are books that describe some topics better than CLRS,
especially when considering didactic, formal rigor amount of
examples and solved exercises. These are the books in specific
topics that this paper describes.

Another set of already classic books that must be mentioned
are the ones written by Knuth (1997, 1981, 1998, 2001). The
discussed subjects are exhausted by the author. The explained
subjects are not trivial but in spite of their complication and
scope, the author knows how to choose the correct words in

Gonzaga de Oliveira , S. L. / Revista de Sistemas de Informação da FSMA n. 9 (2012) pp. 3-15

6

order to be brief and yet describe appropriately all important
concepts on algorithms and data structures.

Knuth wrote his books with clear and precise language, not
being excessively technical and managed to approach all
subjects with the adequate depth yet is still funny, having
included several humorous remarks which render some
amusement to the study of Computer Science. I hope that the
reader is granted the opportunity to study his books and amuse
himself as much as myself. In spite of that, there are teachers
that do not consider Knuth’s books approachable enough for
the typical undergraduate student. Nevertheless, there are
topics that are better described in his books than in others, so
that his books may be used in undergraduate courses on some
specific topics.

These books are excellent for the subjects listed in items 4
and 5. Nevertheless, there are other books that should be
considered for the main or auxiliary bibliography on those
topics. Those are the references discussed in the next sections.

III. POSSIBLE CONTENT FOR A SUBJECT ON

ALGORITHMS LISTED IN ITEM 4

For a discipline on algorithms as listed in item 4 in one of
the mentioned undergraduate courses, one may include heaps,
external sorting, red black trees, B trees and its variations,
introduction to digital search , introduction to graphs and its
algorithms and string matching algorithms.

These topics are commented in the following subsections.
For each one of them the suggested corresponding reference
literature for an undergraduate subject is included.

A. Heaps

Heaps are an excellent way to implement priority queues.
Williams (1964) developed this data structure for the heapsort
algorithm. It is important not to confuse the heap data structure
with the term heap used when discussing dynamic memory
allocation.

Heaps are important for several algorithms. For instance,
heaps are used in graph algorithms (see subsection F below).
They can also be found in the implementation of the Prim
algorithm to find the minimum spanning tree. The A* (Hart et
al., 1968) and SMA* (Russel, 1992) search algorithms also
used priority queues that can be implemented using heaps.

Knowledge on fundamental data structures such as a heap is
also important for those who will develop network protocols.
An example of their usage is Dijkstra’s algorithm (1959)
which is the basis for link state routing. Heaps can also be used
for transmission line (such as VoIP connections) bandwidth
management in network routing. Many protocols for Local
Area Networks (LAN) use priority queues (that can be
implemented using heaps) in their medium access layer (MAC
- media access control) - VoIP and IPTV are concrete
examples of this. For an introduction on these subjects, please

refer to computer network books such as Tanenbaum (2003) or
Kurose and Ross (2006).

 In order to study the heap data structure, the following
references are recommended:

• In its sixth chapter, CLRS (2009) presents in a
didactical way heapsort, heaps and priority queues;

• Priority queues and heaps are described in a succint
way in the sixth chapter of Szwarcfiter and
Markenzon (2009);

• an objective and precise presentation of priority
queues and heapsort is given in chapter 9 of
Sedgewick (1998);

• a forth approach that should be highlighted because
of its good didactic is subsection 4.3.1 in Skiena
(2008), which is fully dedicated to heaps.

B. External Sorting

Consider the situation where we want to sort a set of elements,
a problem that is sometimes presented in a second subject on
algorithms. Examples of theses algorithms are Bubble Sort,
Insertion Sort, Selection Sort, quicksort, heapsort and
mergesort.

In order to use one of those algorithms, all dataset needs to
be in main memory. When the main memory is not large
enough to hold the entire data set being ordered, an external
sorting algorithm must be used. In this algorithm, only a
fragment of the dataset is loaded into main memory at each
phase, while another part remains in external (or secondary)
memory storage, such as hard disks. In this context, the
algorithms mentioned before could be called internal sorting
algorithms.

 For an Information Systems course, in the SBC Reference
Curriculum (2012a), it is recommended to have a subject in
which Sorting and Searching is deeply taught. Besides, it
should be taught the concepts on “searching and sorting
algorithms both in main and secondary memory”. For a course
on Computer Science teaching, the recommendation is to
completely teach these subjects.

 External sorting algorithms can be very important for
developers that must work with huge datasets, something that
has become common in organizations that prioritize gathering
data from day to day transactions.

It is also important to teach the basic external sorting
algorithms in undergraduate courses so that the students can
realize that simple algorithms can breed ingenuous solutions to
problems that can be deemed as complex. Besides, the
students can then use those basic problem solution concepts to
create new solutions for the problems they will have to solve
when pursuing either an academic or an IT industry career.

