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 Abstract. In this paper, we present moving meshes for the 
numeric resolution of partial differential equations. We describe 
some important concepts on this topic and point to existing body of 
work for the solution of partial differential equations using the 
methods of finite volumes and finite elements, both with moving 
meshes. 

Keywords — mesh generation; adaptive mesh refining; moving 
meshes. 

I. INTRODUCTION 

Generally, systems development in engineering require using 
CAD tools (computer-aided design). In those tools, 
computational simulation techniques are frequently used to 
model and investigate physical phenomena in different areas of 
science. According to Budd, Huang e Russell (2009), 
examples of those phenomena occur in several application, as 
in fluid and gas dynamics, conservative laws, non linear optics, 
combustion, detonation, meteorological forecasting models, 
pollution studies in rivers, oceans and atmosphere, 
thermodynamic, electromagnetism and aerodynamic models 
and also in the prospecting and extraction of oil. Usually, these 
phenomena are modeled by partial differential equations 
(PDEs); for instance, Liu (2003) studied several problems 
related to the area of solid mechanics, structures fluid flux and 
their mathematical models.  
Computational simulation techniques are often used to 
investigate those phenomena. Usually, the numerical 
simulation of physical phenomena involves two main parts: the 
mathematical modeling that describes the phenomenon in 
which we are interested and the implementation of numerical 
techniques for the mathematical model to be computationally 
solved. 
One way to find an approximate solution of partial differential 
equations is by discretize the PDE using a numerical method. 
Among the many existing methods, we mention the finite 
elements and the finite volume methods. In those methods, we 

solve the differential equations by replacing the terms by 
algebraic expressions that involve the unknown function. 
When performing a numerical approximation, the solution is 
found for a discrete number of points with a certain error 
deriving from the approximation. If the method converges, the 
numerical solution will be closer to the exact solution as the 
number of points increases. We can consider this mesh of 
points and its connections as the domain discretized 
geometrically. 
Phenomena models can be created using partial differential 
equations which in many cases have great variation in small 
regions of the domain under study. In order to decrease the 
error in those regions of great variation, we refine the mesh. 
Using a fine and uniform mesh throughout the whole domain 
will greatly increase the computational cost, increasing 
excessively the number of points also in regions where this 
refinement is not necessary. An alternative is to position a 
large amount of point in the regions of the mesh of great 
variation and a smaller set of points in the regions of smaller 
variation. With this adaptive refinement, the total number of 
points is much smaller than in the situation of a uniform mesh. 
Nevertheless, as Huang e Russell (2011) explain, adaptive 
refinement cannot be used as a panacea. For problems with 
smoother variations in the solution, we should rather use a 
uniform mesh instead of a non-uniform one because using a 
uniform mesh is possible to find a solution as efficient as using 
a non-uniform mesh. 
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According to Olivier e Alauzet (2011), in the last decades 
numerical simulation had an important role in science and in 
engineering due to the development of high speed computers 
and to the advancement of storage capacity in computer 
systems. These advancements allowed for the simulations to 
achieve good results both in terms of precision and 
performance. Achieving those results means to solve complex 
differential equations that model complex physical problems 
whereas trying to minimize the errors that are inherent to a 
numerical approximation. Refining the mesh is a way to 
minimize those inherent errors in the numerical approximation 
but even with adaptive refinement, the inclusion of new point 
increases the computational effort for solving the problem 
when compared to the previous iteration that had less points. 
Hence, for systems with relevant dimensions, the techniques 
used must be sufficiently efficient in order to allow precise 
results with low computational cost. 
Several mesh adaptation techniques were developed for 
adaptive refinement, which include new points inclusion and 
mobile meshes, which is based on the movement of points 
from the initial mesh. As we already described, in the 
adaptation through refinement, we insert new points in the 
mesh in the regions where the error is great or the solution 
gradient is very steep. In the adaptation with moving meshes, 
the original amount of points is kept the same, but we move 
the points to the regions of higher variation in the solution. 
Keeping the amount of points in the mesh is beneficial since 
the inclusion of points increases the computational cost to 
solve the problem, as stated. In this text we describe mesh 
adaptation to the case where its application is needed and we 
focus on moving meshes. 
In section II, we present important concepts on mesh 
generation. In section III, we describe some works on moving 
meshes and in section IV, we address some final 
considerations.  

