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ABSTRACT 

 Translation and convolution associated with Eigenfunction transform, studied by Zemanian, are defined and 

certain boundedness and continuity results are obtained. Convolution of a distribution and a test function, and that of two 

distributions are defined and their properties are investigated. 
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INTRODUCTION 

 Eigenfunction transform investigated by Zemanian [15] is a unification of many transforms involving infinite 

series representations and having applications in solving various boundary value problems. Various properties of this 

transform have been investigated by [7-10, 13-15].                                 

We first recall its definition from [15]. Let I denote any open interval a < x < b on real line. Here a = − ∞ and b = 

+ ∞ are permitted. 

 Then Eigen Function transform of )I(L  f 2∈  is defined by 

 ∫==∧
b

a
  dx;  )x(n f(x) : )n (f, : )n(f ψψ      ,(I)2 L nψ ∈                                              (1.1) 

 where  )x(nψ  denotes the complex conjugate of  )x(nψ . 

 An important classical result [15, p.250] states that }{ nψ  is complete if and only if, for every )I(L  f 2∈ , the 

coefficients  (f, ψn) satisfy Parseval’s equation: 

                                ∫=
=

b

a

2

0n

2
n dx|f(x)|  |)ψ,f(|∑

∞

.                                                                   (1.2) 

 Let  ℜ  denote the linear differential operator    

    1 2 rn
0 1 2:    ...  Dn n

rD Dℜ = θ θ θ θ ,                              (1.3)

 where
dx

d
D = , the nr are positive integers, and rθ  are smooth functions on  I  that are never equal to zero 

anywhere on I. Moreover, we assume that there exists a sequence { }∞
=0nnλ  of real numbers called eigenvalues of  ℜ ,  and 

a sequence { }∞
=0nnψ  of smooth functions in L2(a,b), called eigenfunctions of 
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 ℜ ,  such that ∞→∞→   n  as     ||nλ  and  

  n :     ,         n  0, 1, 2 ... .n nℜψ = λ ψ =                      (1.4) 

 The zero function is not allowed as an eigenfunction. For various properties of eigenvalues, eigenfunctions and 

eigenfunction transforms we may refer to [4, 12, 18]. 

 Next, we recall definition and properties of the testing function space A investigated by Zemanian [15, p.252]. The 

space A consists of all complex valued smooth functions φ  on I such that   

 

1
2b

K 2

a

( ) :   | ( ) |  dx    K x
 

α φ = ℜ φ < ∞ 
  
∫ ,                   (1.5) 

 for each k = 0, 1, 2, ..., and for each n, k ∈ N0, 

 k( , ) :  ( , )k
n nℜ φ ψ = φ ℜ ψ .                        (1.6) 

 A is a linear space. Moreover, it is a subspace of L2(I). The operator ℜ  : A →A is continuous and linear. The dual 

of A is denoted by A′. We also have 

 (ℜf , φ) := (f,  ℜ φ),    f∈A′,   φ∈ A .                                 (1.7) 

 Convolutions associated with certain special cases of the general Eigenfunction function transform have been 

investigated by [2,3,5,6,11].The aim of the present paper is to define translation and convolution associated with the 

general Eigenfunction transform and study their properties exploiting the technique of Glaeske [6] and Betancor et al [1]. 

Existence theorems for these translation and convolution are proved. Using Zemanian’s theory It is shown that the 

Eigenfunction transform of the convolution of two distributions is a product of their transforms. 

 We shall use the following theorems due to Zemanian [15] in the proof of our results. 

THEOREM 1.1    If  A∈φ , then 

 ∑ ∈=
∞

=0n
2nnn )I(L           ,  ) ,(   ψψψφφ ,                     (1.8) 

 where the series converges in A. 

THEOREM 1.2.  If f ∈ A′, then 

 ∑ ∈=
∞

=0n
2nnn )I(L           ,  ) ,f(   f ψψψ ,                                  (1.9) 

 where the series converges in  A′.  

