IMPACT: International Journal of Research in -
Engineering & Technology (IMPACT: IJRET) - - r
ISSN(E): 2321-8843; ISSN(P): 2347-4599 e ﬂ ﬂ H""j =
Vol. 3, Issue 7, Jul 2015, 37 46 B =

© Impact Journals

SEMANTIC VERSIONING IN ONTOLOGIES

AASTHA MAHAJAN *& PARMINDER KAUR 2
'Research Student, Department of Computer ScienEagineering, Guru Nanak Dev University, Punjabjand

“Assistant Professor, Department of Computer SciénEeagineering., Guru Nanak Dev University, Punjatilia

ABSTRACT

This paper gives you an idea concerning semantisio@ng pertaining to semantically rich ontlogiess
SemVer is being adopted worldwide for versioninffedéent software systems, it makes dependencyahibiing of the past
and solves two problems of version lock and vergioomiscuity. This paper reveals the importancassociating well
defined semantics with the versioning schemes toemaers, either providers or consumers of theveoét clear about the
dependency/compatibility issues. In this paper, ithportance of SemVer and different versioning secbe has been
conversed. In the end, semantic versioning is aglh ontology based information system. Cookinmaio ontology is
created in protégé and new changes are inducealresult, new versions are likely to form. The kiofdchanges made
could be judged through SemVer scheme based owchvgart of the scheme is changed, owing to the gimaffecting
the ontology consumers and providers. The most itapbthing is to declare the ontology as a puBiRi in order to use

semantic versioningtherwise associating meaning with thegsioning scheme would be of no use.

KEYWORDS: API, Compatibility, Cooking, Dependency, Domain, ligse, Ontology, OSGi, Protégé, SemVer,

Semantics, Versioning
INTRODUCTION

Semantics are anything that describes the work mofad to bring out its essence, thus, making it enor
understandable. Semantics means a strict, cleaflpetl meaning. In the domain of computer sciesemantic builds
relationship between syntax and its interpretatigrin the last decade, efforts have been madessoaate semantics with
the data , giving rise to intelligent systems. Ehesystems revolutionize due to changes in spetidits
conceptualizations or requirements. The amendniedised results in the creation of new versionscivimay or may not
be backward compatible with each other. Each nasivme is designated an URI (Uniform Resource Idim}i which is
inimitable for each version. The version numberoasged with each version confers some meaning. t&amantic
Versioning is the term used when meaning is asttiaith the versioning scheme. In reality, notrgthing is backward
compatible [3].Semantic versioning, SemVer for sh@mow being adopted worldwide for versioningfeliént software
systems. A semantic version is a change with thet sheaning. Without semantic versions, the imgioand the exporter
of the APl (Application Programming Interface) have way of communicating backward compatibility and
incompatibility[3]. Semantic versioning uses thoedour numbers for versioning the software systémtead of two. The
most important requirement for using semantic wegiisig is declaring the software as a public APIblRUAPI may
consist of documentation or be enforced by the disedf. Declaring the software as a public APkamantic versioning is
of chief magnitude because it let the user to kmdvat kind of changes have been made to the APigraeg meaning

otherwise would not be useful if the of piece ditware is not declared publicly. For instance, sag#gpa piece of software

| Impact Factor(JCC): 1.9586- This article can be denloaded from www.impactjournals.us |

| 38 Aastha Mahajan& Parminder Kaur

has version 6.2.5, in semantic versioning, eachqmaveys some meaning.