II.  SOME CONCEPTS ON MESH GENERATION 

 
In this context, the approach of adaptation for the numerical 
solution of partial differential equations can be divided into 
three categories: the h-refinement, the p-refinement and the r-
refinement.  
In the h-refinement approach, we begin the simulation with an 
initial mesh and this mesh is refined or simplified by including 
or removing points. Usually, the strategy to include or remove 
points is guided by a a posteriori estimation of the solution 
error. This is usually called as adaptive mesh refinement in the 
finite volume method community.  
In the p-refinement approach, Budd, Huang e Russell (2009) 
explain that we discretize the PDEs using finite elements with 
polynomials of a specific order, which is increased or 
decreased according to a a posteriori estimation of the solution 

error. With this combination, we find the hp-refinement 
subcategory, whose goal is to find the solution within a 
specific error limited by the refinement procedures (BUDD; 
HUANG; RUSSELL, 2009). 
In the r-refinement, the number of points in the mesh is fixed 
and those points are moved in order to be concentrated in the 
regions of greater variation of the solution as a function of 
time. In the community of finite volumes, they are usually 
called moving meshes. According to Eleftheriou (2011), this 
refinement approach can be in general used to transient 
problems because the mesh mobility makes it easier to deal 
with time integrators. Nevertheless, its limitation is in the 
difficulty to define an adequate time interval, due to the fact 
that the nodes vary their position with time, which may cause 
mesh tangling. Besides, the applicability of the r-refinement is 
limited to to the fixed number of degrees of freedom and to a 
constant connectivity of the mesh polygons. Because of that, r 
adaptation is typically used to speed the computational process 
instead of being used to find a specific precision. Please refer 
to Askes (2000) for details on this subject.  
According to Huang and Russell (2011), the methods that use 
moving meshe are still on an early development phase. Many 
of them are in the experimental stage and almost all of them 
require additional mathematical justification. As those authors 
also point out, a rigorous analysis of the moving meshes 
methods to solve PDEs that are time dependent was performed 
only on some very simple models and hence there will 
probably be many ways to be developed in order to improve 
their efficiency and robustness of those models. For instance, 
we still need more systematic numerical studies on how to 
decrease the cost of the solution of a whole mesh and PDEs, as 
well as studies on how to balance the spatial and time 
adaptation of a mesh.  
Huang and Russell (2011) also explain that an important factor 
in the methods of moving meshes is the adequate choice of a 
mesh density function, which controls the concentration of 
points in the mesh according to the principle of 
equidistribution and typically measures the difficulty of the 
numerical approximation of the problem being solved. 
According to those authors, the selection of the mesh density 
function can be based on the estimation of the interpolation 
error a posteriori with the optimal limit for the interpolation 
error or on the solution error, which is obtained through the 
corresponding equidistributed mesh.  
The principle of equidistribution was originally presented by 
Boor (1973). According to this principle, we seek to rearrange 
the nodes of a one-dimensional mesh so that a certain metric is 
equally distributed along each sub-interval of the mesh. This 
metric can be, for instance, a measure of the error which will 
be compared to the measure of a desirable element, 
hypothetically optimal. The difference between each element 
in the mesh and the desirable element will be, approximately 
the same for all existing elements. 
According to Askes (2000), some topological restrictions such 
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as non convex corners in multidimensional problems may 
prevent a ideal point movement. Hence, we cannot guarantee 
that equidistribution will be satisfied for all the points in the 

mesh. Admit that the position of node 
xi , for i=1.. N , in 

which N  is the number of nodes, be defined in order to 
guarantee that a certain metric, called weight function or 

monitor function M ( x) , be distributed equitably along the 
domain. This distribution is made according to the 

formula
∫ xi− 1

xi

M xdx=∫ xi

xi1

M xdx ,2≤ i≤ N− 1
, 

whose discrete approximation is given by 

M i−1Δ xi−1=M i Δ xi ,2≤ i≤N−1,
 (1) 

In which 
Δ xi−1=xi−xi−1  is the local size of the mesh 

and M i−1 represents a discrete estimation of M ( x)  in the 

interval [xi−1,xi ] . 
Among the first applications of the equidistribution principle, 
we mention the works of Dwyer, Sanders and Kee (1979), 
Dwyer, Raiszadeh and Otey (1981), Gnoffo (1980) and White 
(1982), who applied it to solve problems in fluids mechanics 
and heat transfer in one dimension. White (1982) used arc 
length as monitor function,  