     Let us define the generalized integral transform  υ  by 

               ) (f, :)n(F:f    nψυ ==      A f ′∈ ,      n=0, 1, 2, 3,…,                                             (1.10)  

 then the inverse mapping is given by (1.9), which we write as 
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                ∑==
∞

=0n
n

1-         ,  )n(F )n(F  f ψυ                                                                           (1.11) 

 where the series converges in A′ .  

 A characterization of the convergence of the series (1.11) is given by the following theorem [15, p.261]. 

THEOREM 1.3 

 Let nb  denote complex numbers. Then  ∑
∞

=0n
nn , b ψ converges in  A′  if and only if there exists a non- negative 

integer q such that ∑
≠

−

0

2
n

q2
n

n

,b 
λ

λ  converges. Furthermore, if f  denotes the sum inA ′  of (1), then ).,f(b nn ψ=  

THE BASIC GENERALIZED FUNCTION z)y;u(x,  

 In this section we define a basic generalized function u(x,y;z). In terms of this generalized function, translation 

and convolution associated with eigen function transform are defined. Various properties of the translation and convolution 

are investigated in the forthcoming sections.  

 In terms of eigen functions { })x(nψ  let us define the basic generalized function u(x,y;z) by  

 )z(  )y(  )x(   )z;y,x(u n
0n

nn ψψψ∑=
∞

=
.                              (2.1) 

 We show that the above series converges in A′ . Let us assume that there exists a constant H > 0 and p∈N0, such 

that  

               .H)x(sup p
nn

Ix
λψ ≤

∈
                                                                                   (2.2)  

 Such estimates hold for many special cases of ).x(nψ Few examples are given below. 

Example 1.     I = (-1,1),    D)1x(D 2−=ℜ , 

                         )x(P)n()x( n2
1

n 2
1+=ψ ,    )1n(nn +=λ            [15, p.268]. 

 Since   1)x(Pn ≤     for  1x1 ≤≤−      [ 4, p.205],  

 we have  

           n2
1

n )1n(n)n()x( 2
1 λψ =+≤+≤       for  .1n≥  

Example 2. I ),( ∞−∞= ,      2
2x2

2
2x DeDee x−=ℜ , 

                           
2

1

2
2x

)!n2(

)x(He
)x(

n

n
n π

ψ
−

= ,        n2n −=λ          [15, p. 267]. 

 From [4, p.208], we know that there exists a positive constant  H,  1 < H < 2,  such that  



72                                                                                                                                                                                                                       S. R. Verma 
  

 
Index Copernicus Value: 3.0 - Articles can be sent to editor@impactjournals.us 

 

                2
1

2
n

2
2x )!n(2H)x(He n ≤− . 

 Hence     

                nn 4
1

4
1

4
1 Hn2.HH)x( λπππψ −−− =≤≤ ,    for    1n≥ . 

 Now, in view of estimate (2.2),  

           p2
n

2
nnn H)y()x(:b λψψ ≤= . 

 Hence  

       ∞<∑≤∑
−

≠

−

≠

p4
n

4q2

0
n

2
n

q2

0
n Hb

nn

λλλ
λλ

, 

 for some large q > 2p, because }{ nλ is a increasing sequence and ∞→nλ  as  ∞→n .Therefore, by Theorem 1.3, 

       )z( ) )y(  )x((  )z(  b n
0n

nnn
0n

n ψψψψ ∑=∑
∞

=

∞

=
 

 converges in A′ , which is denoted by u(x,y;z). Moreover, from Theorem 1.3, we also have  

            (.));.),y,x(u()y(  )x(  b nnnn ψψψ == .                                                         (2.3) 

In case u(x,y; .) is a regular generalized function in A′ , (2.3) can be written as  

             dz)z()z;y,x(u)y(  )x( b
a nnn ∫= ψψψ .                                                                   (2.4) 

 If we assume that 1)(0 =xψ  (this holds in many special cases), from (2.4) it follows that  

               1dz)z;y,x(ub
a =∫ .                                                                                  (2.5) 

TRANSLATION AND CONVOLUTION ON A 

 Using basic generalized function u(x,y;z) we define the generalized translation associated with the eigenfunction 

transform and investigate its properties. 