4—6:2.5
i Major version, breaks the
: backward compatibility

Mmor version, Add new feature, does:
notbreak backward compatibility

Figure 1: Shows Three Segments of Semver Scheme

Semantic versioning scheme consists of three pdd®r.Minor.Patch. Each part conveys some conrtati
regarding the changes made to the API . In the@leaample, 6 is the major version number, Major Inemnindicates the
number of changes made to the API that were nddévbea compatible since the version release. Dajedimessage in an
API is a major version change because it breaks tw consumers and providers of the API. Evergthieeds to be
recompiled. Therefore, the version 6 of the piefcgoftware is not backward compatible with the i@rs$ as it breaks the
API. Minor version number indicates the change ihabackward compatible and therefore does notkbtiea API. It
means a new feature has been added in the APhdw its addition, an increment is made in the mivnsion number.
The new feature addition breaks the provider of AR, but do not break the consumer of the API, stoners are
backward compatible (OSGi versioning scheme difidates between providers and consumers unliker aftrsioning
schemes). The provider needs to implement thisafemge and API needs to be recompiled, therefibtereaks the API
for providers, but consumers does not necessaal o use it. The last number is the patch nunibés,incremented
each time bug fixes are done like security updatesind it never breaks the API. In case, a sgcupidate breaks the API
, this end up in creating a whole new version lgrémenting the major version number. In the exable piece of
software is at the version number 6.2.5, there h@en 5 changes that have broken backward configitibithe past. For
the major version number 6, 2 new features hava bdded, indicated by the minor version number. Vidrsion number
6.2 is backward compatible with the version numbdr. The number of bug fixes for the version numbé& is 5.
Suppose, a new feature is added to the versioh, G2 next version of the piece of software is@.Fhe patch number is
reset to 0, as no bug fixes are done yet for theise number 6.3. When a major change is completesyitch is made to

the new version with version number 7.0.0.

This paper is organized as follows, section 2 emkaon the importance of semantic versioning, vthg
gaining popularity. An example is given to illuggehe same. Section 3 covers different schemesréating semantic
versioned versions- Eclipse versioning schemes@8@i versioning scheme are the two schemes. Pimagmantic
versioning creates a version composed of three eegnand fourth segment is optional. In sectioanattempt has been
made to illustrate how semantically rich ontologes be semantically versioned, what kind of changféect which

segment of semantic versioning has been discuSsetion 5 concludes this work
Why to Bring Into Play Semantic Versioning?

Now that it has been shown what exactly semantisiering means, looking frontward some benefits of
semantic versioning are outlined. In the world oftware, there exists a dread place called “depsndéell” [2].Unlike

traditional versioning schemes SemVer uses thregbeus or sometimes four numbers (Major.Minor.P&ahlifier, here

| Index Copernicus Value: 3.0 - Articles can be serb editor@impactjournals.us |

| Semantic Versioning in Ontologies 39 |

qualifier is a string associated with each versenase like, alphal, beta, rc2 etc.) which usesnwmbers for versioning
a piece of software. The idea of using SemVer tsaneew idea, but the versioning schemes priohitowere essentially
useless for dependency management. As the sysesmisitionize, dependent artifacts also need taupgtaded to avoid
the danger of version lock. By giving a name amghcdefinition to the version numbers, it beconssy¢o communicate
the intentions to the users of the software [2]c®©these intentions are clear, flexible (but nat lexible) dependency
specifications can finally be made[2]. One of thestrimportant benefit of SemVer than the previoeissioning schemes
is, it can make the “dependency hell” a thing of ffast. An example will demonstrate that how Semaéer help in

avoiding the dependency hell.

Suppose there is a library, called “Environment@einlt requires a package called “ GlobalWarmimdiich is
a semantically versioned package. When the libEarwyironmentChange was created, GlobalWarming walseaversion
number 5.1.0. The library EnvironmentChange usesesfunctionality that was first introduced in 5.1dafer way is to
specify the dependency of GlobalWarming as grehtar or equal to 5.1.0 but less than 6.0.0.Now,nithe new version
number 5.1.1 and 5.2.0 become available, users khatithese versions would be backward compatilitle thve existing
dependent software. As soon as the version 6.0nesoout, users would know that their dependencyarly been

broken and they need to upgrade their software.
Some of the benefits of using Semantic Versioniegas follows:
» Clearer understanding of compatibility/dependencies

When there are dependency problems, especially vitercode is dependent on another code, if the code
changes, it affects every dependent artifact. Wighversion number, people can decide whether goagie their piece of
software or not. If the change made is the majange that is it breaks the API, then the users kitwat their

compatibility dependency is probably been broken.
e Encourage well defined APIs

In order to know whether the piece of softwareaskward compatible or not, one should have cleea ithat

the API is doing and how people are using it st tfa changes made are appropriate.
» Make upgrade decisions easier

SemVer, makes the upgrade decisions easier, fon@raa bug fix is done and a new version is crkdtksers
can decide whether to upgrade their version or Beén if they don't, it won't break the API. Similg, when a new
feature is added, it too can affect the decisionggrade the piece of software. When the major @has made, it sends
the clear message to the users that they are nowackward compatible with the new release of thftnare. So , they

need to switch to the new software version.
Semantic Versioning Schemes

There are three semantic versioning schemes usddfitee version number with a clear and a stricamnag.

