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B nanHO# paboTe 1u1si MOJEINPOBaHHMS IIPOLIECCOB Pa3MbIBa CBSI3HOI'O TPYHTA M PACIPOCTPAHEHHS IIOBEPXHOCTHBIX
BOJIH HCIIOJI3YETCsl HEeCTAllMOHApHAs HEONHOpPOAHas cucreMa ypaBHeHWi HaBbe-CToKca ¢ NMEpeMEHHOH BS3KOCTBIO,
3aBHUCAIICH OT IUNIOTHOCTH. 3Ha4€HHE IUIOTHOCTH OIpeNessieTCs IPH IOMOLIM YPaBHEHHS KOHBEKIMU-IUGdy3un. s
PELICHHUS TTOJYyYEeHHON CHCTEMbl YPaBHEHUH NCIIONIB3yeTCs allTOPUTM, COCTOSIIMH U3 CXeMBbI paclieIIeHus o Gpu3nye-
CKHMM (hakTOpaM IyIs cucTeMbl ypaBHeHHH HaBbe-CTokca M MeToa NPEeauKTOpa-KOPPEeKTopa Al ypaBHEHHs MepeHoca.
Cucrema periaetcst Ha Pa3HECCHHOH CeTKe METOJIOM CEeTOK. IIpecTaBiieHbl pe3yibTaThl IBYX- U TPEXMEPHBIX pacue-
TOB.

Non-stationary inhomogeneous system of Navier—Stokes equations with variable viscosity depending on the densi-
ty for modeling the processes of cohesive soil erosion and surface wave propagation has been used. Value of the density
has been determined by the convection-diffusion equation. For solving the obtained system we have used an algorithm
consisting of the splitting scheme on physical factors and the predictor-corrector method. The system has been solved
on the staggered grid by the grid method. The results of calculations for two-dimensional and three-dimensional prob-

lems are presented.

Kniwouesvie cnosa: ypaBuenus HaBbe-CTokca, pa3MbIB CBSI3HOTO TPYHTA, PAaCPOCTPAHEHNE OBEPXHOCTHBIX BOJIH,
nepeMeHHas INIOTHOCTb, IEPEMEHHast B3KOCTh, HEOAHOPOIHAS KHIKOCTh, ABYXKOMITOHEHTHASI KUIAKOCTb.
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Introduction

Many problems of modern hydrodynamics consider
more complicated medium and conditions in which they
are moving. In particular, they include the problem for
inhomogeneous fluid. Inhomogeneity can be caused by
inconstancy of density or viscosity due to the dependence
of these properties on temperature or by interaction of
liquids with different hydrodynamic parameters (multi-
component or multiphase medium). The movement of
these fluids occurs in many areas of applied fluid dynam-
ics: meteorology, aquatic ecology, oceanography and hy-
drology (filtration of immiscible liquids, transferring sand
and clay sediments).
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Here the dependence of the viscosity and density on
the concentration is expressed by the following equations:
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In this paper, we used the motion model of the two-
component viscous incompressible fluid with variable
hydrodynamic parameters (viscosity, density) to calculate
the problems of cohesive soil erosion and surface wave
propagation.

Mathematical model

We consider the motion of the two-component incom-
pressible viscous fluid, its viscosity and density depend-
ing on the concentration of the components. Then the
model of the fluid is described by the non-stationary
Navier-Stokes equations [2].
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where (,v,,v;)— vector of velocity projections on the

spatial axes (x,,x,,x,), # — dynamic viscosity, p — den-

sity, p — pressure, (f,,/,,/;) — vector of mass forces,
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C - component concentration, D — diffusion coeffi-
cient, u,u,,p,,p, — viscosities and densities of the first

and second components respectively.

Pressure difference as the boundary conditions at the
inlet and outlet is a set for motion equations. We use a no-
slip condition on the solid wall and boundary conditions
of the second kind for the concentration equation. Some
initial distribution for concentration is also given.

Solution scheme

To solve the initial boundary problem (1) — (3) we
used the following algorithm.

