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Abstract — Recommendation systems based on collaborative 

filtering are open by nature, what makes them vulnerable to 

profile injection attacks that insert biased ratings in the system 

database in order to manipulate recommendations. In this 

paper we evaluate the stability and robustness of collaborative 

filtering algorithms used to recommend semantic web services 

when subjected to random and segment profile injection 

attacks. We evaluated four algorithms: (1) IMEAN, that makes 

predictions using the average of the ratings received by the 

target item; (2) UMEAN, that makes predictions using the 

average of the rating made by the target user; (3) an algorithm 

based on the k-nearest neighbor (k-NN) method and (4), an 

algorithm based on the k-means clustering method. The 

experiments showed that the UMEAN algorithm is not affected 

by the attacks and that IMEAN is the most vulnerable of all 

algorithms tested. Nevertheless, both UMEAN and IMEAN 

have little practical application due to the low precision of their 

predictions. Among the algorithms with intermediate tolerance 

to attacks but with good prediction performance, the algorithm 

based on k-NN proved to be more robust and stable than the 

algorithm based on k-means. 

 
Keywords — Profile injection attack; collaborative filtering 

algorithms; semantic web services.  

 

I. INTRODUCTION 

n SOA (Service Oriented Architecture) architectures, 

loosely coupled services allow for the creation of 

flexible and dynamic business processes and agile 

applications that can include different organizations and 

computational platforms [1]. Among the central problems 

for the creation of those processes, deriving from the 

composition of new services from existing ones, is the 

discovery of services that can fulfill the users’ requirements 
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and interests, whether they are persons or software agents.  

 The discovery of a service is made by matching 

algorithms that seek in descriptions repositories which of the 

announced services fulfill the requisites of the potential 

user. Service discovery architectures are usually based on 

the WSDL [2] and UDDI [3] standards and have a series of 

limitations that make it difficult to find relevant services for 

the users.  

Those limitations derive mainly from the informal 

descriptions of services’ functionalities and capacities, 

usually composed in natural language, generally without the 

usage of a vocabulary that is common to the provider and 

the consumer of the service. Semantic Web Services are a 

recent approach that tries to overcome those limitation 

combining the technology of Web Services with elements of 

the so called Semantic Web [4,5].  

Research in the field of Web Services has focused on 

service matching algorithms, either semantic or not. 

Nevertheless, recent work showed that the most challenging 

issue when we want to provide the user with the desired 

service is service selection from a list of candidates instead 

of the matching process itself.   

The main approaches for service selection include content 

based filtering, collaborative filtering, reputation systems, 

P2P systems and reference systems [6]. Among them, 

collaborative filtering methods, which are the focus of this 

paper, are one of the most relevant.  

Collaborative filtering is based on the premise that users 

with profiles or interests in common usually seek similar 

items. The fundamental idea is to use the options of similar 

users made when choosing related items to recommend 

items to a user [7].   

The recommendation problem can then be reduced to 

estimate ratings for items that were not accessed by a user 

and recommend those with the highest estimated ratings.  

Even though recommendation systems can be seen as part 

of a search engine, they can also be used autonomously in 
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order to suggest items to users as they become available, 

without the need of explicit and constant searches. 

Collaborative filtering is widely used in Web based 

systems to recommend different types of items, including 

books, music and movies.  

The development of new algorithms that increase the 

precision and efficacy of recommendation systems or create 

models that explain the reasons behind a recommendation is 

an issue that has increasing academic and commercial 

interest.  An example of this interest was the Netfilx prize, 

created by Netflix, an online movie distribution company, 

that in 2006 announced a one million dollar award to those 

who developed a movie recommendation algorithm that was 

10% more accurate than the Cinematch algorithm that was 

then used by the company.  The prize was receive in 2009 

by the BellKor's Pragmatic Chaos team, created during the 

contest by the merge of different competing groups that 

gathered their efforts to created the winning algorithm 

ensemble [8]. 