These versioning schemes are as follows:

Impact Factor(JCC): 1.9586- This article can be dowloaded from www.impactjournals.us

| 40 Aastha Mahajan& Parminder Kaur

OSGI (Open Source Gateway Intiative)[3]

The foundation mechanisms provided by OSGi spetifios are the version and version rar98Gi versioning
scheme differentiates between providers and consuaiehe API. A version consists of maximum 4 panbajor, minor,
micro and qualifier. It also specifies version rarig know dependency issues more accurately wahude of square
brackets(‘[*, 7"), indicating inclusive and peatheses(‘(’, ‘)’) indicating exclusive. OSGi sche specifies that there are
some semantic changes that must be handled byvalerdo credit the change in the API contract whitany of these
changes are backward compatible with the consunidmstefore, OSGi emphasis on different provider andsumer
version range so that they could describe thefediht import requirements on the exporter. Lookhatfollowing set of

version ranges communicating with the use of seicgnt
Exported version 2.1.3 built, the following rangeyides the given meaning.
[2.1.3) Consumer importer policy, breaks the ARIdye version 3 or later for consumers
[2.2.2.3) Provider importer policy, breaks the pdav when exporter goes beyond 2.3 or later.
[2.1.3.2.1.4) Strict importer policy: only acceptgoorter of version 2.1.3.
1See the sections 3.2.5 and 3.2.6 of the OSGiggmeification v4.2.

Eclipse (Http ://Wiki .Eclipse Org/Version_Numbering)

Ineclipse versions are composed of four segmeritdeders and a string respectively named Major. dvlin
Service. Qualifier Each segment captures a differeeaning: Major version indicates a breakage & A1, Minor
version indicates externally visible changes, S®nindicates bug fixes and changes in the developrsieeam and
Qualifier indicates a particular build. Unlike, OBGdoes not differentiate between consumers andigers of the API.

When major version is increased minor and servésésgare reset to 0.

In both eclipse and OSGi, versioning problems ateesl. Eclipse versioning scheme is older versigrgoheme
than semantic versioning which gained popularigently. Both seems to be similar as both uses $egments in their
versioning scheme but it is not quite the same. dibparity in both the schemes lies in the fourttlgient i.e. qualifier,
the dissimilarity is the syntax with the qualifiextadata information in the last segments of thsieons. A qualifier is
estranged by a dot and can be almost any stringip@ced to the qualifier, the prerelease ID anddbniketadata are

estranged by ‘-'/'+’ and carry a bit more semaiiformation [5].

An Eclipse developer might sight this as just aaptjualifier, but be alert that the specificatidragrerelease 1D
and build metadata in fact tells more about th@@amef a version than just “any string”. One candeeself instigate for

choosing one’s qualifiers, but in the Eclipse wpdde’ll always have the dilemma, that 2.0.0.befaG:0 [5].
Semantic Versioning in Ontologies (Weblog.Clarkpans.Com/2011/09/Semantic Versioning)

Ontologies are comparable to public API for dataoluld be better defined as a public, machine tstdedable
contract between producers and consumers concetiiingieaning of data. There are certain implicationregarding
ontology as a public API. The focal implicationtimt OWL(Ontology Web Language) ontologies showddvbrsioned in

analogous to APIs. The question arises here howcanehink of versioning ontologies semanticallypeGsolution is to

| Index Copernicus Value: 3.0 - Articles can be serb editor@impactjournals.us |

| Semantic Versioning in Ontologies 41 |

treat ontology as an API and determining how tola@emantic Versioning to the task of versioning tintology as an

ontology. The statement , OWL ontologies are seitaiy versioned, means two things

» Making ontology’s version identifier structured amganingful, i.e. which means encoding some meainirige

string of characters that makes up the versiontifiemn
» Changing the version identifier according to sonedi-wnderstood public , and reasonable rules.