External sorting is used in important business applications
such as in databases transactions. For instance, consider the
situation where a user requests a subset of columns from a
certain table from a specific database. The request is granted

Gonzaga de Oliveira , S. L. / Revista de Sistemas de Informação da FSMA n. 9 (2012) pp. 3-15

7

through a file, in which there may be duplicated records.
Hence, an external sorting algorithm can be used to delete the
duplicate records before sending them to the user.

 Some basic external sorting algorithms that can be taught at
the undergraduate levels are: balanced multi-way merging,
polyphase merge sort and replacement selection. For this topic,
the following bibliography is suggested:

• Ziviani (2011) has a good description on those
algorithms in its section 4.2;

• an even better presentation is given in section 11.3 of
Sedgewick (1998).

Another algorithm that is quite simple and very interesting
is the natural selection that shows a small but significant
change to replacement selection. It is probable that the only
book that has already described this algorithm up to 2011 is
Knuth (1998).

C. Red-blacktTrees

A red-black tree is a binary search tree that is
approximately balanced. A binary search tree (which will be
presented probably in the second subject on algorithms) shows
O(h) time in all its basic operations , in which h is the height of
the tree. Hence, the search can become linear in degenerate
trees. Meanwhile, a red black tree shows O(log n) time for all
its operations, in which n is the number of nodes in the tree, in
the worst case.

 Red-black trees can be said to have performance and basic
characteristics similar to those of AVL trees, which are widely
studied. Nevertheless, the re-balancing of red black trees is
more efficient and so they can be taught as a more efficient
way to implement balanced trees (and even priority queues).
For instance, red black trees are used at the Completely Fair
Scheduler, which is the scheduler of the Linux core starting
from version 2.6.23 (see, for instance, Jones, 2009, for
details).

 Red-black trees can also be used in real time applications
because of their performance. Besides, they can also be
represented by 2-4 trees, which are a type of B Tree (see the
following subsection).

 For this topic, the following bibliography is suggested:

• Red-black trees are presented in an excellent way in
chapter 13 of CLRS (2009),

• Szwarcfiter and Markenzon (2009) also present a
good description of red-black trees in its subsection
5.4;

• there is a very good description of red-black trees in
section 13.4 of Sedgewick (1998).

D. B-trees and its variations

In a B-Tree the data are sorted in such a way that sequential
access, insertions and deletions are performed in logarithmic
time. Its variations are important in the implementation of both
database management systems and operational systems file
systems.

In the SBC Reference Curriculum (2012a) it is
recommended that B and B+ trees shall be taught deeply in the
Information Systems and Computer Science Teacher courses.

For this topic, the following bibliography is suggested:

• CLRS (2009) presents the concepts of the original B-
tree, its operations and pseudo-codes in a most
detailed way;

• an extremely didactic approach of B-trees and its B*
and B+ variations is made at subsection 7.1 of
Drozdek (2002);

• a clear and concise description of B-trees is also
given in section 16.3 of Sedgewick (1998), in which
the codes in C++ are also presented.

E. Introduction to digital search: tries and Patricia trees

Basic trees for digital search are simple and amenable to
undergraduate level teaching. A trie (from retrieval) is a tree in
which the data remain ordered.

A trie is used to store contents whose keys are usually
strings. They are very efficient in the search for keys, such as
in dictionaries. Their search time is proportional to the size of
the key and can also be helpful in the search for prefixes and
similar words, what can be very useful in devices with limited
keyboard interface, such as cell phones and other portable
devices. A didactic presentation of tries is available at
subsection 7.2 of Drozdek (2002).

 In a Patricia tree, which is a special kind of trie, each
internal node stores the index of the most significant bit to be
verified in order to decide which branch to follow in a search
operation. Namely, in this tree, we follow all the branches
according to the bits of the search key and not according to the
result of the full key comparison. Strings, integer sets such as
IP addresses and arbitrary generic sequence of objects in
lexicographical order are examples of keys that can be used
with this kind of tree.

For these topics, we suggest the references:

• Introduction to digital search, tries and Patricia trees
are well described in chapter 9 of Szwarcfiter and
Markenzon (2009),

• subsection 5.4 of Ziviani (2011) because of its
didactic presentation;

• the most detailed explanation is the one given by
Sedgewick (1998) in sections 15.2 and 15.3.

Gonzaga de Oliveira , S. L. / Revista de Sistemas de Informação da FSMA n. 9 (2012) pp. 3-15

8

F. Algorithms for Graphs

The reader can observe that in the SBC reference curriculum
(2012a) it is recommended that notions of algorithms for
graphs shall be given in Computer Science Teacher courses.
The basic problems connected to graphs are:

• Visit all vertices in a graph (depth-first and breadth-
first search),

• Minimum spanning tree (Prim, Kruskal and Boruvka
algorithms),

• Minimum path from one vertex to the others (Dijkstra
and Bellman-Ford algorithms),

• Minimum path between all vertices (Floyd-Warshall
algorithms)

• Maximum flow (Ford-Fulkerson algorithms), a
problem from the area of network flow.

