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Abstract. In this paper, we present moving meshes for thsolve the differential equations by replacing tleents by

numeric resolution of partial differential equationWe describe
some important concepts on this topic and poirgxisting body of
work for the solution of partial differential eqi@is using the
methods of finite volumes and finite elements, buatith moving
meshes.
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|. INTRODUCTION

Generally, systems development in engineering requsing
CAD tools gomputer-aided design In those tools,
computational simulation techniques are frequentded to

algebraic expressions that involve the unknown tionc
When performing a numerical approximation, the sofuis
found for a discrete number of points with a certairor
deriving from the approximation. If the method cerges, the
numerical solution will be closer to the exact $ioln as the
number of points increases. We can consider iésh of
points and

geometrically.
Phenomena models can be created using partialretiffal
equations which in many cases have great variaticsmall
regions of the domain under study. In order to ease the

its connections as the domain discrttize

model and investigate physical phenomena in diffieageas of €rror in those regions of great variation, we refthe mesh.
science. According to Budd, Huang e Russell (2009)sing a fine and uniform mesh throughout the widnenain
examples of those phenomena occur in several apiphi; as Will greatly increase the computational cost, iasiag

in fluid and gas dynamics, conservative laws, mogdr optics,
combustion, detonation, meteorological forecastingdels,
pollution studies in rivers, oceans

excessively the number of points also in regionerehthis
refinement is not necessary. An alternative is ¢sitpn a

and atmospherlgrge amount of point in the regions of the meshgrdat

thermodynamic, electromagnetism and aerodynamicetsodvariation and a smaller set of points in the regiof smaller

and also in the prospecting and extraction ofidsiually, these
phenomena are modeled by partial differential dqoat
(PDEs); for instance, Liu (2003) studied severabbems
related to the area of solid mechanics, structiiwés flux and
their mathematical models.

Computational simulation techniques are often uged
investigate those phenomena. Usually, the
simulation of physical phenomena involves two nnts: the

mathematical modeling that describes the phenomednon

which we are interested and the implementationuvherical
techniques for the mathematical model to be conioutzlly
solved.

One way to find an approximate solution of partidierential
equations is by discretize the PDE using a numieneahod.
Among the many existing methods, we mention thétefin
elements and the finite volume methods. In thosthoas, we

variation. With thisadaptive refinementhe total number of
points is much smaller than in the situation oh#&arm mesh.
Nevertheless, as Huang e Russell (2011) explainptag
refinement cannot be used as a panacea. For prebigtim
smoother variations in the solution, we should eathse a
uniform mesh instead of a non-uniform one becasssgua

numericghiform mesh is possible to find a solution ascédfit as using

a non-uniform mesh.
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According to Olivier e Alauzet (2011), in the ladécades
numerical simulation had an important role in scemand in
engineering due to the development of high speadpaters

error. With this combination, we find thép-+efinement
subcategory, whose goal is to find the solutionhinita
specific error limited by the refinement procedu(B&DD;
HUANG; RUSSELL, 2009).

and to the advancement of storage capacity in ctenpuln ther-refinement, the number of points in the mesh isdix

systems. These advancements allowed for the simngato
achieve good results both
performance. Achieving those results means to sodveplex
differential equations that model complex physipebblems
whereas trying to minimize the errors that are ightto a
numerical approximation. Refining the mesh is a way
minimize those inherent errors in the numericalrapipnation
but even with adaptive refinement, the inclusiomefv point
increases the computational effort for solving f®blem
when compared to the previous iteration that had fgoints.
Hence, for systems with relevant dimensions, tldrtiejues
used must be sufficiently efficient in order tooall precise
results with low computational cost.