The two aforesaid things suggests that a versientifier and rules for changing the version idéetd, is a
simple informative mechanism intended to make nrpatity coordination involvement cheaper and lessugiive.
Semantic Versioning (SemVer) rules can’t be disettilOWL ontologies: since they are not actuallyig\Pherefore, some

adaptation is required.
Semantically Versioning OWL (ontology web language) ontologies[4]

Following given are the steps that are need toobeved in order to version semantically rich ootiks using

SemVer scheme:
 Touse SemVer, OWL ontology is declared as pubkd¢. A

« A version identifier “X.Y.Z” where X, Y, Z are thimtegers which are incremented. X is the majodfi# is the
minor field; and Z is the patch field. Semanticsiening means declaring public rules and conditifmmsvhen

each field is incremented, based on the impactWi®@ntology.

» Special version identifier, for say, beta releaseselease candidates, etc. by affixing some alpimanic stuff to
the patch field.

* Never change an ontology without changing its wersilentifier. Ontologies are indifferent to codethis respect
as any change in version identifier conveys conssrmbout what is in the new version. If the ontglahanges

publicly, the version identifier must change too.
« Using a 0 in the major field before the ontolog¥imalized, that indicates things may change attang.

« After the ontology is finalized, version identifiér0.0 is given which defines the public ontolo@hereafter, an

increments in the different fields signals the kafechanges that have been undertaken for therdiffeevisions.

The question that arises here is, what conditiorshanges forms the basis for changes to majomman build
fields. These are hard to decide as ontology iemifit from that of programming language APIs imscsense. So, the
versioning scheme in broader sense regarding carsuould be: if there is a patch change, thaiaeisould be ignored,
if there is major change that version could noigmered by the consumers and if there’s a minongbahat involves a bit

of insight into the matter.
Semantic Versioning Engrosses Semantically ImportarChanges [4]

As ontology consists of different components- cageproperties, rules, annotations, axioms, inldigls and
restrictions, changes made to these componentstrausialyzed effectively during SemVer in ontolodg.ontologies are

semantically rich based on these semantics, infeseare deduced .Inferences that are legal in erlogy are important,

| Impact Factor(JCC): 1.9586- This article can be dowloaded from www.impactjournals.us |

| 42 Aastha Mahajan& Parminder Kaur |

both the direct ones in ontology and the indira@oin some other ontology or system. OWL is mamoto nature, so
deletions are more important than additions. Sohanges made are absolutely safe with respect ¢oeinée. Changing
the asserted (i.e explicit) axioms in ontology arbit like changing the implementation of some rifiatee rather than its

explicit, public, contracted behavior. Here, entoeus is on effectual changes rather than on ehahge.

Versioning an OWL ontology based on the assertédnas provides too little flexibility to producers@ is
tedious task for consumers as well. Thereforeaiit loe stated: a major change is when there isrrgeha direct or valid
inference (removal), a minor change occurs wheiréontlinferences are removed, may break SPARQL@obtand RDF
Query Language) queries, axioms, rules etc. or vaiett or indirect inferences are added and ahpettange occurs with
the change in non-logical parts. Deletions in OWitotogies should always trigger a major field chemg the version

identifier as removing inferences are more seramisity than adding them.

Finally, some of the OWL features are non logichiich means that they are not semantically sigmtiand
therefore do not affect inferences in valid OWLteys like RDF(Resource Description Framework) comisie®WL
axioms, RDFS(Resource Description Framework Schéaba)s, axiom annotations etc. These changes vadtédt patch
field of the SemVer scheme. Renaming a class, $e thaat does not have axioms or any other onta®gyt dependent
on it, would not change the major field as no ieferes are drawn from it. Trivial changes like additof the concept,
removal etc. would always increment the major fibld that scenario is not liked by the programnasseach trivial
change would increase the major field each timeer&s a restriction that major field is increasadyowhen direct

inferences are affected and indirect inferencesilikporting a class of another ontology would cleatie minor field.