Visiting all vertices in a graph or searching for a specific
vertex is relevant in several situations, such as for Internet
applications, given that routers can be modeled as vertices and
their connections as edges. Another example is a computer
game in which players are vertices and the field of vision
between them the edges – in this case, an attack can be
planned using breadth-first search. Depth-first search designed
using backtracking (see algorithms construction techniques)
can be one of the simpler recursive search methods.

Consider that a method receives a graph and must return a tree
(an acyclic graph) that contains all vertices and the cost to visit
all vertices is minimized. This tree can be called minimum
spanning tree and is used, for instance, in applications in the
field of Electrical Engineering.

In order to be presented to students, the minimum path
problem can be associated with network routing, such as in the
Internet. Dijkstra’s algorithm, already mentioned, is the basis
for link state network routing, so it is an example in which the
teacher has a great opportunity to stress the importance of
algorithms that are a part of the students’ daily life. Examples
of routing protocols based on link state include Intermediate-
System-to-Intermediate-System (IS-IS) and Open Shortest
Path First (OSPF). To know about IS-IS, see Tanenbaum
(2007, p. 389) or the Request for Comments (RFC) 1142, at
http://tools.ietf.org/html/rfc1142. To know more about OSPF,
see Tanenbaum (2007, p. 483-488), Kurose and Ross (2006, p.
255-256) and the RFC 2328, at
http://tools.ietf.org/html/rfc2328. The updates for IPv6 are
specified at the version 3 of OSPF at the RFC 5340 from
2008, available at http://tools.ietf.org/html/rfc5340.

The maximum flow problem is associated with the problem of
taking something from a source to a sink in a network (or a
graph). Using the term network instead of graph comes from
the first publications in this field in the 1950s. The problem of
maximum flow is the foundation for several applications such
as image segmentation and flight programming for air
transportation companies. A simple example that might be
presented to students is the application of Barnett et al. (2007)

that used the concepts of maximum flow in the positioning of
networked sensors in the streets for urban security purposes.

 There are other problems with their corresponding
algorithms that could be taught in such a class, but they might
render the content to large for a 60h subject in which other
topics also need to be taught. Besides, in order to approach
algorithms for graphs one needs to introduce their
terminology, basic representation forms, adjacency matrices
and list, and incidence matrix.

 For this topic, the suggested bibliography is:

• the best book for these subjects is CLRS (2009),
because its descriptions are precise, objective and
presented in a most didactic way; in general, CLRS
(2009) has dedicated a chapter for each of the
problems and their corresponding algorithms, in
which the student will find a nice presentation of the
algorithms with complete examples;

• Sedgewick (2002) is an excellent book, specific on
graph algorithms, in which the author goes deep into
each algorithm, presenting them in C++;

• another didactic description of the algorithms
comprised in this topic in Skiena (2008), in the
chapters 5, 6 and 11.

G. String searching algorithms

The goal of these algorithms is to find the occurrences of a
pattern (string) in a text. Applications of these algorithms
include text editing, DNA sequence analysis and information
retrieval.

For this topic, the suggested bibliography is:

• CLRS (2009) has a good description for the
algorithms that can be used to solve this problem in
its chapter 32;

• Objective and precise descriptions can also be found
in chapter 10 of Szwarcfiter and Markenzon (2009)
and

• Chapter 8 of Ziviani (2011), which is a good
description of those algorithms.

H. Table with contents and suggestions of textbooks

In table 2 the textbook suggestions for each topic that should
be taught in a subject composed by item 4 are summarized.
CLRS (2009) and Sedgewick (1998) are recommended as the
main textbooks for this subject.

In case it is necessary to use three textbooks, we suggest
Drozdek (2002) because of its description of B-trees and its
variations. Knuth (1998) should be the main complementary
literature for this subject.

Gonzaga de Oliveira , S. L. / Revista de Sistemas de Informação da FSMA n. 9 (2012) pp. 3-15

9

Table 2: Textbook and complementary reading
recommendations for the topics that should be taught in the
subject composed by item 4.

Topic Textbook
Auxiliary
textbook

Second
auxiliary
textbook

Heaps CLRS (2009)
Sedgewick

(1998)

Szwarcfiter
and

Markenzon
(2009)

External
sorting

Knuth (1998)
Sedgewick

(1998)
Ziviani
(2011)

Red black
trees

CLRS (2009)
Sedgewick

(1998)

Szwarcfiter
and

Markenzon
(2009)

B Trees and
its variations

Drozdek
(2002)

CLRS (2009)
Sedgewick

(1998)

Introduction
to digital
search

Sedgewick
(1998)

Szwarcfiter
and

Markenzon
(2009)

Ziviani
(2011)

Introduction
to graphs and
its algorithms

CLRS (2009)
Sedgewick

(2002)
Skiena
(2008)

String
matching

algorithms
CLRS (2009)

Ziviani
(2011)

Szwarcfiter
and

Markenzon
(2009)

IV. POSSIBLE CONTENTS FOR A SUBJECT ON

ALGORITHMS AS LISTED IN ITEM 5

For a subject composed by item 5 in an undergraduate
course, the topics that can be taught are: algorithm exactitude,
algorithm analysis, asymptotic notation, recurrence solving,
paradigms and techniques for algorithm project, polynomial
reduction and NP-Completeness. This subject is sometimes
called Design and Analysis of Algorithms.