The time step for the Navier-Stokes equations (1) is
done in the first stage, based on the known velocity and
concentration distribution (and hence the density and vis-
cosity). The scheme of splitting on physical factors [1] is
used for this purpose. The time step for the convection-
diffusion equation (2) is done in the second stage, using
the values obtained for the velocity components. We use a
predictor-corrector scheme with approximation of the
convective terms against the flow [4] for thispurpose. The
values of density and viscosity in the space are recalcu-
lated according to (3) in the third stage. Then the transi-
tion to the first stage of the next iteration of the algorithm
follows.

It is worth noting that the system of equations (1) — (3)
is solved numerically by the grid method on the staggered

grid [3].

Cohesive soil erosion

In order to simulate the process of wetting substance
which is cohesive soil, divide it into two parts (see
Fig. 1).
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Figure 1. The initial position and separation scheme
of substance

Here, number 1 is the part of already soaked substance
that behaves like some viscous impurity in the liquid, and
number 2 is the part that is considered to be not soaked
and behaves like a solid body. Respectively, region 1 is
computational, and region 2 is not. The fluid is considered
to have penetrated enough to make the abutting portion of

region 2 computational when the concentration at some
location of the boundary layer becomes smaller a prede-
termined value C". And so on. A similar approach is used
for three-dimensional case.

Test calculation illustrating this approach was carried
out for two-dimensional problem (see Fig. 2).
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Figure 2. Smearing of substance under the conditions
of the threshold value C* =0.1 for various time points
t=0,1,6,13
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Obviously, the threshold concentration value affects
not only dynamics and the process of substance erosion,
but also the overall flow picture.

As part of the modeling process of the cohesive soil
erosion we consider the following problem. Dense and
quite viscous substance essentially differing in its hydro-
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dynamic parameters from the surrounding liquid is lo-
cated under stationary platform in the given areca. Wash-
ing out the substances from under the platform occurs
during the movement of the liquid. Fig. 3 shows the
erosion for three-dimensional case.

z

-

z

N

Figure 3. Smearing of the substance near solid platform under the conditions of the threshold value C" = 0.1
for various time points t = 0, 208, 312, 1145

Wave propagation on surface

Modeling waves on the surface of the viscous fluid is
a difficult task. We propose the following method for
simulating waves. The area is a two-phase medium de-
scribed by equations (1) — (3), liquid phase being more
dense and viscous than gaseous phase. We consider the
boundary of the two components to take place at
C=0.1.

We considered the following problems to test the pro-
posed method. The first one is the collapse of the liquid
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column. The liquid column is in the middle of the area at
the initial time. Then column collapses under the influ-
ence of the gravity and movement of the entire medium
takes place. The following hydrodynamic parameters
were chosen here: v, =107,p, =10 for liquid and

v, =107, p, =1 for gas. Fig. 4 and Fig. 5 show the ap-

pearance of the wave motion for two- and three-
dimensional cases respectively.
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Figure 5. Picture of wave motion for various time points t =
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The second one is the wave overrunning on the ob-
stacle. Rectangle of the liquid substance is located above
the general level in the left side of the area at the initial
time. Then the collapse of the rectangle launches a wave
in the direction of the obstacle. Here we used the same
viscosities and densities as in the first problem. Fig. 6 and
Fig. 7 show the wave overrunning on the obstacle for
two- and three-dimensional cases respectively.

Thus, this method allows us to simulate wave forma-
tion on the heavy liquid surface using the uniform algo-
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rithm without isolation features of boundary motion be-
tween the components.

Conclusion

The carried out calculations demonstrate the possibili-
ty of the two-component incompressible fluid model de-
scribed by the equations (1) — (3) to simulate some com-
plicated processes such as cohesive soil erosion and sur-
face wave propagation.
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Figure 7. Picture of wave motion for various time points t =0, 0.2, 0.5, 0.8
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Figure 7. Picture of wave motion for various time points t = 0, 0.2, 0.5, 0.8
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