Recommendation systems based on collaborative filtering 

are by nature open, given that they are based on the ratings 

made by a user community, making them vulnerable to 

profile injection attacks. This type of attack consists in 

inserting biased profiles in the system database allowing the 

attackers to manipulate the recommendations. The goal of 

these attacks may also be to promote items (push) or 

obfuscate them (nuke), having as target a user or a group of 

users [9]. 

In this context, analyzing the robustness and stability of 

recommendation algorithms becomes a relevant issue. When 

analyzing the robustness, we measure the performance of 

the system before and after the attack to verify how the 

attack affected the system as a whole. In the stability 

analysis we intend to verify the deviation from the values 

predicted by the system for the attacked items.  

Previous works proposed algorithms for the 

recommendation of Web Services with semantic markup 

[10, 11]. The evaluations performed, without considering 

the possibilities of attacks, showed that the algorithms have 

good performance when evaluated for precision of the 

recommendation, especially in situations where the user-

item matrix that stores the recommendations made by the 

user community is sparse. Given that, the goal of the 

research we report here is to analyze the stability and 

robustness of those algorithms when subject to profile 

injection attacks.  

The next sections of this paper are organized as follows. 

In section II we present the algorithms for collaborative 

filtering of semantic web services whose stability we intend 

to study. In section III we will characterize in greater detail 

the profile injection attacks that are the subject of this work. 

In section IV we present and discuss the methods used to 

verify the robustness and stability of the algorithms under 

consideration and the experiments performed. In section V 

we present some related work and in section VI we wrap up 

the paper making some final considerations.  

II. COLLABORATIVE FILTERING OF SEMANTIC WEB 

SERVICES  

A. Semantic Web Services 

The algorithms discussed in this paper intend to 

recommend Web Services semantically annotated according 

to the service annotation ontology OWL-S, which is based 

on the ontology description language OWL, a standard from 

W3C which is based on first-order logic [12]. The OWL-S 

ontology is made of three main parts: the service profile, 

used to advertise and discover services, the process model, 

which provides an accurate description of the workings of 

the services  and a grounding, which provides details on 

how to interoperate with a service through messages.  

Most matching systems for services described with OWL-

S use only the service profile, which defines the semantic of 

the service signature, that is, the required inputs and the 

produced outputs. The profile also allows describing the 

preconditions to be satisfied, so that the service can be 

executed, and the results expected from its execution. This 

information is usually known by the acronym IOPE (inputs, 

outputs, preconditions, effects). With this information, we 

can use logic reasoning methods to determine the similarity 

degree between two services.  

The algorithms used in this work to verify the degree of 

similarity between two services use only service signatures, 

that is, the descriptions of inputs and outputs. This certainly 

allows for false positives in some matching attempts, but 

this has not shown itself as a relevant problem. The input 

and output parameters are associated with concepts from 

domain ontologies, such as Person, Doctor, Vehicle, Motor-

Vehicle and not with basic types (int, char, real) or mere 

character sequences. Hence, even though we cannot 

guarantee that we are comparing services that perform very 

different things on inputs that are semantically equal, this 

possibility is greatly reduced.  Naturally, we would prefer to 

have matching algorithms that are not limited to the 

comparison of inputs and outputs, but this is not a concern 

for this research and should not change a lot the 

experimental results. 

OWL-S, just like OWL, is based on description logic. We 

know that formal logic has limited expression abilities. For 

instance, description logic does not allow representing 

precisely structured objects arbitrarily interconnected.  In 

order to partially overcome this limited representation 

ability of OWL-S, this work used the hybrid semantic Web 

Services matching mechanism implemented in the OWLS-

MX system [13]. This mechanism allows comparing 

between two semantic Web services and establishes four 
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degrees of semantic similarity using logic reasoning and a 

value of syntactic similarity using information retrieval 

methods.  