 In the SBC reference curriculum (2012a) it is recommended
that this subject be taught in depth at Computer Science
Teacher courses. For information systems courses, all the
content must be presented and the recommended syllabus:
“Algorithm development; Techniques for the design of
algorithms, asymptotic analysis of complexity limits,
techniques to prove inferior limits, analysis of recursive
algorithms, dynamic programming, probabilistic algorithms,

pessimistic, minimal and average problem complexity, classes
of problems: P, NP, and NP-complete”. In the ACM reference
curriculum (2012) the presentation of these items is essential
in a software engineering course.

The contents suggested in this paper are commented ahead and
the corresponding textbooks that are more adequate to an
undergraduation course are suggested.

A. Basic math review for algorithm analysis

A review of discrete math may be important to foster the
learning of algorithm analysis, what is especially true given the
low level of knowledge many students entering high level
education possess. For this topic, the following books are
suggested: Gersting (2004), Rosen (2007), Graham et al.
(1995) because of its didactic presentation. In the appendix A
of CLRS (2009), there is a good review on summations.

B. Algorithm exactitude

In order to present a new algorithm, it is necessary to prove
that it always returns the expected output for the input domain
and also that it will always finish. Academic presentation of
this notion is important in the courses that interest us, allowing
for the validation of the developed applications, both in the
academic and in the IT industry realm.

Good presentations of these topics are available at the chapter
5 of Harel (2004), section 13 of Skiena (2008), a book that
contains many proofs of exactitude for different algorithms
spread through many sections. We also need to mention the
didactic presentation of CLRS (2009) about invariant loops in
its section 2.1.

C. Algorithm Analysis

It is often not enough for a computational problem to be
solved – it must be solved in an efficient way so that the
program execution finishes quickly enough for the application
in its domain. In order to understand algorithm efficiency, we
must study algorithm analysis, because a problem represented
by an algorithm asymptotically slow may not be useful
(Goodrich and Tamassia, 2004), even if the hardware is much
improved. Therefore, performing algorithm analysis may be
deemed as important as solving the problem.

A formal foundation on algorithm analysis is a fundamental
topic for the graduates in all mentioned courses, especially
those that intend to develop applications in computationally
intensive domains that are very common in the academia and
not so scarce in the IT industry. The knowledge on algorithm
analysis is especially important for those that will work in
fields such as optimization, artificial intelligence and digital
image processing.

 The best bibliography for this topic is:

Gonzaga de Oliveira , S. L. / Revista de Sistemas de Informação da FSMA n. 9 (2012) pp. 3-15

10

• CLRS (2009) have a didactic presentation of the topic
in its chapter 2;

• Goodrich and Tamassia (2004), in its chapter 1,
present more detail than those in CLRS (2009) and
thus deserve to be either a textbook or a
complementary reading in this topic;

• Another interesting text is chapter 4 in Brassard and
Bratley (1996) for its didactics.

• A forth text tthat can be used is subsection 1.2.10 of
Knuth (1997), in which this topic is presented
objectively.

Often, the cost of an operation in a certain data structure is
high in a certain phase, but this cost can be amortized in the
amount of operations executed when they grow a lot. The
literature on amortized analysis is:

• CLRS (2009) is the most indicated for the authors
present aggregate analysis, accounting method,
potential method e show examples of applications of
all methods in dynamics tables in chapter 17;

• Goodrich and Tamassia (2004) present a didactic
description of amortized analysis in its section 1.5;

• Skiena (2008) can be an option also because of its
didactic presentation.

D. Asymptotic Notation

Asymptotic notation in deeply connected to algorithm analysis,
being very important to understand the efficiency limits of an
algorithm. This topic must be presented adequately and in
details in undergraduate courses that include algorithm
analysis. For this topic, the following literature is suggested:

• The best description on this topic is Graham et al.
(1995) , in its chapter 9;

• The description of notations O, Ω, Θ, o e ω in chapter
3 of CLRS (2009) is also interesting and quite
balanced between formal rigor and ease of
understanding;

• Goodrich and Tamassia (2004) also present a didactic
description on this topic in its section 1.2.

E. Recurrence resolution

Usually, execution time of a recursive algorithm is expressed
as a recurrence. Since recursive algorithms are widely used, it
is important to include a systematic study of recurrence
resolution in an undergraduate subject.

Recursive algorithms often present worse computation
performance or use more memory than its iterative
counterpart. Knowing how to determine whether or not a
recursive algorithm is efficient may be relevant in many

applications in information systems, academic, technical or
scientific that will be created by professionals.