Several mesh adaptation techniques were developed
adaptive refinement, which include new points is@an and
mobile meshes, which is based on the movement witgo
from the initial mesh. As we already described, the
adaptation through refinement, we insert new pointthe
mesh in the regions where the error is great orstiation
gradient is very steep. In the adaptation with mguneshes,
the original amount of points is kept the same, \atmove
the points to the regions of higher variation ie tolution.
Keeping the amount of points in the mesh is beiaf&ince
the inclusion of points increases the computaticcast to
solve the problem, as stated. In this text we descmesh
adaptation to the case where its application isleeéeand we
focus on moving meshes.

and those points are moved in order to be condedtiia the

in terms of precision an@gions of greater variation of the solution asuacfion of

time. In the community of finite volumes, they amsually
called moving meshes. According to Eleftheriou (2QXhis
refinement approach can be in general used to i¢mans
problems because the mesh mobility makes it easieteal
with time integrators. Nevertheless, its limitatias in the
difficulty to define an adequate time interval, divethe fact
that the nodes vary their position with time, whioy cause
mesh tangling. Besides, the applicability of thefinement is
limited to to the fixed number of degrees of fremdand to a
constant connectivity of the mesh polygons. Becatigbat,r
adaptation is typically used to speed the commnatiprocess
fnstead of being used to find a specific precisiBlease refer
to Askes (2000) for details on this subject.

According to Huang and Russell (2011), the methbds use
moving meshe are still on an early development @hisany
of them are in the experimental stage and almdsifahem
require additional mathematical justification. A®s$e authors
also point out, a rigorous analysis of the movingshes
methods to solve PDEs that are time dependent asrmed
only on some very simple models and hence theré wil
probably be many ways to be developed in ordemjgrove
their efficiency and robustness of those models.ikstance,
we still need more systematic numerical studieshow to
decrease the cost of the solution of a whole madHP®Es, as
well as studies on how to balance the spatial &anb t

In section Il, we present important concepts on hmesadaptation of a mesh.

generation. In section lll, we describe some wanksnoving
meshes and in section
considerations.

Il. SOME CONCEPTS ONMIESH GENERATION

In this context, the approach of adaptation for tlenerical
solution of partial differential equations can bigided into
three categories: therefinement, the-refinementand ther-
refinement.

Huang and Russell (2011) also explain that an itapbfactor

IV, we address some final the methods of moving meshes is the adequatieelud a

mesh density function, which controls the conceiuna of
points in the mesh according to the principle of
equidistribution and typically measures the diffiguof the
numerical approximation of the problem being solved
According to those authors, the selection of thehmdensity
function can be based on the estimation of therpotation
error a posterioriwith the optimal limit for the interpolation
error or on the solution error, which is obtainddotigh the

In the h-refinementapproach, we begin the simulation with arforresponding equidistributed mesh.

initial mesh and this mesh is refined or simplifiedincluding The principle of equidistribution was originallygsented by
or removing points. Usually, the strategy to inelust remove Boor (1973). According to this principle, we seek¢arrange
points is guided by @ posterioriestimation of the solution the nodes of a one-dimensional mesh so that aircentric is

error. This is usually called as adaptive mesmesfient in the €dually distributed along each sub-interval of thesh. This
finite volume method community. metric can be, for instance, a measure of the eviach will

In the p-refinement approach, Budd, Huang e Russell (2008F compared to the measure of a desirable element,
explain that we discretize the PDEs using finienants with nypothetically optimal. The difference between eatment
polynomials of a specific order, which is increased N the mesh and the desirable element will be, @pprately

decreased according taaosterioriestimation of the solution the same for all existing elements. _ o
According to Askes (2000), some topological retitiits such
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as non convex corners in multidimensional problamesy

prevent a ideal point movement. Hence, we cannatagiee In several works (see, for instance, Huang and élug011)

that equidistribution will be satisfied for all thmoints in the and its references), the equidistribution princigBOOR,
) . X i=1. N 1973) plays a fundamental part in the project & thesh

mesh. Admit that the position of no ", for » N movement strategies for the one-dimensional casarlg, the

which N is the number of nodes, be defined in order tadaptation in multidimensions is much more compéidathat

guarantee that a certain metric, called weight tfoncor the problem in a single dimension. Huang and RL§2elL1)

monitor function M (X) , be distributed equitably along theexplain that the equidistribution principle, by sfging only

domain. This distribution is made according to théhe voI_ume of thg _mesh_elements Is not cor_n_ple_teu@mdno

X X1 ) determine a multidimensional mesh. An additionajrahent
. e s M D([dx:I . Mixidx,2sis N-1 condition is necessary to specify the geometry el
ormule © %1 i