M (u)=√1+∣u'∣2.  (2) 

Consider an example that will help to understand the main idea 
behind the equidistribution principle. Let us use the function 

f (x)=tanh(1−x
0,1 ).  Consider a subset in the interval 

[0,1]  and suppose that 
x0<x1<. . .<xn , in which 

x0=0
 

and 
xn=1

. In this context, in the graphic on the left of figure 
(1), the mesh is divided uniformly and in the graphic on the 
right of the same figure, we generate the mesh according to the 
principle of equidistribution. In this case, the monitor function 
was based on arc length, expressed by (2) and the points are 
distribute equally in the curve, satisfying (1). Similar examples 
can be found in Zegeling (1996), Li, Tang and Zhang (2000) 
and Tan (2005). 

 
In several works (see, for instance, Huang and Russell (2011) 
and its references), the equidistribution principle (BOOR, 
1973) plays a fundamental part in the project of the mesh 
movement strategies for the one-dimensional case. Clearly, the 
adaptation in multidimensions is much more complicated that 
the problem in a single dimension. Huang and Russell (2011) 
explain that the equidistribution principle, by specifying only 
the volume of the mesh elements is not complete enough to 
determine a multidimensional mesh. An additional alignment 
condition is necessary to specify the geometry and the 
orientation of the mesh elements. Huang and Russell (2011) 
present the basic principles of multidimensional mesh 
adaptivity, including the necessary alignment condition. 
In multidimensional meshes, adaptivity is guided by a monitor 
function that is solution dependent, namely, it is a symmetric 
positive-definite matrix function naturally related to a mesh 
density function in one dimension. See also Huang and Rusell 
(2011) for details on this subject. The monitor function defines 
a metric on the physical domain. According to Marlow (201), 
the idea of a monitor function is to convert the vague concept 
of “moving the mesh points to where activity is greater” into a 
mathematical solid procedure or, at least, into something that 
can be numerically quantified. According to Huang and 
Russell (2011), the monitor function is always a non-negative 
function. 
Multidimensional mesh adaptation, according to Huang and 
Russell (2011) can be understood as a technique to create a 
uniform mesh in a certain metric space. This technique 
specifies the size, the geometry and the orientation of the mesh 
elements. It also provides a natural control of the 
equidistribution and of the alignment, also having the role of 
ensuring that the mesh is duly aligned with the behavior of the 
physical solution. Huang and Russell (2011) analyze and relate 
the quality of the mesh (in the mathematical precision sense) to 
this equidistribution and to the alignment condition. These 
authors present some interpretations in the discrete perspective 
using meshes and in the continuous one, using coordinate 
transformations. 
According to Huang and Russell (2011), the problem of 
computing solutions of PDEs using moving meshes can be 
split into the following three problems. 

• A mesh density function, also called monitor function, is 
necessary to guide the redistribution of the mesh points during 
the evolution of the PDE. This monitor function usually is 
restricted both to equidistribute this point movement and to 
find a mesh relaxation in the search of the equidistributed 
state. The choice of a monitor function may depend on the arc 
length of the solution in one-dimensional problems, in the 
solution curvature and in errors calculated a posteriori. 

• Once determined the monitor function, we must verify a 
mesh that is equidistributed in some way. The equidistribution 
problem by itself is an algebraic non linear problem.  

• The PDE is then discretized both in the computational 

Figure 1: Comparison between the principle of equidistribution using arc 
length (on the right) and a mesh uniformly divided (on the left) with 10 points. 
Example adapted from Tan (2005). 
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domain of the mesh and in the original physical domain and 
usually finite elements or finite volumes are used.  
Practically, whatever the choice of monitor function, we must 
use some smoothing or spatial and time relaxation in order to 
improve the quality of the mesh, decreasing the distortion of 
the elements. See Huang and Russell (2011) for explanations 
on how to find an optimal monitor function for a certain limit 
of error interpolation or an a posteriori estimation or error and 
a monitor function based on other physical or geometrical 
considerations. A monitor function based on interpolation 
error can be found using the Taylor polynomial approximation 
for one dimension and for the Sobolev space approximation 
for multidimensions.  
Many monitor functions include solution derivatives and in 
order to calculate those derivatives we perform 
approximations. Through this way, we define a monitor 
function a posteriori. 
According to Huang and Russell (2011), monitor functions 
based on physical and geometrical considerations must take 
into account the distance or the area between the interfaces and 
can use a mesh as parameter, adapting the new mesh in order 
to come as close as possible to the reference mesh. The 
interpolation error treatment in the generalized Sobolev 
spaces, both in isotropic and anisotropic meshes, offers a result 
that shows how the choice of the optimal monitor function 
takes to an error that is delimited by an optimal solution. This 