 For this topic, the following literature is suggested:

• One of the best approaches on he topic is given by
section 2.3 of Brassard and Bratley (1996), because
of its depth and didactic;

• Section 7.3 of Graham et al. (1995) is also excellent
due to its objectivity and precision;

• There are didactic presentations on this topic ins
sections 7.1, 7.2 and 7.3 of Rosen (2007) e

• Section 2.3 of Gersting (2004), also because of its
didactic presentation.

F. Paradigms and techniques in algorithm design

Usually, a beginner student learns to create algorithms in a
naive way. After he acquires some experience on the field,
some well known and quite simple techniques for algorithm
design must be presented to the student.

Among the important paradigms and techniques for algorithm
designs, we can mention the following:

• Brute force (or exhaustive search)

• backtracking, a variation of brute force;

• branch-and-bound, a variation of backtracking;

• recursion;

• balancing;

• incremental approach;

• divide and conquer;

• greedy algorithms;

• dynamic programming;

• approximate algorithms;

Knowledge of this paradigms and basic techniques may speed
up the adequate development of information systems, avoiding
a naive implementation. In order to adequately compare the
different approaches, complexity analysis, described before,
must have been presented beforehand.

There are authors that consider that textbooks must present
a paradigm or technique of algorithm design in a chapter and
then present applications and examples of the technique to
solve classical problems. Usually, in those books the title of
the chapter is equal to the name of the paradigm or technique,
and its structure follows the rule of a brief introduction
followed by some algorithms that exemplify it. For instance,
CLRS (2009) follow this scheme. The authors have dedicated
its chapter 4 to the paradigm of divide and conquer its chapter
15 to dynamic programming and its chapter 16 to greedy
algorithms. Nevertheless, there are other books whose

Gonzaga de Oliveira , S. L. / Revista de Sistemas de Informação da FSMA n. 9 (2012) pp. 3-15

11

approach one may consider superior and those are the ones
recommended:

• Ziviani (2011) describes this topic in a didactic and
objective way in its chapter 2, which is fully
dedicated to paradigms and techniques for algorithm
designs.

• Goodrich and Tamassia (2004) present this topic in
its chapter 5 in an interesting fashion, for going
deeper than the other books in this topic.
Nevertheless, its coverage is less wide than the
previously mentioned book.

• Another interesting approach for this topic is the one
presented by Aho et al. (1974) because the authors
also present this topic in a precise and didactic way.

If one wants to talk specifically about recursion, the study of
chapter 5 of Sedgewick (1998) is important because of its
depth on the subject. Besides, in this book there are also
interesting sections on divide and conquer (5.2) and dynamic
programming (5.3) that have thorough and deep presentations.

 The following books are commendable on the issue of the
divide and conquer paradigm:

• A good introduction is given in chapter 4 of CLRS
(2009), in which the substitution method, the
recursion tree method and the master methods are
presented in a didactic way, besides having comments
on Akra-Bazzi method;

• In subsection 5.2.1 of Goodrich and Tamassia (2004),
there is also an introduction to the analysis of
recursive algorithms, in which they describe the
execution time of divide and conquer algorithms;

• A third option that is quite didactic on the resolution
of recurrences that arise in the divide and conquer
algorithms is section 7.3 of Rosen (2007).

G. NP-Completeness

In the undergraduate courses mentioned, the theory on NP-
Completeness must be approached with some depth, because
the students must understand that the problems are more
important than the algorithms that solve them. There are
several (even thousands, if we account for variations)
important problems that have been described for which there
are neither known polynomial algorithms nor proof of an
inferior non polynomial limit of time for an algorithm to solve
them.

Surprisingly for some, these problems are quite common in
the Engineering field. The traveling salesman problem is
probably the best known of them and it accounts for a situation
in which the minimum cost traversing each graph vertex must
be found. For this situation, imagine a professional asked to
solve this problem in a transportation company. If a naive
algorithm is used, the time required to solve it will be so high

that any manager above the developer of the algorithm will
probably have some doubts about his/her ability as a
professional, especially if the developer requests more potent
hardware to solve the problem. This situation is described in
an amusing way in the first chapter of Garey and Johnson
(1979).

 PxNP is considered to be one of the most important
unsolved problems in Computer Science and Mathematics. For
instance, even in optimization, it is common to find
programmers that work in NP-Hard problems without knowing
adequately the fundamentals of this theory.

Garey and Johnson (1979) is the classical book that is most
often quoted on NP-Completeness and one of the most
referenced books in Computer Science. Just as is presented by
Garey and Johnson (1979), the classes in this theory must be
defined formally in terms of a computing model, and the
Turing machine may be particularly adequate for this purpose.

The first chapter of this book is a comprehensible
introduction to NP-Completeness. In the second chapter, the
authors formalize the main classes according to the Turing
machine. Example proofs of NP-Completeness are given in
chapter 3, whereas the authors show how to use it to analyze
problems in chapter 4. In chapter 5 the authors describe
concepts on NP-hardness and in chapter 6 they show dome
guarantees of performance for approximate algorithms. In
chapter 7, they approach the theory beyond NP-Completeness
and in the appendix they describe the NP-Complete problems
known at the time of their writing.