  

B. Collaborative Filtering 

Collaborative filtering algorithms can be used to predict 

the value a certain user (the target user) will attribute to an 

item (the target item) he has not yet evaluated. The 

prediction is performed based on the rating history of the 

user community for all items under consideration.   

We can use some very simple algorithms such as 

IMEAN, that evaluates the unknown rating values as equal 

to the average of the ratings performed by all users for the 

target item, or UMEAN, that estimates the rating of an item 

as equal to the average of the ratings performed by the target 

user.  These algorithms are easily implemented and have 

low execution cost, but are not very precise, serving, in 

general, only as a comparison benchmark for the rating of 

other more elaborate algorithms, like the two other 

evaluated in this paper: the first one is based on the k-

nearest neighbors algorithm (k-NN) and the second on the 

k-means clustering algorithm. 

 

C. Rating Predictions using K-nn 

The k-NN algorithm is an algorithm based on memory 

and as such it predicts the rating an user will give to an item 

directly from the ratings of the k users more similar to this 

user.  

In the algorithms described in this paper, the similarity 

between two users u and v, su,v is calculated using the 

Pearson correlation coefficient (PCC), extended to consider 

also similar services, according to equation (1). 
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In equation (1), Su is the set of services evaluated by u 

and Sv is the set of services accessed by v. uf  and vf  are 

the average values of the ratings performed by the users u 

and  v, respectively; among the services evaluated by v, t is 

the services that is most similar semantically or syntactically 

to s (service accessed and evaluated by u), given a minimum 

degree of similarity. When both services evaluate the same 

service, then s and t are the same.  

It is important to notice that the PCC does not weight 

differently similar users that evaluated either a small or a 

very large set of items in an equivalent way. In the same 

way, equation (1) does not differentiate between users 

whose similarity is due to the rating of the same items and 

those who evaluated similar items. These are issues not dealt 

with by this research but are interesting enough to merit 

further attention in future work. 

 
TABLE I 

EXAMPLE OF AN ITEM-USER MATRIX 

Item 

User  1 2 3 4 5 6 

Similarity with user 1 

1 5 2 3 3  ? 1.00 

2 2  4  4 1 - 1.00 

3 3 1 3  1 2 0.76 

4 4 2 3 1  1 0.72 

5 3 3 2 1 3 1 0.21 

6 4 3  3 3 2 0.94 

 

Table I shows an example of a user-item matrix for 

generic items (not necessarily services), without displaying 

information that allow to verify the semantic or syntactic 

similarity between two items.  In this table, the ratings vary 

from 1 to 5. An empty position indicates that the user who is 

referred to by that line did not evaluate the service referred 

by that column. The matrix stores the values of the ratings 

performed by six users to six generic items (books, movies, 

Web Services, etc). The column to the right of the matrix 

shows the similarity between user 1 and all other users, 

calculated using the Pearson correlation coefficient.  

If we only consider the closest user to user 1 (k=1), the 

algorithm based on the k-NN method would predict that 

user 1 would attribute to the target item (item 6) a value 

close to the one attributed by the user 6 (the most similar to 

user 1). Knowing the similarity among users, we can 

estimate the rating a user would make of a specific target 

item if similar users have evaluated this service or similar 

ones. For that, we define the neighborhood V or the user u 

with respect to the service s as being made of the k users 

most similar to u that accessed service s or services similar 

to s. Once we have built the neighborhood, the prediction of 

the rating that the user u would make of the service s, fu,s, is 

given as the weighted average of all ratings of service s, or 

similar services, given by the users in V, as seen in equation 

(2). 
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In equation (2), as in equation (1), t is the service 

accessed by v that is most similar to the service s (accessed 

by u), given a minimum similarity threshold. If V is empty, 

fu,s is predicted as equal to uf  ( the average of all ratings 

made by u).  