' orientation of the mesh elements. Huang and Rug2eill)
present the basic principles of multidimensional sme
(1)  adaptivity, including the necessary alignment cbodi
In multidimensional meshes, adaptivity is guidedabyonitor
is the local size of the mesh function that is solution dependent, namely, inisymmetric
positive-definite matrix function naturally related a mesh
density function in one dimension. See also HuarmRusell
interval [Xi fl’Xi] : (2011) for details on this subject. The monitordiion defines
Among the first applications of the equidistributtiprinciple, a metric on the physical domain. According to Merl201),
we mention the works of Dwyer, Sanders and Kee 41,97 the idea of a monitor function is to convert thgua concept
Dwyer, Raiszadeh and Otey (1981), Gnoffo (1980) Wfidte  of “moving the mesh points to where activity isaes” into a
(1982), who applied it to solve problems in fluiskechanics mathematical solid procedure or, at least, intoetbimg that
and heat transfer in one dimension. White (1982duarc can be numerically quantified. According to Huangda

whose discrete approximation is given by
M, Ox_,=M 0x,2<i<N-1,

0% 1=x—%_,

and Mi1 represents a discrete estimatior M (X) in the

In which

length as monitor function,

M (u)=~1+u'2. @)

Russell (2011), the monitor function is always a-negative
function.
Multidimensional mesh adaptation, according to Huamd

Consider an example that will help to understamdntiain idea Russell (2011) can be understood as a techniqueette a

behind the equidistribution principle. Let us uke function

_ 1-x
f (x)—tanh(o—’1

10,1 and suppose th, *0=

and Xp=1 . In this context, in the graphic on the left gjfie
(1), the mesh is divided uniformly and in the grapbn the
right of the same figure, we generate the meshrdoapto the
principle of equidistribution. In this case, themitor function
was based on arc length, expressed by (2) anddimspare
distribute equally in the curve, satisfying (1)mBar examples
can be found in Zegeling (1996), Li, Tang and Zh&2@00)
and Tan (2005).

<X X,=0

X <... ) )
1 n in which ~°

o | | | | o

1 U 1 1 I I ! {
02 04 06 0B i %2 04 06 0B i

Figure 1: Comparison between the principle of equidisttidw using arc
length (on the right) and a mesh uniformly divided the left) with 10 point
Example adapted from Tan (20(

Consider a subset in the intervalglements. It

uniform mesh in a certain metric space. This tegimmi
specifies the size, the geometry and the oriemtatfdhe mesh
also provides a natural control of the
equidistribution and of the alignment, also havihg role of
ensuring that the mesh is duly aligned with thealver of the
physical solution. Huang and Russell (2011) anaiyadrelate
the quality of the mesh (in the mathematical pienisense) to
this equidistribution and to the alignment conditiorhese
authors present some interpretations in the disgretspective
using meshes and in the continuous one, using twied
transformations.

According to Huang and Russell (2011), the problem
computing solutions of PDEs using moving meshes lean
split into the following three problems.

» A mesh density function, also called monitor fuotiis
necessary to guide the redistribution of the meshtg during
the evolution of the PDE. This monitor function aby is
restricted both to equidistribute this point moveimand to
find a mesh relaxation in the search of the eqtibigted
state. The choice of a monitor function may depamdhe arc
length of the solution in one-dimensional problerims,the
solution curvature and in errors calculagegosteriori

* Once determined the monitor function, we must yeaif
mesh that is equidistributed in some way. The aguidution
problem by itself is an algebraic non linear profle

» The PDE is then discretized both in the computalion
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domain of the mesh and in the original physical diomand
usually finite elements or finite volumes are used.
Practically, whatever the choice of monitor funotiove must
use some smoothing or spatial and time relaxatioordler to
improve the quality of the mesh, decreasing théodisn of
the elements. See Huang and Russell (2011) forapapbns
on how to find an optimal monitor function for arizén limit
of error interpolation or aa posterioriestimation or error and
a monitor function based on other physical or gddos
considerations. A monitor function based on intéfon
error can be found using the Taylor polynomial agpnation
for one dimension and for the Sobolev space appratidon
for multidimensions.

Many monitor functions include solution derivativaad in
order to calculate those derivatives we

Several moving meshes methods were developed griibchp
for one and two dimensions in the resolution of esal
problems, as we can see, for example in Tang (2@84wed

the techniques for moving meshes and their appicstin

computational fluid dynamics. We will now commemtnge

works with moving meshes.