 Another book recommend for the study of NP-
Completeness is Sudkamp (2007) because its presentation is
very didactic. Besides, another excellent desciption on the
basic classes of NP-Completeness according to Turing
machines is given in chapter 10 of Aho et al. (1974). For a
didactic approach on NP-Completeness without any
formalization according to computing models, the
recommended reading is chapter 34 of CLRS (2009).

 The important topic related to NP-Completeness are:

• basic concepts of polynomial reductions, on which a
good didactic presentation is given by Manber
(1989);

• proofs of NP-Completeness, for which CLRS (2009)
and Manber (1989) are adequately simple and easy to
understand;

• demonstration of the theorem of Cook-Levin, for
which the references Sudkamp (2007), Garey and
Johnson (1979) and Aho et al. (1974) re pointer for
references because of their formality and simplicity.

H. Table with contents and suggestions of textbooks

In tables 3 and 4 the textbook suggestions for each topic
described in this section are summarized. In table 3 the topics
and books suggested for algorithm exactitude, basic math

Gonzaga de Oliveira , S. L. / Revista de Sistemas de Informação da FSMA n. 9 (2012) pp. 3-15

12

review, algorithm analysis fundamentals, amortized analysis,
asymptotic notation and recurrence resolution are listed.

Table 3: Textbook and complementary reading
recommendations for the first part of the topics that should be
taught in a subject comprising the items discussed in section
IV.

Topic Textbook
Auxiliary
Textbook

Second

Auxiliary
Textbook

Algorithm
exactitude

Harel
(2004)

Skiena
(2004)

CLRS
(2009)

Basic math review
Gersting
(2004)

Rosen
(2007)

Graham et
al. (1995)

Fundamental of
algorithm analysis

CLRS
(2009)

Goodrich
and

Tamassia
(2004)

Brassard
and Bratley

(1996)

Amortized analysis
CLRS
(2009)

Goodrich
and

Tamassia
(2004)

Skiena
(2008)

Asymptotic notation
CLRS
(2009)

Graham et
al. (1995)

Goodrich
and

Tamassia
(2004)

Recurrence
resolution

Brassard
and

Bratley
(1996)

Graham et
al. (1995)

Rosen
(2007)

In table 4 the topics and books suggested for paradigms and
techniques for algorithm design, recurrence resolution that
come from divide and conquer algorithms and the theory of
NP-Completeness are listed.

If it is necessary to use three textbooks in an undergraduate
subject, CLRS (2009), Goodrich and Tamassia (2004) and
Ziviani (2011) are recommended as the main textbooks for the
topics discussed in this section. As complementary reading the
books by i) Garey e Johnson (1979) because of its excellent
description of NP-Completeness and ii) Graham et al. (1995),
because of the quality of its review of basic math, asymptotic
notations and recurrence resolution are also recommended.

Table 4: Textbook and complementary reading
recommendations for the second part of the topics that should
be taught in a subject comprising the items discussed in section
IV.

Topic Textbook
Auxiliary
Textbook

Second
Auxiliary
Textbook

Paradigms and
techniques for

algorithm design

Ziviani
(2011)

Goodrich
and

Tamassia
(2004)

Aho et al.
(1974)

Resdolution of
recurrences that

come from divide
and conquer
algorithms

CLRS
(2009)

Goodrich
and

Tamassia
(2004)

Rosen
(2007)

NP-Compleness:
theory and

presentation of basic
classes

Garey e
Johnson

(1979)

Sudkamp
(2007)

Aho et al.
(1974)

NP-Compleness::
basic concepts of

polynomial
reductions

Manber
(1989)

Garey and
Johnson

(1979)

Sudkamp
(2007)

Proofs of NP-
Compleness

CLRS
(2009)

Manber
(1989)

Garey and
Johnson

(1979)

NP-Compleness:
proof of the Cook-

Levin theorem

Sudkamp
(2007)

Garey and
Johnson

(1979)

Aho et al.
(1974)

V. FINAL THOUGHTS

If one needs to recommend a single book for the disciplines
that include items 4 and 5, indeed CLRS (2009) is the best
option. Nevertheless, this reference is not the best study option
for all the topics described. In several specific topics, there are
great descriptions in other books.

Actually, it is necessary to use two or more textbooks in
bothdisciplines. Indeed, there may be the need to use more
than one book in each topic discussed.

The books Sedgewick (1998, 2002) are also recommended for
a subject that includes the item 4. The author presents most of
the topics in this item in a detailed way with implementations
in C++.

Gonzaga de Oliveira , S. L. / Revista de Sistemas de Informação da FSMA n. 9 (2012) pp. 3-15

13

For this item, Drozdek (2002) is also an adequate option in
specific topics. Besides, Szwarcfiter and Markenzon (2009)
and Ziviani (2011) are also adequate alternative options.