Cooking ontology in fig 2 is created in protégé&ghtprotege.stanford.edu/) to show SemVer in OWitotogies.
The graph shown in fig 2 built in OntoGraph tabpodtégé exemplifies the hierarchical relationshipsooking domain
between different classes. Ontologies are basedhenconcept of multiple inheritances. In the camd®d cooking
ontology, there is a total of 34 subclass axiomantotwo classes-food and recipes are createdtah ¢b 36 classes are

created including, food and recipe. The rest 3d4sgla are the subclasses of these two classes.

Axioms, data properties, object properties, indialds are created to create semantically rich ogieto

Inferences are deduced and reasoner assists timgraaconsistent ontology in protégé.

Index Copernicus Value: 3.0 - Articles can be serb editor@impactjournals.us

| Semantic Versioning in Ontologies 43 |

...

Graphof-ontology::
rregtedusing:
DntoGraphtab-of-

II" P] \l_ 8wt | L pam Criga

- Nor Pedan g
n

Figure 2: Shows the Hierarchical Relationships beteen Concepts in Cooking Domain

The induced changes in the ontology affect theediffit parts of the SemVer scheme. The patch nuatizarges
due to change in non-logical parts of OWL ontolsgi&ny change in annotations, comments, labelsdaaftéct the patch
number. In the fig 1, a part of cooking ontologysi®wn having beverages as the subclass of fosd elad a comment
“Beverages are the liquid foods” is used to descrilhat beverages are. In fig 2, this comment is\ged to “Beverages
are the foods we drink”, this change in the commerm non-logical change and semantically insigaifit leading to the
change in the patch number. This change never bitbakdependencies/compatibility. If cooking onggias currently at
version 6.2.5, this change would lea to the bumiénpatch field 6.2.6. Likewise, any change irelapannotations, OWL
axioms etc., all non logical parts affect the patamber.

Impact Factor(JCC): 1.9586- This article can be dowloaded from www.impactjournals.us

Aastha Mahajan& Parminder Kaur

Claren himrmresy Chass himrarchy lirfemed)

Cimas Misemeehy | Clms hErareky [Infarns) |
A e e
AL 5, 1 W | PO, L

Mhing
¥ Food

= @ Alcoholic_drinks
O Carbonated_Drinks
Health_drinks
) Juices
@ Milk
= O Wines
¥ O Ego-Products
@ Brownices
U Cakes
Y Cream_Puffs
U Mayonnaise
¢ Souffle
v ' Fruit=s

L Rareloc

¥ O ‘Beverages are the liguid foods.”

ARRSIEUSnE |

Beverages are the liquid foods.

" Food

Beverage class

LR RRRC PR R P RV REPPPPIPPY:

Figure 3: Shows the Part of the Food Ontology witlBeverages Class and the Comment

Jng
¥ Food

[3

b=

‘Baverages are foods that we drink’
¢ Aleoholic_drinks
Carbonated_Drinks
Health_drinks
& Juices
O Milk
Wines

2 Egg-Products

& Brownies
Cakes
O Cream_Pulls

AmnStalicns

Rt

Beverages are foods thal we drink

Changeina
non-logical
Bntity... A

patch Change /

e

Figure 4: Shows the Change in the Beverages Commdrgading to the Patch Number Change

The figure 3 and 4 shows minor version change kit ontology, a new subclass of class fruits,angls

created. Addition of a new concept is backward catibfe with the consumers of the OWL ontology bubviders

probably been broken. The addition of new classlte# the formation of 6.3.0. If an ontology intp@another ontology,

in the fig 5, cooking ontology imports another dagry food.owl ()leading to creation of all new olatgy with addition of

new inferences. This is also a minor version chawasers does not have to necessarily use thénferences, they are

still compatible with the old version of ontology,& supports their queries as well. This additpyobably breaks the

providers of OWL ontology because they need to émm@nt this new change. Fig 5 shows the new coogiriglogy

shaped by importing another ontology food.owl inking.owl.

