Revista de Sistemas de Informagdo da FSMA
n. 12 (2013) pp. 8-20

EEWP oo QI

SISTEMAS DE INFORMACAO.

http://www.fsma.edu.br/si/sistemas.html

Adaptive Software Development supported by an

Automated Process:

a Refterence Model

Frank J. Affonso, Assistant professor at UNESP (Univ Estadual Paulista),
Maria C. V. S. Carneiro, Assistant professor at UNESP (Univ Estadual Paulista)
Evandro L. L. Rodrigues, Associate professor at USP (University of Sao Paulo), and
Elisa Y. Nakagawa, Associate professor at USP (University of Sao Paulo)

Abstract—This article presents a reference model as
an automated process to assist the adaptive software
development at runtime, also known as Self-adaptive
Systems (SaS) at runtime. This type of software has
specific characteristics in comparison to traditional one,
since it allows that changes (structural or behavioral) to
be incorporated at runtime. Automated processes have
been used as a feasible solution to conduct software
adaptation at runtime by minimizing human involve-
ment (developers) and speeding up the execution of
tasks. In parallel, reference models have been used to
aggregate knowledge and architectural artifacts, since
they capture the systems essence in specific domains.
However, presently no there is reference model based
on reflection for the automation of software adaptation
at runtime. In this scenario, this article presents a
reference model based on reflection, as an automated
process, for the development of software systems that
require adaptation at runtime. To show the applicabil-
ity of the model, a case study was conducted and a good
perspective to efficiently contribute to the area of SaS
has been obtained.

Index Terms—Self-adaptive software, Automated
process, Reference model, Development of software
systems.

I. INTRODUCTION

OFTWARE systems have played an important role in

the modern society, since they are present in many
segments and ensure the services provision by govern-
ment or private institutions. Actually, increasing needs
for systems adaptation have been noticed, justified by
the constant changes in the requirements of users, which
correspond to the emergence of new needs of stakehold-
ers or adaptation of current technologies [1] [2] [3] [4].
Moreover, such systems must be prepared to operate
under adverse conditions maintaining their integrity and
characteristics, such as robustness, reliability, scalability,
customization, self-organization, and self-adaptation have
been increasingly required. The latter three characteristics
fit a specific context of software engineering, which rep-

Corresponding author: Frank J. Affonso, frank@rc.unesp.br

resents the self-adaptive systems' at runtime. These sys-
tems are considered specific for enabling new requirements
(structural and/or behavioral) to be incorporated with no
interruption in the execution [2] [4] [5] [6] [7]. They also
require methodologies, such as Reconfigurable Software
Development Methodology (RSDM), Reconfigurable Ex-
ecution Environment (REE), and automatic mechanisms
(automated processes) able to monitor and modify the
software at runtime [8] [9] [10].

The RSDM offers a set of guidelines to assist software
engineers in the software development in layers. For ex-
ample, the logical layer has only software entities? with
attributes and access methods (getters and setters). An-
other important characteristic of the RSDM is that it uses
a flexible architectural pattern, which enables software
entities to receive modifications naturally, facilitating the
actuation of automated processes [5] [6] [11]. When a
software entity is developed, the software engineer must
define the information to be modified (structural and/or
behavioral). In the next phase, this information is used
in the adaptation (automated processes) of the software
entity at runtime without the developers’ participation,
reducing the generation of uncertainties in the adaptation
process [8] [9] [10].

The automatic mechanisms represent a comprehensive
and complex solution that acts in the software adaptation
at runtime. These mechanisms are organized into a refer-
ence model composed of seven modules (Section IV). Such
modules automate the guidelines prescribed in the RSDM
and supervise the software entities in the REE, analyzing
requests for modifications and performing them whenever
possible [8] [9] [10] [12].

This article presents a reference model for SaS develop-
ment, which contains a set of modules that monitor and
adapt software systems (entities) at runtime. The model
uses computational reflection, which is an important re-
source for the inspection and modification of software. In

IThe term self-adaptive systems is used in different ar-
eas/domains. In this article, it will focus only in the software domain,
so it will be referenced as Self-adaptive Software (SaS).

2 From this point onwards, SaS will be also referred to as software
entities or simply entities.

AFFONSO, F. J., CARNEIRO, M. C. V. S., RODRIGUES, E. L. L. et al. / Revista de Sistemas de Informag¢ao da FSMA n. 12 (2013) pp. 8-20

order to show the viability of the model, a case study was
conducted. As a main result, this reference model can be
considered an important contribution to the area of SaS.

The article is organized as follows: Section II presents
the background and related work; Section III describes the
process for the SaS development; Section IV presents the
reference model; Section V describes a study case; Section
VI provides a brief discussion on the results and limitations
of the model; finally, Section VII concludes the article and
presents some future works.

II. BACKGROUND AND RELATED WORK

HIS section presents the background (concepts and

definitions) and related work that contributed to the
development of this reference model. Initially concepts
of reflection and its adaptation techniques are described.
Next the related work on software engineering tools and
software architecture is addressed.

A. Background

Computational reflection, or simply reflection, can be
defined as any activity performed by a system on itself,
and is very similar to human reflection. The main goal
is to obtain information about its own activities, aiming
to improve its performance, introduce new capabilities
(structural and/or behavioral), or even solve its problems
by choosing the best procedure. Furthermore, the use of
reflection enables the software to be more flexible and
susceptible to changes [1] [2] [3] [4].

Tanter et al. [13] and Janik & Zielinski [14] developed
two techniques for software adaptation based on Aspect-
Oriented Programming (AOP). The first acts on structural
and/or behavioral adaptations through weaving functional
and non-functional requirements by a tool named Reflex.
The second adapts the non-functional requirements, leav-
ing the functional level intact. The authors proposed an
AQOP extension, named AAOP (Adaptable AOP), which
represents a set of adaptable non-functional aspects inte-
grated into the software system at runtime.

In Borde et al. [15], Hussein & Gomaa [16], Kasten
& McKinley [17], and Bastide [18], reflection is used as
a technique for the software components adaptation into
structure and behavior. Basically, software components are
wrapped due to original interface incompatibilities. The
existing functionalities are preserved and others, related to
new requirements are added, constituting a new software
component. Kim et al. [19] approached the same technique
(components wrapping), but they commented on their
preoccupation to control the size of software components
when an adaptation is performed, since these components
can increase in size quickly and this could make unfeasible
future adaptations.

B. Related Work

According to Whitehead [20], Nakagawa & Maldonado
[21], Nakagawa et al. [22], and Dong et al. [23], soft-
ware engineering has been facing problems concerning the

existence of methods and tools that assist the software
engineers in all development stages of a software life cycle.
Although a large number of tools has been directed to
solving these problems, few of tools have attended the
needs of developers, due to changes in the systems de-
velopment tendencies. However, when some tools attend,
there is a problem related to the high cost, which prevents
their acquisition by small and medium companies.

Henttonen & Matinlassi [24] evaluated and classified
Software Engineering Tools (SET) directed to the reuse
and sharing of information in a distributed environment.
The authors commented on the use of repositories as a
mechanism for storage and information reuse and high-
lighted the criteria of communication among the develop-
ers as a success factor in the elaboration of reuse-oriented
software projects. The necessity of an architectural pattern
is mentioned by these authors as an important factor to
increase the software reuse.