Applying equation (2) to the data in Table I, and 

considering k=1, the value predicted for the rating of item 6 
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by user 1 would be:  

f1,6 = 13/4  + (0.94 * (2 - 15/5) )/ 0.94 = 2.25 

 

D. Rating Predictions Using K-means 

Literature points out that memory-based collaborative 

filtering algorithms such as k-NN tend to have high 

precision but low scalability given that their predictions are 

made directly from the available data. This takes a high 

processing time for each prediction to identify the 

neighborhood of the target user for each item (service) 

under consideration. As an alternative, in model-based 

algorithms the predictions are not made directly from the 

users closer to the target user, but based on a model built 

previously based on available data.  

In this paper we also analyze a collaborative filtering 

algorithm based on the k-means clustering method. This 

algorithm clusters similar user profiles into groups and 

makes the predictions based on their centroids. In this 

context, the user profile is defined by the ratings a user 

made of the available items (a line in the user-item matrix). 

For instance, in the user-item matrix given by Table I, the 

profile of user 1 is given by the n-uple (5,2,3,3, Ø, Ø), where 

Ø indicates that the corresponding item was not evaluated.  

The algorithm works as follows: initially k points (user 

profiles as defined by the n-uples that contain the ratings 

attributed by the users to the items) are chosen as centroids 

of k groups, where k is a previously defined parameter. 

Next, there is an assignment and an update step until the 

algorithm converges. In the assignment step each point 

(profile) is associated with the groups with the closest 

centroid, while in the update step the group centroids are 

updated to the average of the points associated to the group. 

The algorithm converges when the centroids become stable, 

that is, they do not change in the update step. 

In the implementation under study, equation (1) is used to 

calculate the distance between a user and a group centroid. 

Defined the groups, equation (2) is then used to predict the 

rating a user would make of an item, using a neighborhood 

made of the centroids of the groups closer to the target user, 

instead of the ratings (n-uples) of the closer users. Since the 

number of group centroids in the considered neighborhood 

is usually a lot smaller than the number of users that make 

up a neighborhood in the algorithm based on k-NN, the 

algorithm based on k-means has a much small 

computational time, as proven in experiments non reported 

in this paper.  

 

III. PROFILE INJECTION ATTACKS 

In a profile injection attack, the attacker inserts biased 

profiles in the user-item matrix of the recommendation 

system.  

Table II shows the user-item matrix of Table I with the 

insertion of a fake profile, user 7. Once this insertion was 

made, the closer user to user 1 is the attacker, with a 

similarity degree between them of 0.98. 
 

TABLE II 

EXAMPLE OF AN ITEM-USER MATRIX WITH AN ATTACK PROFILE (USER 7)  

Itens 

Usuários  1 2 3 4 5 6 

Similaridade com o 

usuário 1 

1 5 2 3 3  ? 1.00 

2 2  4  4 1 - 1.00 

3 3 1 3  1 2 0.76 

4 4 2 3 1  1 0.72 

5 3 3 2 1 3 1 0.21 

6 4 3  3 3 2 0.94 

7 4 2   3 3 5 0.98 

 

In these conditions, if we use an algorithm such as k-NN, 

with k=1, the estimated rating value for item 6 by user 1 

would be equal to 4.85. This can be verified by considering 

that using equation (2) we have the following values: 

• fu,s = f1,6 

• uf   = (5+2+3+3)/4 = 13/4 ; average of all ratings 

performed by user u=1  

• su,v  = 0.98  ; degree of similarity between users 
u=1 and  v=7,  according to the table; 

• fv,t  = 5  ; v=7 and  t = 6,  because user 7 accessed 
service 6; 

• vf  =  (4+2+3+3+5)/5= 17/5 ;  the average rating 

performed by user v=7. 
Hence,  f1,6 = 13/4  + (0.98 * (5 - 17/5) )/ 0.98 =  4.85 

 

Even though it is not a current practice to use such a 

small neighborhood, the example above intends to 

emphasize the possible negative impact a successful attack 

can achieve.  