Index Copernicus Value: 3.0 - Articles can be serb editor@impactjournals.us

| Annawmbons | Unepe |

Shows class :
nierarchy of Fruit

AAR Ferarci Fl:l EF B
sle | =] ———
"'-?-ﬁ"_.lq_' sl
w0 Foaod Fruils are the haalithy foods

o Citric_ Fruits

@ Tropical _Fruits
B Greaine Products
O Milk-products
= B Soups_and_Saucos e
= 0 vegetables B slier Tee gl

T W The recipe concept give details of

B @ Classification classilies the red e of D
= O Ingredient gives information r -y
= 0 Corigin glives information aboual = Food
= B Type

Depncrgrissn Toune arw iha hewlfy foods”

Figure 5: Show the Class Fruits with Its SubclasseBerries, Citric Fruits and Tropical Fruits

ey

| mnnctsmens | sege |

Saas mrarony e e)

e =]

¥ @ Thang
B Food
= O 'Beverages are [oods that we
= W Cag-Prodects
....................................... + ™ W @ ‘Frults are the hoalthy | fm
i HMalons
o Berries
- Citric__Fruits

new class

o Tropicsl_Frolis

@ Grain-Products
oMtk - products
- Soiups_and_Sauces
o Wesgestabiles

The recips concept give details ol
o Classification classifios the reg
et Engredient gives information e
wrarigin gives information abouwl
- Type

4
YYYYHYREY

wwana

P i S ST R YD

P i

Flemt o lasmm

P ey

FE iy s b DS o

e e By ey S s

= o O ek T

S oy e e B P R VB

B by e T D b S VP

I i s v e

v allupet

A el e cH e -

-_ ety Toaol

D e e T T e

1 - it g as
- Ty
-

L L]
T e SarvaEn

flrnnn
7

T e L

LR SRR RRR
]
il
i =
I i
i
g
B
3
4
i
:
]
b

L
= Tihe recips conceps ghve deonlis)

it= are the heaslthy foods”

P A

Figure 6: Show the Addition of the New Subclass MEONS in the Fruit Hierarchy (Minor Version Change)

simporiedin

Emk'gg untolm

Figure 7: Show the New Cooking Ontology in Which aother Ontology Has Been Imported

Major version change breaks both consumers andida® of owl ontology. Deletions play a pivotal éaih

bumping the major version number. Major version hambumps when direct inferences are removed. Aasifion is

| 46 Aastha Mahajan& Parminder Kaur |

made here. Suppose cooking ontology is at versionber 6.4.0 after importing the food ontology intee cooking
ontology. Users of the new cooking ontology drafeiences from both cooking as well as food ontola®ythis point, a
change is induced in the new cooking ontology, nang the imported food ontology and deleting itéenences.This
change would lead to the breaking of the owl orgpland will lead to the creation of new version.@.0rhe users of the
new cooking ontology will not be compatible withighlchange as it will break owl ontology users dejgen on the
inferences drawn from both the ontology. Only tlsers which were dependent on cooking ontology poleluld not
break. Those consumers will remain backward corpleatfig 7 shows the cooking ontology when foododogy concepts

are removed.

R T P T S R VR

T
- ol
o Bl s e s o e =
= Alcobholic drlaks
Carbioriatasd alrioy
Fusloanm

;Font:'.owl is deleted ar'-l:ié
Cooking.owl is]
recompiled, MA&JOR

o OAS T
- . Eayo psraoalaais
P oy s nn e e
- - Frults
Marrriasm
Cirrus_ PTewuivs
PR lana s

Troapical _fruait=s
Grain products
il prodoacts

- Vg et ks L
e e
o Rt
Taslren s
- [T P
- Clansification

s S L

P corrses resalpras

Smtoartorrs

—] Ervadiaonen_ Basa §peas el o rioinE
= Trigresdione
& T 5]
- T gnasd il

P |
Figure 8: Shows Cooking Ontology after Removal of dod Ontology Concepts
CONCLUSIONS

To allow applications to grow even larger, it isrggaount that the versions have semantics and areftiie
predictive [3].Semantic versioning has gained ingace recently and lend a hand in overcoming thhendaf version
lock and version promiscuity [6]. It's a way of comanicating compatibility issues to the users ofsh&ware- providers
and consumers. Producers of the software can easitymunicate to consumers the kind of changes ediuc the
software and Consumers can easily identify theingatibility status as soon as a new version is dgmbinto the market.
Associating meaning to the versioning scheme avtiidsdependency hell nightmare. Semantic versiostigeme is
applied to semantically rich cooking ontology ceshin protégé and a kind of change induced camdged through the
segment affected. The implication here is that logies are not similar to public APIs and declarthg software as a
public API is the foremost necessity for using Sem\Ontologies are treated as public APIs and areastically
versioned just as the APIs. In this paper, an gitehas been made to apply the essence of semai@oring to
semantically rich ontology. It requires a furthesight in future to make SemVer approach more mpentito semantically

rich ontologies.