According to Gray [25], SET reduces the time and
cost of development in a software project. These author
commented on the existence of many tools for specific
purposes and their cooperation in the execution of a soft-
ware project. A brief classification of SET is also provided
by author. These tools are directed to specific problems
and the most extensive, which acts in various phases of a
software life cycle.

For Williams & Carver [26] and Hongzhen & Guosun
[7], the changes that occur in the life cycle software are in-
evitable. The new needs of stakeholders and issues related
to technological adaptations are the principal reasons for
the changes. The authors point out a study on the flexi-
bility of the software architecture to attend the required
changes without burdening the maintenance activity and
some indicators that measure the impact changes that
might occur. These indicators are organized in a taxonomy,
which can help the software engineer in the design and
maintenance of the software.

A framework for the analysis and design of Reference
Software Architectures (RSA) can be found in Angelov
et al. [27]. According to the authors, the RSA directly
influences the quality and design of concrete architectures
and systems generated based on these architectures. The
framework is composed of a set of 24 RSA, organized and
classified in a multi-dimensional space contemplating five
categories of reference architectures and facilitating the
analysis and design of new systems.

According to Shi et al. [5] and Peng et al. [6], the
reflection has been successfully used in the reuse of soft-
ware components and it has been implemented on a large-
scale in the reuse of software architecture. Both authors
divided the software architecture into two levels: (i) meta,
which contains the architectural components, information
on the base-level as architecture topology, components,
and connectors; and (ii) base, which can be considered as
the traditional software architecture.

Considering the studies presented in this section, three
considerations can be highlighted. First, important initia-
tives of using reflection in the development of SaS have

AFFONSO, F. J., CARNEIRO, M. C. V. S., RODRIGUES, E. L. L. et al. / Revista de Sistemas de Informag¢ao da FSMA n. 12 (2013) pp. 8-20

been taken. Second, the interest in the development of
SaS for different domains, since the diversity of related
work shows the relevance of reference model and reference
architecture for SaS. Third, the importance of STE and
automated processes in the execution of task in a software
projects. Specifically in the SaS context, this consideration
represents an excellent alternative to maximize the speed
of the development of SaS and minimize the involvement
of developers in the adaptation process.

III. PROCESS FOR THE DEVELOPMENT OF ADAPTIVE
SOFTWARE

HE development of adaptive software has specific
Tcharacteristics compared to traditional one, since
this type of software allows changes to be incorporated
at runtime. It also requires different approaches, such as
methodologies, tools (automated processes) and a flexible
architectural model. This section presents an overview
of the development of adaptive software focused on a
methodology (RSDM), an execution environment (REE)
and automated processes [8] [9] [10]. Figure 1 shows the
main phases of the development process of the adaptive
software.

The methodology (RSDM) assists software engineers in
the development of SaS. Basically, the software entities
developed with RSDM guidelines (part A of Figure 1) are
composed of attributes and access methods (getters and
setters). In this step, software engineers can use SET to
model the systems diagrams (Part A of Figure 1). Then,
aided by the annotation module (annotationManager),
they define the adaptation levels of each software entity.
The entities developed in this step are transferred to the
REE by an automated process (Transition arrow between
Parts A and B of Figure 1) [8] [9] [10].

When the entities are imported into REE (Part B of
Figure 1), they undergo a verification process to ensure
the annotations (adaptation level) have been implemented.
Such entities are then transferred to information reposito-
ries and installed in the REE, occupying two states: (1)
running, when at least a client application (stakeholder)
uses one or more implemented functionalities, or (2) stor-
age, when the entity is inactive, “sleeping” in information
repositories and waiting to be invoked [8] [9] [10].

To finish this section, it is noteworthy that the software
entities are organized in an architectural pattern into four
layers: presentation, middleware, application, and persis-
tence. The presentation layer represents the user’s inter-
face (clients of system). The middleware layer is related
to the architectural styles of the system, such as (i) client-
server on the web, (ii) web services, and (iii) invocation
of remote objects. The application layer represents the
system’s logics and the system’s business logics. Finally,
the persistence layer represents the database connectivity.
This architectural pattern offers no salutary innovation,
however the system organization into layers favors the
action of the modules of reference model that it will be
presented in the next section [7] [8] [9] [10] [26].

IV. REFERENCE MODEL AS AN AUTOMATED PROCESS
FOR THE DEVELOPMENT OF ADAPTIVE SOFTWARE

HIS section presents a reference model based on
T reflection for automating the SaS development. This
model represents a real solution (abstraction), based on a
particular domain (self-adaptive systems) and experience
(patterns) to treat the software adaptation at runtime [7]
[8] [9] [10] [26]. The solution adopted for this model is
directed to systems developed in programming language
that have the following features: reflection, dynamic com-
pilation and dynamic loading. Reflection is associated with
the architectural flexibility of the software entity, since the
information on its structure and execution state can be
retrieved and reused when the entity is modified. The dy-
namic compilation and dynamic loading of software enti-
ties are related to how they can be obtained, compiled and
reinserted in the execution environment [2] [3] [4] [5] [6] [8]
[9] [10]. Figure 2 shows this reference model organized into
seven modules: adaptation (adapterURLManager), anno-
tation (annotationManager), configuration (configura-
tionManager), query and rules (queryManager), reflection
(reflectManager), source code generator (sourceCode-
Manager), and state management (stateManager). The
following sections briefly describe each module, empha-
sizing the modules for adaptation of a software entity
at runtime (annotation, reflection, source code generator,
adaptation).

A. Annotation Module

The annotation module (Figure 3) was developed to
assist the software engineer in defining the adaptation
level of software entities. It is composed of two packages:
(i) model, which represents the logics of the module,
containing annotations for classes (ClassAnnotation), at-
tributes (AtributteAnnotation), and methods (Method-
Annotation), and (ii) annotations, which contains a set
of classes that act in the recovery of annotations (model
package) inserted in software entities in the development
stage.

In the model package, the ClassAnnotation annotation
is the “main point” of the module. Basically, it defines
two important functionalities: (1) adaptation levels (enum
Artefact), which can be applied to software entities, and
(2) artifacts types (enum ArtefactType), which receive
the adaptation information.

The adaptation level is defined in the enum Artefact
(CLASS, FIELDS, METHODS, and UNADAPTABLE), which deter-
mines how the modifications can be applied. When a soft-
ware entity is noted as CLASS, there must be annotations
determining the attributes and/or methods that can be
modified. When it is noted as FIELDS, only the attributes
can be modified (added or removed). In this case, getters
and setters methods also suffer the same changes, but they
do not need to be noted. When it is noted as METHODS,
changes occur only in the methods. Finally, when it is
noted as UNADAPTABLE, no modification in the software
entity can be accomplished.