 

A. Types of Profile Injection Attacks 

Profile injection attacks can be characterized by for sets 

of items [14]: 

 

• A unit set, containing the target item it; 

• A set of selected items with characteristics 

determined by the attacker, IS; 

• A set of items for filling, IF, usually chosen 

randomly, and 

• A set of non evaluated items, IØ.  

Types of profile injection attacks are defined by the 

methods used to identify the selected items, IS, the 

proportion of filling items, IF, and the way to determine 

associated ratings to each one of these set of items and to 
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the target item. 

In this paper we present experiments seeking to reproduce 

two of the most representative types of profile injection 

attacks, the random attack and the segment attack.  

In the random attack, IS is empty and the items in IF are 

filled randomly according to a normal distribution around 

the average rating of all items in the database and it is filled 

with the maximum value that can be attributed in a rating. 

The knowledge required to create a random attack is very 

small, given that the general average of the ratings of a 

recommendation system usually can be determined 

empirically without great difficulty by an external observer 

and, in many cases, is directly available in the system. 

Nevertheless, the cost of executing this attack can be high, 

because it is necessary to calculate specific random ratings 

for each item in the attack profile.  

In the segment attack, the items in IS define a category or 

segment. These items receive maximum rating when trying 

to promote an item (push) or minimal when trying to 

obfuscate it (nuke). If those items are, for instance, travel 

services, the items in IS would correspond to services in this 

category. This attack is usually remarkably effective if its 

target belongs to the segment under consideration. The 

values in IF are filled with the minimal rating and it with the 

maximum one. The literature highlights that this attack is 

quite effective and requires little knowledge to be executed. 

 

IV. STABILITY AND ROBUSTNESS OF THE 

RECOMMENDATION ALGORITHMS 

As stated in the introduction, the goal of this research is 

to analyze the stability and the robustness of algorithms for 

recommending semantically marked Web Services, when 

subjected to profile injection attacks. In order to reach this 

goal, we performed an experimental research that executed 

the following steps: 

i. Selection of a database of semantically marked Web 

Services; 

ii. Creation of a dataset for training and testing the 

algorithms including user profiles characterized by 

the ratings performed to a selection of the services 

included in the previous step; 

iii. Selection of users and items to be targets of the 

attack; 

iv. Application of the recommendation algorithms 

without the presence of attack profiles and 

measurement of the normalized mean absolute error 

(NMAE) of the predictions made by the algorithms;  

v. Injection of the attack profiles;  

vi. New application of the recommendation algorithms 

and measurement of NMAE and other metrics that 

measure the success of the attacks; 

vii. Analysis of the obtained results;  

 

These steps and its results are presented and discussed 

with more details in this section. Initially, subsection A will 

present the metrics used to measure the success of the 

attacks. Afterwards, subsection B will describe the 

experiments performed and subsection C will present and 

analyze the results obtained in the experiments. 

A. Rating Metrics 

The efficacy of the profile injection attacks on specific 

items can be evaluated by an examination of the prediction 

shift induced by the attack, the hit ratio of the attack and the 

influence of the attack over the mean absolute error of the 

predictions performed. 

Given a user u and an item i, the prediction shift, ∆u,i, is 

calculated using equation (3). In this equation, P’(ru,i) is the 

predicted value for the rating that user u would make of the 

item i after the attack and P(ru,i) represents the value 

predicted before the attack. 

 

∆ u,i = P’ (ru,i) - P(ru,i)                                                 (3) 

 
A positive deviation indicates that the attack was 

successful in improving the item rating. Nevertheless, even a 

high increase in the prediction shift does not guarantee its 

recommendation. It is possible that other items are also 

affected by the attack or that the item had initially a very 

low prediction, so that even a high deviation does not 

include it in the top recommended items.  