Cao, Huang and Russell (2001) studied several grdarators

for the finite elements method. These authors aedlythe
error indicator based on the solution gradient, the

interpolation errors and i@ posteriori error estimation in
order to define the monitor function. Huang (200t)oduced

the concepts of spatial balance and scale invariaatd

studied how to build PDE with moving meshes withmso
desirable properties.

perforrlluang and Sun (2003) used finite elements methods

approximations. Through this way, we define a nwnit interpolation theory to estimate errors. Liu andeist{2003)

functiona posteriori.

According to Huang and Russell (2011), monitor fiorws

based on physical and geometrical considerationst nake
into account the distance or the area betweemtbgaces and
can use a mesh as parameter, adapting the newimestter

to come as close as possible to the reference nidsh.
interpolation error treatment in the generalizedb@ev

spaces, both in isotropic and anisotropic mestéersa result
that shows how the choice of the optimal monitancfion

takes to an error that is delimited by an optinwdlition. This

error depends on a factor whose orde 1/N | in which M is

proposed a Fourier spectral method to treat a plfietd
problem for the mixture of two incompressible flsiid
Zegeling (2004) discussed an adaptive mesh methseldoon
a tensorial product approach. Zegeling (2005) dlesdran
adaptive moving mesh technique and its application
magnetic and hydrodynamics convection-diffusion aisd
Liu, Qin and Xia (2006) proposed a simple and &ffit
technique of mesh dynamic deformation to calculatstable
flux problems with geometric deformation, relativ@dy
movement or shape variation due to aerodynamics
optimization and the interaction between the flaidd the

the number of elements in the mesh (HUANG; RUSSELIStructure.

2011).

Interpolation error limits with non optimal and opal

monitor functions for aa posteriori error limit are also
described by Huang and Russell (2011), which alesgnts
several practical aspects of the computation of itoon
functions.

Huang and Russell (2011) also present several PIDES

Tan (2007) applied an adaptive moving mesh tectenigith
quadrangular meshes to the resolution of magnetic-
hydrodynamic problems. Tan, Lim and Khoo (2007)
developed a phase field model for the mixture ob tw
incompressible fluids using quadrangular meshes #mad
equations of Navier-Stokes and Allen-Cahn.

Marlow (2010, 2011) described an adaptive methodaolue

moving meshesnfoving mesh partial differential equatigns Parabolic non-linear PDEs with moving frontiersngsmoving
MMPDESs) for time dependent problems. They also kgve Meshes with continuous finite elements. McNallyrd yand
several mesh equation for stationary state probleyesing Passy (2012) compared the results from differedesdo the
the equidistribution principle. MMPDEs are contimgo Solution of the Kelvin-Helmholtz instability probte

versions of the mesh moving strategies formulatettims of ~Several studies, such as Mackenzie (1996), DanZagdling
coordinate transformations. They also approachestipal (2006), Tan et al. (2004), Tan, Tang and Zhang 200
questions of implementation, including the disaation of Springel (2005, 2009, 2011), involving discretipatby finite
mesh equations, physical PDEs and the proceedifiga oVolumes, used moving meshes to solve PDEs. A |pageof
global solution. those researches was applied to the solution ofgrhenal
Huang and Russell (2011) also approach the questilated With relatively low computational effort and high
to mesh adaptation in the multidimensional contekiich is a @Pproximation precision, in order to build adap¢atnleshes to
quite challenging topic. For high dimensional sgasee need the solution of the phenomenon under study.

advanced calculus tools to transform PDEs frompihgsical Besides, several other methods, specially multidsiznal
space into the computational space. ones, were developed and used successfully. Fonggasee

Beni, Mostafavi and Pouliot (2008), Greif et al0{2), Hel}
and Springel (2010, 2012), Pakmor, Bauer and Seking

(2011) and Mufioz et al. (2012).

. WORKS ONMOVING MESHES
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IV. FINAL CONSIDERATIONS

In this text, we introduced moving meshes and apgred
different types of mesh adaptation, with emphagis tle
moving meshes methods. We also described
equidistribution principle with the presentation af one-
dimensional example. In the end, we mentioned s¢veorks
on moving meshes that were recently developed.
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