10

AFFONSO, F. J., CARNEIRO, M. C. V. S., RODRIGUES, E. L. L. et al. / Revista de Sistemas de Informag¢ao da FSMA n. 12 (2013) pp. 8-20

(A) Annotations Module (annotationManager]
RN Software Engineering Tools
annotationManager
o 3
R +
S
D T -
M
Domain Software B
Specialist Engineer Requirements -
Document System Models
(B) g8 P = Adaptation Maodule
B s & o X & [adapterURLManager] -
n 5 = 1 (-
v S e
5 u, . -
R . 1*?5 Object Server Automated
L @ casse
E P =) pyrr—— Processes
E g% - 8 @i fo - [N
= TSI
.] L L L ;
. . Infommation Repositories |
REE - Reconfigurable Execution Environment insertion of the enfitys in REE
Labels:

RSD M- Reconfigurable Software Dewvelopment Methodology
REE - Reconfigurable Execution Environment

ToA - Transfer of Arifacts
ASD - Adaptable Software Development

Fig. 1. The Reconfigurable Software Development Process (main phases) [8] [9] [10]
reflectSystem |
configurationManager | adaﬁerURLManaﬁer | gueryManarer]
1 1 1 1]
intelligenceEngine FAN—— e tynamicClassLoader 5 rulesEngine rulesFactony
S| -

|
i i
|
| D i
L_fosuseses RS gpgns ||

reflectianarger] ! X d stateManager]

. 1
model |- __ _ _ | reflection < SUSESHR adapter __ qusesx) state | ___ _ - model
=< |SRS=EF == SRSE=
' A !

__Jzousesen iFruseseEf
| |

sourceCodeManager | ! : i anhotatiohManager
! “=useges X

1 1 . 1 I 1

model |- | sourceCode - _: tynamicCompiler :_ mES annotations s model
Sl SRERE =UseS#
Fig. 2. UML model of reference model [10]

The enum ArtefactType (FUNCIONALITY, PERSISTENT)
determines the type of software entity that can be adapted.
A FUNCIONALITY entity represents a class composed of
one or more methods that can be reused and transformed
into either a remote method or a web service [§] [9]. A
PERSISTENT entity represents a system logical class en-
dowed with persistence mechanisms (manual or automated
frameworks) into a database.

Apart from the information considered technical (adap-
tation level and type of software artifact), it is possible
to insert semantic information into the software entity.
This type of information describes the functionality of

the software entity and is used in the information re-
trieval module (queryManager) for a selection of software
entities in the REE. Basically, the semantic query uses
the information contained in the semanticInformation
method - implemented in all annotations of model package
(annotationManager module) - to find a specific software
entity.

Finally, after inserting the annotations into the software
entities, the software engineer must start the validation
process, which ensures that the software entities have been
noted correctly and can be inserted in the execution envi-
ronment (REE) waiting for a solicitation by adaptation.

11

AFFONSO, F. J., CARNEIRO, M. C. V. S., RODRIGUES, E. L. L. et al. / Revista de Sistemas de Informag¢ao da FSMA n. 12 (2013) pp. 8-20
]
model
mescasd ==anotation== ==EnuUMm==
L 7 =zepall== Atributte Annotation Artefact <<usE>>
. =<import== e | A
g + atibateName) pisies LR e g |
N . | b N i
) + semanticinformation() I _ METHODS - String :
: - LINADAPTABLE : String 1
AnnotationManager ==anotation== J' :
ClassAnnotation T i
- AnnotationManager) | .)
+ getClassAnotation() <<pall=> + className() i
+ getAtributteAnnotation() + reconfigurationLevell) [~~~ "7 |
+ getMethodAnnotation() + semanticinformation() : ==enums== ¥
4\ ~ I ArtefactType STEEEES !
[==gall=> =<anotation=> Eeosog A - FUNCTIONALITY ; String Ko ------ : !
! MethodAnnotation <<import=> | . PERSISTENT : String X |
| *. ' \
I - i
l fmemmmmms A + methodAnnotation() ! X
| ! " e 4
i + semanticinformation() ! |
==call== | |——————————————————————————————————'
L L .
I] |
) | P
T] [
& ! annotations 1 I has 1.*
: ' I Ld Atributte
| |
annotationManager - L ! 0 ! - name : 5tring
ProjectManager Clazz - semanticinformation : String
- ohjects : List=Object= . @t + Atributte)
4 T ; q - name : String
1) GATIE PTG . HIgiect - reconfigurationLevel : Artefact
+ ProjectManager() 1 1] - projectame : String | ! 1.5] -type : AnefactType
+ getlog) hasp> - date : Date has B> - semanticinformation : String
+ getAnnotations(- class : List=Claz= - attribute : List=Atributte=
+ annotationsVWalidation() - method : List=MethodClass=
+ setObjects() + Clazzf) Metthod
 BElish by - name : String
1 - semanticinformation : String
hasB> 4 | +Methad)

Fig. 3. UML model of annotation module

B. Reflection and Source Code Generator Modules

As mentioned in the previous section (Section IV-A),
the annotations are used to identify the adaptation level of
software entities, i.e., the modifications that can be applied
to these entities at runtime. For this, the following steps
are required: (1) entities “disassembly”, (2) inclusion of
changes (adding or removing information), (3) generation
of a new entity, and (4) reinsertion into the execution
environment (REE). Figure 4 shows the reflection module
(reflectManager package) and the source code genera-
tor module (sourceCodeManager package) responsible for
steps 1 to 3, respectively.

The reflection module (reflectManager package) in
Figure 4 is composed of reflection and model packages.
The model package contains a set of classes that repre-
sents a metamodel for a software entity. The reflection
package contains a set of classes that acts in the handling
of this metamodel through the following operations: (i)
information retrieval from a software entity at runtime, (ii)
instance of the metamodel with the information obtained
in step (i); and (iii) transference of this metamodel (step
ii) to the source code generator module so that the source
code of each new software entity can be generated.

The adaptation process is initiated by the Project class
in the model package. This class has a list of objects (List
<Object>), which receives all software entities that must
be adapted. These entities are the variables of software
systems (objects, software components and/or web ser-

vices) existing in a software project. After instantiating
this list, the Project class makes a call to ClassReflect
class (reflection package), specifically in the disassem-
blingClazz method, to start the disassembly process of
software entities.

The disassembly process retrieves structural and/or
behavioral information on software entities and inserts
it into a metamodel (reflectManager.model package).
For this, the Reflection API? is used as a computational
resource to find information at runtime [2] [3]. Although
this metamodel has reflective characteristics, it represents
a generic solution. Thus, other computational resources
(programming languages) can also be used to instantiate
it, provided they meet the requirements mentioned in the
Section IV-C.

After the disassembly process has been completed, the
responsible developers (software engineer and domain spe-
cialist) define the information (structural and/or behav-
ioral) to be inserted to or removed from the software
entities so that the source code of a new software entity can
be generated. This activity is performed at a high level of
abstraction by the manipulation of the metamodel, since
the developers define whether attributes (FieldClass)
and/or methods (MethodClass), both class in reflect-
Manager.model package, can be added or removed from
the software entity.