In order to evaluate if items attacked were effectively 

recommended we can use the Hit Ratio metric (HR) that 

measures the efficacy of the attack oven an item. The hit 

ratio for item i is calculated by equation (4), where Hu,i will 

be equal to 1 if an item i appears in the list of the N items 

recommended to the user u (top-N recommendations). If it 

does not appear, its value will be 0;  UT  is the set of target 

users.  
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The effect of the attack considering all the predicted 

ratings can be evaluated by the Mean Absolute Error (MAE) 

or by the Normalized Mean Absolute Error (NMAE), 

metrics that are generally used to evaluate the precision of 

predictions made by recommendation algorithms. The MAE 

is obtained by the differences between the predicted and 

actual values of the ratings, as shown in equation (5), where 

ru,i is the real rating given by user u to item i, r’u,i is the 

algorithm predicted rating for this item and N the number of 

predictions made by the algorithm. 
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MAE can be normalized in order to make it independent 

of the rating scale used, giving origin to the Normalized 

Mean Absolute Error (NMAE), calculated by the equation 

(6). 
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B. Experiments Description 

The experiments performed intended to evaluate the 

impact of profile injection attacks of the random and 

segment type over the collaborative filtering algorithms 

IMEAN, UMEAN, k-NN and k-means presented in section 

II. The performance of those algorithms without attacks, 

particularly when the user-item matrix is sparse, is analyzed 

in [11]. 

One of the main difficulties to evaluate algorithms for the 

recommendation of Semantic Web Services is the need for a 

public base of services with semantic markings. The closest 

we have to this is the OWLS-TC1 collection, which was 

used in this work.  It was created to evaluate the 

performance of matchmaking algorithms for Semantic Web 

Services described according to the OWL-S 1.1 service 

annotation ontology. In the experiments descrived we used 

version 2.2 of this base which includes 1004 Web Services 

of various domains.  

In order to perform the experiments we created 50 users, 

20 with the profile “tourist” and 30 with the profile 

“student”. The items evaluated included 108 services, 

related to the subjects “cars”, “food”, “books”, “hotels”, 

“cameras”, “publications”, “surf” and “movies”. Each user 

evaluated 18 services that would be characteristic to his 

profile. A tourist, for instance, would be more interested in 

hotels than students and, therefore, there is a possibility of 

finding more hotel ratings in the tourists group than in the 

students’ one.  

We used parameters similar to those used in [14] to create 

the attacks. This way, we inserted in the user-item matrix an 

amount of attack profiles equal to 15% of the number of 

users, resulting in the injection of eight attackers whose goal 

was to promote an item (push). We chose five users and four 

services randomly as targets, corresponding approximately 

to 5% of the users and 3% of the total of items. In the attack 

profiles, the filling items (IF) corresponding to 6% of the 

 
1 http://projects.semwebcentral.org/frs/?group_id=89 

total of services. Filling items are chosen randomly after 

specifying the amount of profiles to be created. In the 

segment attack, we defined a segment (IS) characterized by 

three items. The segment chosen for the attacks was “food”, 

because it is presumed that both students and tourists would 

be interested in this type of service, so that this choice 

should affect both group of users.  

C. RESULTS AND DISCUSSION 

The experiments described in this section were repeated 

10 times, so that the values presented for the NMAE, hit 

ratio and prediction shift are the average of the values 

obtained in those predictions.  

 

Influence of the attacks on NMAE 

Table III presents the NMAE for the algorithms under 

study before and after the attacks of the segment and 

random types.  

 
TABLE III 

NMAE OF THE EVALUATED ALGORITHMS 

 
No attack  

Random 

attack 

Segment 

attack 
UMEAN 0.33111 0.33111 0.33111 

IMEAN 0.33064 0.48232 0.47835 

k-NN 0.27781 0.28239 0.28415 

k-médias 0.29305 0.30015 0.30193 

 

As we can see in Table III, UMEAN is not affected by the 

attacks. This makes sense, given that the addition of profiles 

does not affect this algorithm, because an item rating is 

simply the average of the ratings made by the user himself, 

and no consideration is given to the ratings made by the 

attackers.  