error depends on a factor whose order is 1/n , in which n  is 
the number of elements in the mesh (HUANG; RUSSELL, 
2011). 
Interpolation error limits with non optimal and optimal 
monitor functions for a a posteriori error limit are also 
described by Huang and Russell (2011), which also presents 
several practical aspects of the computation of monitor 
functions. 
Huang and Russell (2011) also present several PDEs for 
moving meshes (moving mesh partial differential equations, 
MMPDEs) for time dependent problems. They also develop 
several mesh equation for stationary state problems by using 
the equidistribution principle. MMPDEs are continuous 
versions of the mesh moving strategies formulated in terms of 
coordinate transformations. They also approaches practical 
questions of implementation, including the discretization of 
mesh equations, physical PDEs and the proceedings of a 
global solution.  
Huang and Russell (2011) also approach the questions related 
to mesh adaptation in the multidimensional context, which is a 
quite challenging topic. For high dimensional spaces, we need 
advanced calculus tools to transform PDEs from the physical 
space into the computational space.  
 

III.  WORKS ON MOVING MESHES 

 

Several moving meshes methods were developed and applied 
for one and two dimensions in the resolution of several 
problems, as we can see, for example in Tang (2005) reviewed 
the techniques for moving meshes and their applications in 
computational fluid dynamics. We will now comment some 
works with moving meshes.  
Cao, Huang and Russell (2001) studied several error indicators 
for the finite elements method. These authors analyzed the 
error indicator based on the solution gradient, on the 
interpolation errors and in a posteriori error estimation in 
order to define the monitor function. Huang (2001) introduced 
the concepts of spatial balance and scale invariance and 
studied how to build PDE with moving meshes with some 
desirable properties. 
Huang and Sun (2003) used finite elements methods 
interpolation theory to estimate errors. Liu and Shen (2003) 
proposed a Fourier spectral method to treat a phase field 
problem for the mixture of two incompressible fluids. 
Zegeling (2004) discussed an adaptive mesh method based on 
a tensorial product approach. Zegeling (2005) described an 
adaptive moving mesh technique and its application in 
magnetic and hydrodynamics convection-diffusion models. 
Liu, Qin and Xia (2006) proposed a simple and efficient 
technique of mesh dynamic deformation to calculate unstable 
flux problems with geometric deformation, relative body 
movement or shape variation due to aerodynamics 
optimization and the interaction between the fluid and the 
structure.  
Tan (2007) applied an adaptive moving mesh technique with 
quadrangular meshes to the resolution of magnetic-
hydrodynamic problems. Tan, Lim and Khoo (2007) 
developed a phase field model for the mixture of two 
incompressible fluids using quadrangular meshes and the 
equations of Navier-Stokes and Allen-Cahn. 
Marlow (2010, 2011) described an adaptive method to solve 
parabolic non-linear PDEs with moving frontiers using moving 
meshes with continuous finite elements. McNally, Lyra and 
Passy (2012) compared the results from different codes to the 
solution of the Kelvin-Helmholtz instability problem. 
Several studies, such as Mackenzie (1996), Dam and Zegeling 
(2006), Tan et al. (2004), Tan, Tang and Zhang (2006), 
Springel (2005, 2009, 2011), involving discretization by finite 
volumes, used moving meshes to solve PDEs. A large part of 
those researches was applied to the solution of phenomenal 
with relatively low computational effort and high 
approximation precision, in order to build adaptable meshes to 
the solution of the phenomenon under study. 
Besides, several other methods, specially multidimensional 
ones, were developed and used successfully. For example, see 
Beni, Mostafavi and Pouliot (2008), Greif et al. (2011), Heß 
and Springel (2010, 2012), Pakmor, Bauer and Springel 
(2011) and Muñoz et al. (2012). 
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IV. FINAL CONSIDERATIONS 

In this text, we introduced moving meshes and approached 
different types of mesh adaptation, with emphasis on the 
moving meshes methods. We also described the 
equidistribution principle with the presentation of a one-
dimensional example. In the end, we mentioned several works 
on moving meshes that were recently developed. 
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