Figure 4 (bottom part) shows the source code generator

3 http://docs.oracle.com/javase/tutorial /reflect /

12

AFFONSO, F. J., CARNEIRO, M. C. V. S., RODRIGUES, E. L. L. et al. / Revista de Sistemas de Informag¢ao da FSMA n. 12 (2013) pp. 8-20

]
: """""""""""""""""""" Q/ model
i FieldClass MethodClass Parametter
1
1 - modifierQualifier - String 1.7 - modifierQualifier : String - name : String
: _—— - type : String - returnType : String has B - type : String
[- name : String - name - String 1 0. FE "
: g - initialValue : String - parametters : List<Parametter> arameter()
: : + FieldClass() - sourceCode : String
o r + MethodClass() Packagge
1
: 1 > - nameComplete - String
1 *
D Interfacce . < has A 1 contany 1 + Packagge()
N :
. -name : String 1 has | 4 T
1
[
Consttructor
: : + Interfacce() 1 Clazz
[<dhas - modifier : String
: i - name : String s B - name : String
] - modifier : String 1 1.0 1. params : boolean
o 4= STTTTTToTToTooomostooooned - qualifier : String
Vo - packagge : Packagge * _listAdifacts
o - project : Project A
: ! } Project - constiructor : List<Constiructor=
o ! -interfacce : List<Interfacce> hes
G : - name : String _clazz | -fields: List<FieldClass> 0.1
. : _ date ; Date - metthods : List<MethodClass= &
y 1
\ | - objects : List<Object> has P + | - extemalPackage : List<String> _I
' H ! - clazzes : List<Clazz> 1 - superClazz : Clazz L
: : : + Project) - listArtifacts : List<Clazz> M reflectManager
[+ creatingProject() : void + Clazz()
I -
i i] g+ -SuperClaz =
L |
; T T
1] : T I
N . reflection _
I ! [> FieldReflect 1
' : ! a<call=> 1 <<call=> |
Lo b= By ClassReflect -FieldReflect)) | !
'
| P . 1
: ' : \r - ClassReflect() :
i1 ' | ModifierReflect + disassemblingClazz() : Clazz ConstructorReflect I
N 1 - <<call>> -]
L — ey +getSuperClazzes() Claz 0 0f-=--=-==-=-%==--- ,
o ! 1 | - ModifierReflect() <<call>> + createlnstance(className - String) - Object - ConstructorReflect() |
A 7 ! |
0 | I <<call>>| :
o i i ; MethodReflect]
! | | ! |
AR i i “-A + MethodReflect() }
P | cEseal> o ____] + invokeMethod() : Object :
| } o ! + invokeMethod(abj : Object, mi: String, pt: Class[], pv: Object]]) : Object }
[: : 'chaH» i
R It tatatatatatatly =)/ - =00 =00 =050 =00 0 o — = o —o == =oor e :
| T
Ly
o, !]
T T
0 O model
LY
[T CodeGenerator]
1o Loooo <<interface>>
1
i hemeeo - CodeGenerator() <<implements>> SourceCodeltils | _q| sourceCodeManager
————————— + generateCode(clazz : Clazz) : String cocooconc
+ generateCode(clazz : Clazz, fileds : List<FieldClass=) . String fg’g\':lggl'_gmﬂ%mﬂ
+ generateCode(clazz : Clazz, methods . List<MethodClass=>) : String d [57]
+ generateCode(clazz : Clazz, fields : List<FieldClass>, methods : List<MethodClass=) . String
t’ N
7] .
<<call>> If utils \‘<\<C6H>>
— al
FileManager UtilitiesManager
- FileManager() . - UtilitiesManager()
+ save(sourceCode : String, fileName : String) - boolean + firstLetterCapitalized(word - String) - String
+ createPackage(rootDir : String, packageMName : String) : boclean

Fig. 4. UML model of reflection and source code generator modules

module (sourceCodeManager package), composed of the
model and utils packages. The former contains a set
of classes for manipulating files (read and write opera-
tions) and the latter contains the CodeGenerator class,
responsible for generating the source code of software
entities. As a preliminary activity, the software engineer
must elaborate one or more source code templates to
generate the software entities, as previously established by
the architectural pattern (Section III). These templates

are “injected” directly into the CodeGenerator class to
generate the source code of each software entity.

The CodeGenerator class implements the method,
named generateCode, which must be overloaded to attend
the possible adaptation interests: (i) structural, when
only one or a list of attributes should be added to or re-
moved from the entity. In this case, the getters and setters
methods that manipulate these attributes are modified;
(ii) behavioral, when only a list of methods should be

13

AFFONSO, F. J., CARNEIRO, M. C. V. S., RODRIGUES, E. L. L. et al. / Revista de Sistemas de Informag¢ao da FSMA n. 12 (2013) pp. 8-20

added to or removed from the entity; and (iii) structural
and behavioral, when one or a list of attributes/methods
should be added to or removed from the entity. In both
interests, a String containing the new source code of
the software entity to be saved by the FileManager class
(utils package) must be returned. Finally, this module
has a mechanism for the version control of the entities
source code that prevents them from being overlapped and
keeps versions of all stakeholders.

C. Adaptation Module

This section presents the adaptation module
(adapterURLManager) shown in the Figure 5. The
module can be considered the “orchestrator” of the

reference model presented in this article (Figure 2), since
it makes calls and coordinates all activities of the other
modules. A “connection point”, as a system supervisor
(adapter package), must be implemented between the
dynamic compiler (dynamicCompiler package) and the
dynamic class loader (dynamicClassLoader package).
This system aims to compile/recompile the software
entities and upload (replace) their binary code at
runtime. In addition, a desirable characteristic for this
module, specifically in the dynamic compiler, is the ability
to diagnose errors in the source code, since the error
messages are useful information for the interpretation and
corrections in the source code.

The adaptation module (Figure 5) is composed of
five packages: classloaderLanguage, compilerLanguage,
utils, compiler and adapter. The former two represent
the loaders and compilers of the software entities, respec-
tively. These packages are specific in each programming
language, therefore they are not presented in details in this
article. The latter three, which are presented in greater
details in this section, are responsible for adapting the
software entities.

The utils package is composed only of the Class-
URL class, which contains the location (url), en-
tity name (className), parameters (paramsType), and
paramsValue) of the software entities that must be
adapted. The compiler of the software entities is repre-
sented by the CompilerManager class, which must im-
plement a full compiler for the system adaptation with
the following operations: (i) generation of compiled code,
and (ii) errors messages (diagnostics) in source code.
Finally, it is worth emphasizing the relationship among
the classes in the compilerLanguage package (compiler
of programming languages) with the CompilerManager
class (compiler of reference model), since it represents the
dependency between the model and the computational
resource (programming language).

The adapter package has only the RunReload class,
which receives the software entities from the ClassURL
class, forwards them to be compiled into the Compile-
Manager class and loads them into memory with the
help of classes in the classloaderLanguage package.
In operational terms, the RunReload class implements

the compileExecute and compileInstance methods. The
overload in each of the methods attends the number of
software entities (one or a list of ClassURL class) to be
compiled and instantiated into the environment execution.

The compileExecute method compiles and executes the
software entity by the method name passed as parameter
(methodName). In this case, no result is returned to the
client program (stakeholders) that has called it, taking
the execution by exclusive responsibility of software entity
that is being invoked.

The compileInstance method compiles the software
entity and returns an object (Object) to the client pro-
gram (stakeholders) that has called it. Thus, this client
program can make calls of its interest to method of
the entity. For this, the software entities that have been
invoked must implement an interface to be returned as an
instance of this program. Therefore, it is noteworthy that
this strategy of access, the client program will have access
only the functionalities of software entities and not their
content (source code).