 There are also other options to consider when thinking
about different presentation styles or specific topics. When
thinking about didactic, with no demands on formalism
complications, the books by Ziviani (2005, 2011) show
advantages. The author knows how to present contents in a
simple and objective way. One of the main advantages of these
books is its implementations in Pascal and C (Ziviani, 2011) or
Java and C++ (Ziviani, 2005), which may be the cause for
being one of the most widely used in undergraduate courses in
Brazil.

 Other books that deserve praise are Manber (1989) and
Goodrich and Tamassia (2004). The latter, in particular, can
be used as a textbook in an algorithm subject tin which the
topics describes in item 5 are taught. Aho et al. (1974), Garey
and Johnson (1979), Brassard and Bratley (1996), Graham et
al. (1995), Gersting (2004), Rosen (2007), Sudkamp (2007),
Skiena (2008) and the four volumes of Knuth also must be
considered to be part of the list of complementary reading of
the subjects discussed in this text.

 I started to create class notes since I started to teach classes
on algorithms both in Computer Science and Information
Systems courses. The notes have become a book, Gonzaga de
Oliveira (2011), in which I describe most topics included in
items 4 e 5. This book can be used as a complementary
reading for the disciplines comprised of items 4 and 5.

 The books not mentioned in this paper may not be very
known, nor widely used by Brazilian professors or simply
unknown to the author. It may also happen that books not
mentioned here are not as adequate for some specific topics as
the ones mentioned. That may be due to the author’s style or
for his intention to help a specific group of students. For
instance, there are books that do not include almost any
equations because this may scare off some readers. In this
example, an author may explain the topic in a long and
detailed way, with many examples without generalizations. A
book that does not contain many mathematical formalizations
may have a large commercial appeal, that is, they may be
appreciated by those seeking a superficial understanding on
the subject (more than those that are more formal, use more
mathematical language in a deep and abstract way). This will
depend on the style and expected results of each author.

 Both approaches are valid – the more didactic are more
efficient for a first reading. On the other hand, it may be
impossible to achieve a deeper understanding with those books
and a second reading may be boring due to the large amount of
text they possess. The formal approaches, on the other hand, in
which the topics are presented more formally with
generalizations and in which the student ability for thinking
logically is developed, may be difficult for undergraduate
students in their first reading, but may be useful after didactic
explanations in classrooms. Nevertheless, these books help the
students understand important concepts on the topic at hand,
allowing them to achieve proper learning of algorithms.

 When choosing the three most adequate books, a balance
between ease of understanding and mathematical rigor was one
of the main goals. When considering this balance, books like
CLRS (2009) stand out.

 The descriptions in this paper, the topics suggested for
algorithm subjects and their textbooks represent the author’s
opinion. Nevertheless, I expect that the descriptions can be
useful as the basis of a discussion between professors when
creating the syllabus for such classes.

VI. ACKNOWLEGMENTS

I would like to thank the Research Support Foundation for
the State of Minas Gerais – FAPEMIG and to the National
Scientific Development Council– CNPq for the financial
support. The author would also like to thank the editorial
board for the Salesian Journal on Information Systems whose
ideas and indications helped this paper arrive to its current
state. I would also like to thank professors Antonio Maria
Pereira de Resende, Denilson Alves Pereira and Luiz Henrique
Andrade Correia for their reviews on specific parts.

VII. REFERENCES

1. A. V. Aho, J. E. Hopcroft, J. D. Ullman, The Design and Analysis
of Computer Algorithms, Reading: Addison-Wesley Publishing
Company, 1974.

2. Association for Computing Machinery. Curricula
Recommendations, 2012. Disponível em:
http://www.acm.org/education/curricula-recommendations.
Acessado em: 7 de março de 2012.

3. L. B. Anderson, R. J. Atwell, D. S. Barnett, R. L. Bovey,
Application of the Maximum Flow Problem to Sensor Placement
on Urban Road Networks for Homeland Security, Homeland
Security Affairs. v. 3, n. 3, 2007. Disponível em:
http://www.hsaj.org/?article=3.3.4. Acessado em: 25 de março de
2011.

4. G. Brassard, P. Bratley, Fundamentals of Algorithmics.
Englewood Clifs: Prentice-Hall, 1996.

5. T. H. Cormen, C. E. Leiserson, R. L. Rivest, Introduction to
Algorithms, Cambridge: The MIT Press, 1990.

6. T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction
to Algorithms, 2nd ed. Cambridge: The MIT Press, 2001.

7. T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Algoritmos:
Teoria e Pratica, Rio de Janeiro: Campus, 2002.

8. T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction
to Algorithms, 3rd ed. Cambridge: The MIT Press, 2009.

9. E. W. Dijkstra, A note on two problems in connexion with graphs.
Numerische Mathematik, v. 1, p. 269–271, 1959.

10. A. Drozdek, Estruturas de dados e algoritmos em C++. São
Paulo: Pioneira Thomson Learning, 2005.

11. M. R. Garey, D. S. Johnson, Computers and intractability: A
guide to the Theory of NP-Completeness. New York: Freeman,
1979.