Index Copernicus Value: 3.0 - Articles can be serb editor@impactjournals.us

| Semantic Versioning in Ontologies 47 |

REFERENCES

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Samreen, Shabana, J. S. Mirza, and Anila RasheB@F"and OWL Ontology Building of Web
Applications." Research Journal of Information Trealogy 5.4 (2013): 109-117.

Warner T. “Semantic Versioning-2.0.0" Available:attp://www.princeton.edu/semantic_versioning-2.0.0

OSGi Alliance, May 6, 2010 “ Semantic Versioningechnical whitepaper ” Revision 1.0

Clark and Parsia “Semantic Versioning”, 2011, Aablé at: http://weblog.clarkparsia.com/2011/09/setina
versioning

Kempka M.,(2013,June),EclipseSource“Semantic Veisgp for Eclipse Developers” Available at:

http://www.eclipsesource.com/blogs/2013

Ginnivan, J.Latest revision(2014, july)‘Introdumti to semantic versioning”’Available at:
http://github,com/ParticularLabs/GitVersion

Eclipse version numbering, revised in 2009, Avdéad: http://wiki.eclipse.org/Version_Numbering

Mahajan A, Kaur P “A review on ontology evolutioncaversioning”,|IOSR JCE, Volume 17, Issue 2, Vér. |
(Mar — Apr. 2015)PP 35-43
Spinellis, D. (2005). Version control systems. $efte, IEEE, 22(5), 108-109.

Jaziri, W. (2009, October). A methodology for oo} evolution and versioning. In Advances in Sericant
Processing, 2009., SEMAPRQO'09. Third Internatid@ahference on (pp. 15-21). IEEE.

Noy, N. F., & Klein, M. (2004). Ontology evolutiorNot the same as schema evolution. Knowledge and
information systems, 6(4), 428-440

Khattak, A. M., Batool, R., Pervez, Z., Khan, A.,M. Lee, S. Y. (2013). Ontology evolution and ckaljes. J.
Inf. Sci. Eng, 29, 851-871.14

Stojanovic, L. (2004). Methods and tools for ontgl@volution.

Chandrasekaran, B., Josephson, J. R., &Benjamin$}.\(1999). What are ontologies, and why do wednee
them?. IEEE Intelligent systems, 14(1), 20-26.

Hull, D., & Drummond, N. (2005). A Practical Introction to Ontologies & OWL. Tutorial at the 6th

International XML Summer School
Noy, N. F., &McGuinness, D. L. (2001). Ontology eéé&pment 101: A guide to creating your first ontpio
Crash course on Protégé ,Petrkremen

Sertkaya, B. (2009). Ontocomp: A protege plugindompleting owl ontologies. In The Semantic Webs&ch
and Applications (pp. 898-902). Springer Berlin ttdberg.

Fuchs, Christian, et al. "Cooking cake." ICCBR 28U6rkshop Proceedings. Vol. 9. 2009.

Nanba, Hidetsugu, et al. "Construction of a cookingplogy from cooking recipes and patents.” Prdioegs of
the 2014 ACM International Joint Conference on Bsixe and Ubiquitous Computing: Adjunct Publication
ACM, 2014.

Impact Factor(JCC): 1.9586- This article can be dowloaded from www.impactjournals.us

21. Mota, Sergio Gutiérrez, and Belen Diaz Agudo. "Ako&®ecipe adaptation using ontologies, case-based

reasoning systems and knowledge discovery."Proegedif the Cooking With Computers workshop. 2012.

22. Dufour-Lussier, Valmi, et al. "Improving case retral by enrichment of the domain ontology." Casedsh
Reasoning Research and Development. Springer Beéelitelberg, 2011. 62-76.