D. Others Modules

The configuration module (configurationManager)
controls the size of software entities when the adaptation is
performed. Initially, a software entity is developed to meet
specific requirements and act in a specific domain (goals).
In short, some changes may occur in the environment and
these entities have to adapt to operate in the same domain
or different domains. Therefore, a configuration manager
enables the control of the number of adaptations (size)
and goals of the software entities, maintaining its integrity
(goals) over the original domain and not invalidating
future adaptations.

The query and rules module (queryManager) is re-
sponsible for locating software entities in the repositories.
When an entity is developed and inserted into the environ-
ment execution (repositories), an automatic mechanism
(rulesFactory) disassembles the entity and creates a
set of rules that describes it (structure and behavior).
These rules are stored in the repositories and reused when
a search (rulesEngine) is performed. The rules model
(rulesFactory package) must be compatible with the
software entity metamodel in the reflectManager .model
package.

The state management module (stateManager) pre-
serves the execution state of the software entity. When an
entity is selected for adaptation, the information contained
in its current state is preserved. The entity is modified
and the information is reinserted so that the execution
state (current information) is not interrupted. Basically,
this module should have two functionalities: (i) the first
conversion of an entity into a file (.xml) with structural
information and its content, and (ii) representation of the
reverse process (XML file to entity). The choice of XML
(eXtensible Markup Language) to perform these opera-
tions is related to the following facilities: files handling
(reading and writing), integration with different program-
ming languages, and implementation.

14

AFFONSO, F. J., CARNEIRO, M. C. V. S., RODRIGUES, E. L. L. et al. / Revista de Sistemas de Informacio da FSMA n. 12 (2013) pp. 8-20

External Packages
(Programming Language)

Fig. 5. UML model of adaptation module

V. CASE STUDY

HIS case study concerns the software adaptation

supported by automated process of the reference
model (Section IV). To show its applicability, two types
of modification will be considered:

1) Association of new functionalities, which corre-
sponds to the addition of new information (classes)
to the selected software entity by aggregation, com-
position, or association;

2) Extension of new functionalities, which
corresponds to the addition of new information
(classes) to the selected software entity by the a
inheritance relationship.

Before describing the case study, three considerations
must be emphasized. The first is related to the implemen-
tation of the reference model (Section IV), instantiated
in Java* programming language. For space reasons, the
implementation details are not presented in this article.
The second refers to the size and logic organization
of the chosen system, which can be characterized as an
information system for the bookstore management. This
system has been selected as it can show the use of this
reference model (Section IV). The third refers to entity
adaptation, since the adaptation of software entities can

4 http:/ /www.oracle.com/technetwork/pt/java/javase/overview/
index.html

[] | 1
dynamicClassLoader adapter utils
ClassLoader o feuses=) | RunReload ClassURL
- compiler : CompilerManager - className : String
+ RunReload() | <FUSEs>] o - url : String
+ compileExecute(url : ClassURL, methodMame : String) : void - paramsType : List=Class=
URLClassLoader << seEE> + compileExecute(urlList : List=ClassURL=, methodMame : String) : void - paramsValues : List=0bject=
o Dty —=---|=1 +compilelnstance(url : ClassURL, urlList : List=ClassURL=) : Object + ClassURL(
+ compilelnstance(uriList: List=ClassURL=) : Ohject
compilerLanguage
y - has
FileOhject
[[~ ~<<uses=>] 1
Diagnostic T - -
- - ~u dynamicCompiler
T~ -=suses== [«
Tl CompilerManager &
ToolProvider I— : " |
ce|gegs> - javaCompiler ; Compiler
- ------_|_| - diagnostics : DiagnosticColletor=FileQhject= o adapterURLManager
- fileManager : StandardFileManager 3
Compiler 1 1 + CompilerManager()
B < has + compiler(classiame : String) : hoolean
=1 + compiler(classMame : List=String=) : boolean
1 / + getErrorMessage() : Strin
DiagnosticCollector [{1 qhas LA 9 ge0 g
1 d has
StandardFileManager ||

occur in both structural and behavioral changes. In this
article, for space reasons, a structural adaptation was
chosen, since it can show the applicability of the reference
model to the adaptation of a software entity.

To present the types of modification (1 and 2), only the
client software entity of the bookstore system, represented
by Customer class (Figure 6) is considered. This entity is
the base level of the inheritance relationship and having
no relationship with others system class (Address and
Contact). Thus, the Person class receives the annotations
as an adaptive software entity.

Line 1 of Figure 6 shows the Person class, i.e. parent
class of Customer, has an Artifact.CLASSES adaptation
level. This level requires annotations for the adapta-
tion of attributes (@AtributteAnnotation) and methods
(@MethodAnnotation) - lines 3 and 6, respectively. Still in
line 1, the entity was noted as ArtifactType.PERSISTENT
type, indicating that its information is stored in the
database.

To show the first type of adaptation, the Customer
entity, initially developed to act from a local system for
a virtual bookstore system, will be adapted to act in a
web system with authentication (same domain). An entity,
named Login, with username and password attributes will
be created and associated (composition) to the Customer
entity. Figure 7 shows the adaptation of Customer entity.

Square A of Figure 7 shows the UML model of Cus-
tomer entity being “disassembled” and a metamodel in

AFFONSO, F. J., CARNEIRO, M. C. V. S., RODRIGUES, E. L. L. et al. / Revista de Sistemas de Informacio da FSMA n. 12 (2013) pp. 8-20

>

Contact

- homePhaone : String
- businessPhone : String

P - mobilePhone : String
= - email : String

C

o + Contact()

o]

£ 1A

2 Address has

w 1

8 - street : String Person

— - number : String * 1

=] - neighborhood : String | .~ - name : String .
) - city : String Ahas - bithDate : Date
o - state : String

o} p) . + Person()

= - ZipCode : String

g + Address() fr\

=

Customer

- individualRegistration : long

+ Customer()

Metamodel of Customer entity (B)

Login

- username : String
- password : String

+ Loging

New metamodel of
Customerentity

S

Login] Contact
- - username : String dhas| _pomePhone | String
.E - password : String - businessPhone : String
C +Loging - mohilePhone : String
@ d - email ; String
g + Contact()
o]
= VA
8 Address ; has
o 1
% - street: S.tnng Porson
c - number: String .)
u— - neighborhood : String 1 - name : String =
E - city : String ehas | - bithDate : Date
Q - state : String + Person
_8 - ZipCode : String
= + Address() fr\
—
% Customer

- individualRegistration : long

+ Customer()

(C)

. FieldClass username = new FieldClass();

. username.setModifierQualifier("private");
. username.setType("String");

. username.setName("username");

oW N e

. FieldClass password = new FieldClass();

. password.setModifierQualifier("private");
. password.setType("String");

. password.setName("password");

CoO o~ v L1

9. Clazz clz = new Clazz("Login");
18.clz.setFields(username);
11.clz.setFields(password);

12 .metamodel . addArtifact(clz, “Person”,
ONE-to-ONE, AG-UN-2);

Fig. 7.