Gonzaga de Oliveira , S. L. / Revista de Sistemas de Informação da FSMA n. 9 (2012) pp. 3-15

14

12. J. L. Gersting, Fundamentos Matemáticos para a Ciência da
Computação: Um tratamento moderno de Matemática Discreta,
5a. ed. Rio de Janeiro: LTC, 2004.

13. S. L. Gonzaga de Oliveira, Algoritmos e seus fundamentos,
Lavras: Editora UFLA, 2011.

14. M. T. Goodrich, R. Tamassia, Projeto de Algoritmos:
Fundamentos, análise e exemplos da Internet. Porto Alegre:
Bookman, 2004.

15. R. L. Graham, D. E. Knuth, O. Patashnik, Matemática Concreta:
Fundamentos para a Ciência da Computação, 2a. ed. Rio de
Janeiro: LTC, 1995.

16. P. E. Hart, N. J. Nilsson, B. Raphael. A Formal Basis for the
Heuristic Determination of Minimum Cost Paths. IEEE
Transactions on Systems Science and Cybernetics SSC4 4 (2):
100–107, 1968.

17. M. T. Jones, Inside the Linux 2.6 Completely Fair Scheduler:
Providing fair access to CPUs since 2.6.23. developerWorks.
Disponível em:
http://www.ibm.com/developerworks/linux/library/l-completely-
fair-scheduler. Acessado em: 25 de março de 2009.

18. D. E. Knuth, The Art of Computer Programming, Volume 2,
Seminumerical Algorithms, 2nd ed. Reading: Addison-Wesley
Publishing Company, 1981.

19. D. E. Knuth, The Art of Computer Programming, Volume 1,
Fundamental Algorithms, 2nd ed. Reading: Addison-Wesley
Publishing Company, 1997.

20. D. E. Knuth, The Art of Computer Programming, Volume 3,
Sorting and Searching, 2nd. ed. Reading: Addison-Wesley
Publishing Company, 1998.

21. D. E. Knuth, The Art of Computer Programming, Volume 4,
Combinatorial Algorithms. Reading: Addison-Wesley Publishing
Company, 2001.

22. J. E. Kurose, K. W. Ross, Redes de Computadores e a Internet.
3a. ed. São Paulo: Pearson, 2006.

23. U. Manber, Introduction to Algorithms: A Creative Approach.
Reading: Addison-Wesley Publishing Company, 1989.

24. K. H. Rosen, Matemática Discreta e suas aplicações. São Paulo:
Mc-Graw-Hill, Tradução da 6a. edição em inglês, 2007.

25. S. Russell, Efficient memory-bounded search methods. In
Proceedings of the 10th European Conference on Artificial
intelligence (Vienna, Austria). B. Neumann, Ed. John Wiley &
Sons, New York, NY, 1-5, 1992.

26. R. Sedgewick, Algorithms in C++, Parts 1-4: Fundamentals,
Data Structures, Sorting, Searching, 3th ed. Reading: Addison-
Wesley Publishing Company, 1998.

27. R. Sedgewick, Algorithms in C++, Part 5: Graph Algorithms, 3th
ed. Reading: Addison-Wesley Publishing Company, 2002.

28. S. S. Skiena, The Algorithm Design Manual, 2nd ed. Berlin:
Springer, 2008.

29. Sociedade Brasileira de Computação. Currículo de Referência para
os cursos de Sistema de Informação, Licenciatura em Computação,
Ciência da Computação e Engenharia da Computação, 2012.
Disponível no endereço dado por:
http://www.sbc.org.br/index.php?option=com_jdownloads
&Itemid=195&task=viewcategory&catid=36. Acessado em: 7 de
março de 2012.

30. Sociedade Brasileira de Computação. POSCOMP. Disponível em:
http://www.sbc.org.br/index.php?option=com_content&view=cate
gory& layout=blog&id=237&Itemid=182. Acessado em: 21 de
fevereiro de 2012.

31. T. A. Sudkamp, Languages and Machines: An Introduction to the
Theory of Computer Science, 3rd ed. Reading: Addison-Wesley
Publishing Company, 2006.

32. J. L. Szwarcfiter, L. Markenzon, Estruturas de dados e seus
algoritmos, 2a. ed. Rio de Janeiro: LTC, 2009.

33. A. S. Tanenbaum, Redes de Computadores, tradução da 4a. ed.
Rio de Janeiro: Campus, 2003.

34. J. W. J. Williams, “Algorithm 232 (heapsort)”. Communications
of the ACM, vol. 7, pp. 347–348, 1964.

35. N. Ziviani, Projeto de Algoritmos com implementações em Java e
C++ . São Paulo: Cengage Learning, 2005.

36. N. Ziviani, Projeto de Algoritmos com implementações em
PASCAL e C, 3a. ed. São Paulo: Cengage Learning, 2011.