For the IMEAN algorithm, we expected the attacks to 

have a large impact on the NMAE and the hit ratio, given 

that its predictions are based on the ratings of the whole user 

community. Table III and Fig. 1 show that this expectation 

was fulfilled. In Table III we can observe that for IMEAN 

the random attack increased the NMAE in 45.9% (from 

0.33064 to 0.48232) and the segment attack in 44.7% (from 

0.33064  to 0.47835). 

 In the case of the k-NN and k-means algorithms, the 

attacks resulted in visible increases in the NMAE, 

eventhough they are much less expressive that those verified 

for IMEAN. The random attack increased the NMAE in 

1.6% for k-NN (from 0.27781 to 0.28239) and 2.4% for k-

means (from 0.29305 to 0.30015); on the other hand, the 

segment attack increased the NMAE by 2.3% for k-NN 

(from 0.27781 to 0.28415) and 3.0% for k-means (from 

0.29305 to 0.30193). 

 

Hit Ratio and Prediction Error  

Fig. 1 presents the hit ratio of the attacks for the IMEAN 

algorithm. The x-axis indicates the number of items to 



Grandim, P. H.; Adán-Coello, J. M. / Revista de Sistemas de Informação da FSMA  n. 13 (2014) pp. 21-29 
 

 27 

recommend for the user, the top-N (the N items with the 

highest predicted ratings), while the y-axis represents the hit 

ratio. The closest to 1 the hit ratio, the highest the percent of 

attacked items that will be recommended to the users. A hit 

ratio equals to one indicates that all target items were 

recommended.  

We can see in Fig. 1 that both the random and the 

segment attack presented similar results for IMEAN. This 

happens because this algorithm uses the ratings of all users 

for the target item, making both attacks achieve similar 

effects. For top-N up to 20 items and above 70, the effects 

of the attacks were not perceptible, but for top-N between 

20 and 70, the hit ratio was quite high, implying in high 

success rates in the inclusion of the attacked items in the 

users’ recommendation lists.  

Both attacks generated a prediction shift equals to 

2.70966 (not shown in the figures), which is quite high when 

compared to the values observed for the k-NN and k-means 

algorithms, presented next.  

In order to measure the prediction shift for the k-NN and 

k-means algorithms, we varied the minimum similarity value 

among users (k-NN) and among users and group centroids 

(k-means), used in the moment of choosing the k closer 

neighbors and then applying equation (2). Besides, we 

established as 2 the number of clusters used during the tests 

with k-means (this value of k was chosen after a series of 

preliminary adjustment experiments).  

Fig. 2 presents the results obtained. It can be seen that the 

prediction shifts for the k-NN and k-means algorithms are 

perceptibly lower than those verified for UMEAN and 

IMEAN. It can also be noticed that starting at a 20% of 

similarity between users for the k-NN algorithm and 70% 

for k-means, the prediction shift remains constant at zero, 

which means that starting from those values, the similarity 

required was enough to exclude attack profiles from the 

item rating estimation. 

In the analysis of the hit ratio of the attacks over k-NN 

and k-means, we used similarity values that resulted in a 

high prediction shift and that were close to the value where 

the prediction shift falls to zero. The values adopted were 

5% to the k-NN algorithm and 50% for the k-means 

algorithm.  

It can be seen in Fig. 3, which shows the hit ratio for k-

NN, that the random and segment attack had some success 

on the top 60 and 70, but the segment attack had an elevated 

hit ratio for top 20 and 50. 

Fig. 4 shows that for k-means we only observe a 

remarkable hit ratio for top 50 and 60 and once again there 

is some higher importance for the segment attack.  