reflectManager.model package (Figure 4) is instantiated
(Square B) with structural and behavioral information
on this entity. For this entity to act in a web system
with authentication, two attributes must be added: user-
name and password. The solution adopted to attend the
first type of adaptation was to create a Login software
entity with these attributes, which will be associated
(composition) with the Customer entity (lines 1 to 12 -
Square C of Figure 7). Initially, the username attribute
(lines 1 to 4) is created and access modifier, type, and
attribute name are defined. The password attribute is
created in a similar way (lines 5 to 8). The "Login"
entity is created between lines 9 and 11 (note that the
class constructor (Clazz ("Login")) defines the model
entity name in the UML model). Lines 10 and 11 show
the attributes (username and password) added to the
entity (Login). Finally, line 12 shows the formation of the
composition relationship between the entities (Person and
Login). The first parameter (clz) represents the entity
that is being created (Login). The second ("Person") and
third (ONE-to-ONE) parameters indicate the entity name
(metamodel) that will be associate with the new entity
(first parameter) and cardinality between these entities,
respectively. The fourth parameter (AG-UN-2) indicates

Adaptation of Customer entity for web system with authentication.

the type of relationship (composition) and navigability
(unidirectional) of this relationship (Person to Login).
The UML model (Square D) shows the new software entity
(Customer).

To attend the second type of adaptation, the need
to adapt the new Customer entity to act in a school
management system is considered. Initially this entity
was designed to act in a local bookstore system, and
subsequently adapted to act in a virtual bookstore system,
but maintaining the development context. This type of
adaptation requires that the entity operate in a different
context from which it was developed. Figure 8 shows the
summarized steps of adaptation from Customer entity to
Student.

The adaptation of entities (Customer to Student) will
not be presented at the same detailed level as the previous
one (Figure 7), once the functioning and performance of
modules are similar. Based on the original entity (First
lane of Figure 8), a metamodel was instantiated with
structural and behavioral information on the Customer
entity. For this entity to act in a school management
system, a Student entity with academicRecord attribute
must be created (Second lane). The creation of Student
entity is represented between lines 1 and 7 (Second lane).

16

AFFONSO, F. J., CARNEIRO, M. C. V. S., RODRIGUES, E. L. L.

et al.

/ Revista de Sistemas de Informagao da FSMA n. 12 (2013) pp. 8-20

UML Model of new Customer entity

Adaptation Process (main steps)

UML Model of Student entity

- individualRegistration : long

+ Customer()

- = Student Login ; Contact
= : - academicRecord : long -username : string |- <Ahas| _nomePhone : string
+ Student() - password : String S busipessPhone : String
— e - mobilePhone : String
9 - email : String
+ Contact()
Login " Contact A
- usemame : string |- 4has| - namePhane - string 1. FlEldCIES%‘ ar = neu ElEIECl“;‘SS()i r— has
- password : String - businessPhone : String 2. ar.setModifierQualifier("private"); 1 1
aan —mub?:e.lgr;one:string 3. ar.setType("long"); - sirest : String Bereen
- émall- Siring 4. ar.setName("academicRecord"}; - number - String P
+ Contact)) - neighborhood : String |- | - name : string
- city : String @has | - bithDate: Date
1T A 5. Clazz clz = new Clazz("Student"); - state : String = 7
.) +
Address has 6. clz.setFields(ar); - zipCode : String Erson
1
. 1 + Address() ﬁ)
- street: Strin .
o Str?ng Person 7. metamodel . addArtifact(clz, p—
- ustomer
- neighborhood : string |1 1] - name: sting - “Customer”, NONE, EXTENDS);
- ity : String dhas - hithDate : Date - individualRegistration : long
- state : String Cust
- zipCode : String + Person) _ . + Customer()
+ Address() ? L | - i ?‘
Customer

= ol [Student

- academicRecord : long

+ Student()

Fig. 8. Adaptation of Customer entity.
UML Model of Customer entity
Contact
- homePhaone : String
- businessPhone : String
- mohilePhone : String
- email : String
+ Contact()
A
Address i y has :
1 1
- street: String 1 H
- number : String g gerson i
- neighborhood : String |7 1 - name : String 2 [.
- city : String {H'as - bithDate : Date ' !
- state : String ! +F ! i
- ZipCode : String ! ersonQ ! |
1 1 L]
+ Addrass() . {% ,,,,,,,,,, : i
Customer i
- individualRegistration : long i
+ Customer() E
Source Code of Customer entity
1. @ClassAnnotation(className = "Person", i
semanticInformation = "...", !
type = ArtifactType.PERSISTENT,
reconfigurationlevel= Artifact.CLASSES) |
2. .pu.bl:l_c class Person { '1 ---------------------- !
3. T@AtributfeAnnotatio ﬁ'(’é&lbuteua_m—
"name" , semanticInformation="...")
4. private String name;
5. v
G. @MethodAnnotation (methodName=
"setName", semanticInformation="...")
7. public void setName (String name) {
8. this.name = name;
9. }
10. //
11.1}
Fig. 6. UML model of adaptation module

Initially, the academicRecord attribute is created (lines 1
to 4) and access modifier, type, and attribute name are
defined. In lines 5 to 6, this attribute is added to the
class Clazz. Finally, line 7 shows the formation of the
relationship between the entities (Person and Student).
The first parameter (clz) represents the entity that is be-
ing created. The second parameter ("Customer") indicates
the name of the entity (metamodel) that will be associated
with the new entity (first parameter). The third (NONE)
and fourth (EXTENDS) parameters show that there are
no cardinality and the type of relationship (inheritance)
between these entities, respectively. The third lane shows
the UML model of the Student entity.

VI. BRIEF DISCUSSION ON THE RESULTS AND
LIMITATIONS

T HE main results and limitations of this research are
addressed in the next sections.

A. Automated Processes in Software Engineering

According to these authors [28], [29], [30], software
adaptation is an error-prone activity and very onerous
when performed manually. Thus, automated processes are
important for the development of software systems, since
they increase the execution speed of tasks, minimizing time
and cost and reducing or eliminating the involvement of
developers. Based on this scenario, our reference model
represents a comprehensive solution and a good perspec-
tive to efficiently contribute to the area of SaS. Software
entities are adapted by a set of modules in a well-defined
sequence of steps (“assembly line”). Thus, these modules
enable the software engineers to act in a higher level of
abstraction, avoiding them from having to use specific
knowledge so that a software entity to be modified.

17

AFFONSO, F. J., CARNEIRO, M. C. V. S., RODRIGUES, E. L. L. et al. / Revista de Sistemas de Informag¢ao da FSMA n. 12 (2013) pp. 8-20

B. Reference Model for SaS

Several studies that approach the software adaptation
at runtime in different abstraction levels can be found
in the literature. As the lowest abstraction level, one
can cite the ASM framework®, which requires from the
developers a specific level of knowledge (manipulation in
machine code). In our reference model, software entities
are adapted in a comprehensive step sequence as assem-
bly line. Basically, the software entity is “disassembled”
(retrieved via reflection) and its information is inserted
into a metamodel, which is modified and receives new
information (structural or behavioral) for the new entity
to be generated. Therefore, it can be said that software
engineers work in a higher level of abstraction, performing
tasks closer to those that are accustomed to do.

As our reference model is based on reflection, it can
be adapted to attend other implementation approaches,
such as Aspect-Oriented Programming (AOP) [6], [7],
[29]. Thus, changes would not affect the structure of the
proposed modules of this model.

In this article, the reference model was instantiated
in the Java programming language, since it meets the
requirements of the model. However, the results have made
us believe that this model can be implemented in other
programming languages.

C. Limitations

The reference model presented in this article does not
cover all cases and does not solve all problems related to
software adaptation at runtime. Software adaptation is a
broad and complex issue, since there are many involved
details so that a software entity is adapted at runtime
(specific characteristic of adaptation, techniques of imple-
mentation, and others). Although the proposed model can
be considered a generic solution, it has not been inves-
tigated the its applicability in the development of critical
embedded systems [31] [32] [33]. However, the results make
us believe that it can be extended or applied in this type
of systems, since its guidelines can be adjusted (reused
or adapted) to automatically conduct the development of
SaS.

In this article, the reference model was instantiated
in the Java programming language. It was not still in-
stantiated to other programming languages, intending to
evaluate its applicability and behavior in the adaptation
of software entities.

Finally, the reference model has not been used in the
industry and totally validated. Case studies have been
planned in that direction.

VII. CONCLUSIONS AND FUTURE WORKS

HIS article presented a reference model to support
the development and adaptation of software systems
at runtime. Using this model, software entities are trans-
parently monitored and adapted at runtime, without the

5 http://asm.ow2.org/

perception of their users. To perform these operations, the

model uses modules that work in an assembly line, i.e.,

a software entity is automatically disassembled, adapted,

and reassembled by the modules in an automated process.
The main contributions of this article are:

1) To the area of SaS with a means that facilitates the
development of systems with runtime adaptations;

2) To the area of reference architecture and reference
model by proposing a first reference model based
on reflection that considers adaptations of software
entities at runtime;

3) To the area of software automation, since our ref-
erence model presents means of assembly line. The
module of this model performs adaptation of soft-
ware entities without intervention of developers;

4) Finally, it is believed that this reference model
may be adequately used together with software
development processes that have been used by
companies, since both reference model and these
processes seem to be complementary.

As future works, some activities are being planned: (i)
the first is related to case studies that will be conducted
for the evaluation of the reference model presented in
this article, since other type of adaptation of software
entities must be investigated; (ii) the second is related to
the instance of the reference model, other programming
languages to evaluate its applicability and behavior in the
adaptation of software entity must be tested; (iii) the third
is related to the use of the model in the industry, intending
to evaluate the behavior of this model when it is applied
in larger environments of development and execution; and
(iv) the fourth is related to execution performance of
the reference model when a software entity is adapted.
In the adaptation process of the model, a set of tasks
is sequentially executed. The results combined with our
experience enable us to identify that some of adaptation
task can be executed in parallel. The parallelization of
these tasks can considerably improve the adaptation time
of the software entities, besides broadening the applica-
bility of this model to the domains of software systems
whose time is considered as critical factor. Therefore, we
have a positive scenario of research, intending to become
this model an effective contribution to the community of
software development.

ACKNOWLEDGMENT

The authors would like to acknowledge PROPe/UNESP
(Pro-rector of Research / Univ Estadual Paulista) for the
financial support provided to this research.

REFERENCES

[1] B. Morin, O. Barais, J.-M. Jezequel, F. Fleurey, and A. Solberg,
“Models@ run.time to support dynamic adaptation,” Computer,
vol. 42, no. 10, pp. 44-51, oct. 2009.

[2] P. Maes, “Concepts and experiments in computational reflec-
tion,” in Conference proceedings on Object-oriented program-
ming systems, languages and applications, ser. OOPSLA ’87.
New York, NY, USA: ACM, 1987, pp. 147-155.

18

AFFONSO, F. J., CARNEIRO, M. C. V. S., RODRIGUES, E. L. L. et al. / Revista de Sistemas de Informag¢ao da FSMA n. 12 (2013) pp. 8-20

3]

(4]

[5]

[6]

(10]

(11]

(12]

(13]

14]

(15]

[16]

(17)

(18]

(19]

20]

(21]

(22]

I. R. Forman and N. Forman, Java Reflection in Action (In
Action series). Greenwich, CT, USA: Manning Publications
Co., 2004.

G. Coulson, G. Blair, and P. Grace, “On the performance
of reflective systems software,” in Performance, Computing,
and Communications, 2004 IEEE International Conference on,
2004, pp. 763 — 769.

Y. Shi, L. ZaoQing, W. JunLi, and W. FuDi, “A reflection mech-
anism for reusing software architecture,” in Quality Software,
2006. QSIC 2006. Sixth International Conference on, oct. 2006,
pp. 235 —243.

Y. Peng, Y. Shi, J. Xiang-Yang, Y. Jun-Feng, L. Ju-Bo, and
Y. Wen-Jie, “A reflective information model for reusing soft-
ware architecture,” in Computing, Communication, Control,
and Management, 2008. CCCM ’08. ISECS International Col-
loquium on, vol. 1, 2008, pp. 270 —275.

X. Hongzhen and Z. Guosun, “Retracted: Specification and veri-
fication of dynamic evolution of software architectures,” Journal
of Systems Architecture, vol. 56, no. 10, pp. 523 — 533, 2010.
F. J. Affonso and E. L. L. Rodrigues, “Estudo comparativo da
adaptacao de software utilizando chamada de métodos remotos
e servigos web,” Revista de Sistemas de Informagao da FSMA,
vol. 7, no. 1, pp. 22-31, june 2011.

, “Reflecttools: Uma ferramenta de apoio ao desenvolvi-
mento de software reconfigurdvel,” Revista Brasileira de Com-
putagdo Aplicada, vol. 3, no. 2, pp. 73-90, 2011.

, “A proposal of reference architecture for the reconfigurable
software development,” in The 24th International Conference on
Software Engineering and Knowledge Engineering, 2012.

N. Bencomo and G. Blair, “Using architecture models to sup-
port the generation and operation of component-based adaptive
systems,” in Software Engineering for Self-Adaptive Systems,
B. H. Cheng, R. Lemos, H. Giese, P. Inverardi, and J. Magee,
Eds. Berlin, Heidelberg: Springer-Verlag, 2009, ch. Using
Architecture Models to Support the Generation and Operation
of Component-Based Adaptive Systems, pp. 183-200.

J. Estublier, G. Vega, P. Lalanda, and T. Leveque, “Domain
specific engineering environments,” in Software Engineering
Conference, 2008. APSEC ’08. 15th Asia-Pacific, dec. 2008, pp.
553 —560.

E. Tanter, R. Toledo, G. Pothier, and J. Noyé, “Flexible
metaprogramming and aop in java,” Sci. Comput. Program.,
vol. 72, no. 1-2, pp. 22-30, Jun. 2008.

A. Janik and K. Zielinski, “Aaop-based dynamically reconfig-
urable monitoring system,” Inf. Softw. Technol., vol. 52, no. 4,
pp- 380-396, Apr. 2010.

E. Borde, G. Haik, and L. Pautet, “Mode-based reconfiguration
of critical software component architectures,” in Proceedings of
the Conference on Design, Automation and Test in Europe, ser.
DATE ’09. 3001 Leuven, Belgium, Belgium: European Design
and Automation Association, 2009, pp. 1160-1165.