 
 
Fig. 1. Hit ratio when using the IMEAN algorithm 

 
 
Fig. 2. Prediction error of the k-nn and k-means algorithms as a function of 

the minimum similarity between users 

 
 
Fig. 3. Hit ratio for k-NN 
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V. RELATED WORK 

The random attack was originally proposed by Lam and J. 

Riedl [25]. The knowledge required to perpetrate this attack 

is small, but its execution cost can be quite high, given that 

it is necessary to attribute ratings for each item in the attack 

profile. On the other hand, as these authors showed and our 

results confirmed, this attack is not very effective.  

The segment attack was introduced by Mobasher et al.  

[14]. The authors showed and our experiments confirmed 

that it is possible to execute successful attacks of this type 

against recommendation systems based on collaborative 

filtering without the need of having a substantial knowledge 

on the system or on the users.  

Several papers, including [14][17][20][21], showed that 

profile injection attacks can damage a lot the robustness of 

recommendation systems.  This lead several authors to 

search for recommendation systems more robust and stable 

using a variety of mechanisms, including attacker influence 

thresholds [18], dynamics rating sequences instead of static 

sets of rating profiles [22] and event to offer monetary 

incentives for other evaluators to correct the system 

distortions, whether or not they were provoked by attacks 

[23]. Several authors propose using strategies to detect 

attacks, using, among others, unsupervised or semi-

supervised learning mechanisms [16, 24] and statistical 

models [19]. 

In this paper, the term stability is associated to measuring 

the dynamic of the system predictions when it is under 

external attack. When measuring stability, we evaluate the 

change in the system predictions for the items under attack. 

Some authors, such as Adomavicius and Zhang [15], studied 

a different aspect of stability, called internal consistency, 

which represents the consequences of internal 

inconsistencies of the algorithms of the recommendation 

systems. For those authors, a stable recommendation 

algorithm offers consistent prediction as time goes by, 

assuming that the new ratings that become available are 

according to the previous system predictions. 

 

VI. CONCLUSION 

The experiments performed to evaluate the stability and 

robustness of the algorithms IMEAN, UMEAN, k-NN and 

k-means for the recommendation of semantic Web Services, 

when subject to profile injection attacks, showed that the 

UMEAN algorithm is not affected by attacks and the 

IMEAN algorithm is the most vulnerable to those attacks. 

Nevertheless, those two algorithms are used only to provide 

a performance baseline for the analysis of the other 

algorithms, since both present low precision, particularly 

when the user-item matrix is sparse, as shown in [10] and 

[11]. 

For the other two studied algorithms, we concluded that 

k-NN arrives at a prediction shift close to zero at quite low 

similarity rates  between users (20%) while in k-means this 

is only possible for higher values (70%). 

On the other hand, in the experiments presented to 

analyze the hit ratio, k-means presents better results when 

compared to k-NN when k-NN employs a base user 

similarity value much lower than the one used in k-means. 

With high similarity values between users, k-NN presents 

better results also in this issue. In spite of those results, 

when choosing an algorithm to use in a concrete application, 

one must consider that, according to the literature, k-means 

tends to be more scalable than k-NN. In terms of attack 

efficacy, experiments showed that the segment attack is 

more effective than the random attack.  

The algorithms were also evaluated considering the usage 

of semantic and syntactic similarity between Web Services 

when computing the similarity between users with equation 

(1) and when predicting the value of a rating with equation 

(2). The experiments showed that this has not influenced in 

a meaningful way the results, which is coherent with the 

results found in [10], where it was verified that using 

semantic similarity between services affect in a relevant way 

the precision of the algorithms only when the user-item 

matrix is sparse, which does not occur in the experiments 

describe in this paper. 

Future works should include experiments to evaluate the 

behavior of the algorithms when subject to attacks 

considering data sets of higher dimensions and user-item 

matrices with sparse data.  
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Fig. 4. Hit ratio for k-means 
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