H. Gomaa and M. Hussein, “Software reconfiguration patterns
for dynamic evolution of software architectures,” in Software
Architecture, 2004. WICSA 2004. Proceedings. Fourth Working
IEEE/IFIP Conference on, june 2004, pp. 79 — 88.

E. Kasten, P. McKinley, S. Sadjadi, and R. Stirewalt, “Sepa-
rating introspection and intercession to support metamorphic
distributed systems,” in Distributed Computing Systems Work-
shops, 2002. Proceedings. 22nd International Conference on,
2002, pp. 465 — 472.

G. Bastide, A. Seriai, and M. Oussalah, “Dynamic adaptation
of software component structures,” in IEEE International Con-
ference on Information Reuse and Integration, 2006, sept. 2006,
pp. 404 —409.

J. A. Kim, O.-C. Kwon, J. Lee, and G.-S. Shin, “Component
adaptation using adaptation pattern components,” in IEEE
International Conference on Systems, Man, and Cybernetics,
2001, vol. 2, 2001, pp. 1025 —1029 vol.2.

J. Whitehead, “Collaboration in software engineering: A
roadmap,” in 2007 Future of Software Engineering. Washing-
ton, DC, USA: IEEE Computer Society, 2007, pp. 214-225.

E. Y. Nakagawa and J. C. Maldonado, “Requisitos arquiteturais
como base para a qualidade de ambientes de engenharia de
software,” IEEE Latin America Transactions, vol. 6, no. 3, July
2008.

E. Y. Nakagawa, F. C. Ferrari, M. M. Sasaki, and J. C. Mal-
donado, “An aspect-oriented reference architecture for software

engineering environments,” Journal of Systems and Software,
vol. 84, no. 10, pp. 1670 — 1684, 2011.

J. Dong, J. Wang, D. Sun, and H. Lu, “The research of software
product line engineering process and its integrated development
environment model,” in Computer Science and Computational
Technology, 2008. ISCSCT ’08. International Symposium on,
vol. 1, dec. 2008, pp. 66 —71.

K. Henttonen and M. Matinlassi, “Open source based tools
for sharing and reuse of software architectural knowledge,” in
Software Architecture, 2009 European Conference on Software
Architecture. WICSA/ECSA 2009. Joint Working IEEE/IFIP
Conference on, sept. 2009, pp. 41 —50.

J. Grundy, “Software engineering tools,” in System Sciences,
2001. Proceedings of the 34th Annual Hawaii International
Conference on, 2001, pp. 3914-3914.

B. J. Williams and J. C. Carver, “Characterizing software
architecture changes: A systematic review,” Information and
Software Technology, vol. 52, no. 1, pp. 31 — 51, 2010.

S. Angelov, P. Grefen, and D. Greefhorst, “A framework for anal-
ysis and design of software reference architectures,” Information
and Software Technology, vol. 54, no. 4, pp. 417 — 431, 2012.

S. Vinoski, “A time for reflection [software reflection],” Internet
Computing, IEEE, vol. 9, no. 1, pp. 86 — 89, jan.-feb. 2005.

J. Andersson, R. de Lemos, S. Malek, and D. Weyns, “Reflecting
on self-adaptive software systems,” in Software Engineering for
Adaptive and Self-Managing Systems, 2009. SEAMS ’09. ICSE
Workshop on, may 2009, pp. 38 —47.

M. Salehie and L. Tahvildari, “Self-adaptive software: Land-
scape and research challenges,” ACM Trans. Auton. Adapt.
Syst., vol. 4, no. 2, pp. 1-42, May 2009.

H. Gill, “Challenges for critical embedded systems,” in Object-
Oriented Real-Time Dependable Systems, 2005. WORDS 2005.
10th IEEE International Workshop on, 2005, pp. 7-9.

L. Dobrica and E. Niemeld, “An approach to reference archi-
tecture design for different domains of embedded systems.” in
Software Engineering Research and Practice, H. R. Arabnia and
H. Reza, Eds. CSREA Press, 2008, pp. 287-293.

V. Januzaj, S. Kugele, B. Langer, C. Schallhart, and H. Veith,
“New challenges in the development of critical embedded sys-
tems - an "aeromotive” perspective,” in Leveraging Applications
of Formal Methods, Verification, and Validation, ser. Lecture
Notes in Computer Science, T. Margaria and B. Steffen, Eds.
Springer Berlin Heidelberg, 2010, vol. 6415, pp. 1-2.

23]

[24]

[25]

[26]

27)

(28]

29]

(30]

(31]

32]

(33]

Frank José Affonso has a bachelor’s degree in Computer Science
from UNICEP (Central Paulista University), Master’s degree in
Computer Science from DC/UFSCAR (Department of Computation-
Federal University of Sdo Carlos) and Ph.D. in Electrical Engineering
from DEEC/ESSC/USP (Department of Electrical Engineering and
Computation - Engineering School of Sao Carlos - University of
Séo Paulo). He is an assistant professor at UNESP (Univ Estadual
Paulista). He has experience in computer science, with emphasis
on Software Engineering and JAVA Programming Language. He
has worked on the following research lines: Software Architecture,
Dynamic Software Architecture, and Self-adaptive Systems.

Maria Cecilia Vecchiato Saenz Carneiro has a bachelor’s degree
in Mathematics from UNESP (Univ Estadual Paulista), Master’s
degree in Computer Science and Computational Mathematics from
USP (University of Sao Paulo) and Ph.D. in Environmental En-
gineering Science from UNESP (Univ Estadual Paulista). She is
an assistant professor at UNESP (Univ Estadual Paulista). She
has experience in computer science, with emphasis on Software
Engineering, performing on the following topics: methodologies of
systems development, UML modelling language, architecture and
architectural software design, support systems of decision aimed to
public politics.

19

AFFONSO, F. J., CARNEIRO, M. C. V. S., RODRIGUES, E. L. L. et al. / Revista de Sistemas de Informag¢ao da FSMA n. 12 (2013) pp. 8-20

Evandro Luis Linhari Rodrigues has a degree in Electrical
Engineering from ESL (Engineering School of Lins), Master’s degree
in Electrical Engineering from DEEC/ESSC/USP (Department of
Electrical Engineering and Computation - Engineering School of Sao
Carlos - University of Sdo Paulo) and PhD in physics from PI/USP
(Physics Institute - University of Sdo Paulo). He is a professor at the
University of Sao Paulo. He has experience in Electrical Engineering
with emphasis on Electronic Process Automation and Industrial
Electrical. He has worked on the following research topic: image pro-
cessing, microprocessors/microcontrollers, computer vision, carpal
analysis and automation.

Elisa Yumi Nakagawa is Associate Professor in the Department
of Computer Systems at University of Sdo Paulo (USP), Brazil.
She received her BS degree in Computer Science in 1995 from the
University of Sdo Paulo, her M.S. degree in 1998 and her Ph.D.
degree in 2006 in Computer Science and Computational Mathematics
from the University of Sao Paulo. She conducted her Post-Doctoral
in 2011-2012 in the Fraunhofer Institute for Experimental Software
Engineering (IESE), Germany. Her main research interests include
software architecture, reference architecture, systems of systems,
software product line, and open source.

20