DEFINITION 3.1. Translation associated with eigen function transform of a function ∈φ A, is defined by 

   ( ) .)z(),z;y,x(u:y)(x,:(y)x >=<= φφφτ                      (3.1)  

THEOREM 3.2. Let a < x, y, z < b and A∈φ . Then  

 ( ) (k)[( )( )]    [( )( )],k
y yz zτ ℜ φ = ℜ τ φ  k = 0, 1, 2 . . .    .                     (3.2)  

Proof :  Using property (1.7) of ℜ we have 

         >ℜ=<ℜ )x)((),z;y,x(u)z)(( zy φφτ  
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               =   >ℜ< )x(),z;y,x(uz φ   

              = >∑ ℜ<
∞

=
)x(,)]z()y()x([

0n
nznn φψψψ  

                                        =  >∑<
∞

=
)x(,)z()y()x(

0n
nnnn φψλψψ  

                                       =  >∑<
∞

=
)x(,)z()y()x(

0n
nnnn φψψψλ  

            = >∑ℜ<
∞

=
)x(,)z()y()x(

0n
nnnx φψψψ  

                                      =   >ℜ∑<
∞

=
)x(,)z()y()x( x

0n
nnn φψψψ  

          y  [( ) (z)].= ℜ τ φ  

 In general, we can prove that  

 ( )( ) (k)
y[ ( )]   [( )( )].k

y z zτ ℜ φ = ℜ τ φ  

THEOREM 3.3. Let a < x, y, z < b and A∈φ , then mapping φτφ y→  is bounded and continuous from A into itself.  

 Proof. In view of definition (2.1), relation (3.2) gives  

         )z)(()z)(( k
yy

k φτφτ ℜ=ℜ  

                              >ℜ∑=<
∞

=
)z(),z(  )y(  )x( k

n
0n

nn φψψψ      

                              ))z(),z(  ()y(  )x( k
n

0n
nn φψψψ ℜ∑=

∞

=
. 

 Therefore, 

   
2

y
k )z)(( φτℜ .))z(),z((  )y()x( ))z(),z(  ()y(  )x( k

mmm
0m

k
n

0n
nn φψψψφψψψ ℜ∑ℜ∑=

∞

=

∞

=
     

 Using orthonormality of { nψ } we get  

 dz)z)((b
a

2

y
k∫ ℜ φτ

2
k

n
q
n

q2
n

0n

2
n

2
n ))z(),z( ()y(  )x( φψλλψψ ℜ∑= −∞

=
 

                                
2qk

n
q2

n
0n

2
n

2
n ))z(),z( ()y(  )x( φψλψψ +−∞

=
ℜ∑=  

                                
2

2
qkq2

n
0n

2
n

2
n )z()y(  )x( φλψψ +−∞

=
ℜ∑≤ . 
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 Using estimate (2.2) and choosing q-large we can show that the above series converges. Hence there exists a 

constant C >  0 such that 

              )(C)( qkyk φαφτα +≤     for  0Νq,k ∈ ;                                                              (3.3) 

 from which the conclusion of the theorem follows. 

CONVOLUTION OF A DISTRIBUTION AND A FUNCTION 

 In this section, we shall study the convolution of a distribution and a test function associated with the eigen 

function transform. For proving, existence theorem for this convolution, we shall use the expansion of f ∈ A′, given in 

Theorem 1.2 and generalized translation defined by (3.1).  

THEOREM 4.1. Let 'Af∈  and A∈φ ; define  

 ( ) .(z))( f(z),  : (y) *f yφτφ =                                                                 (4.1) 

 Then .A*f ∈φ  

Proof.  Since by Theorem 3.3, A)z)(( y ∈φτ , the right-side  expression is meaningful. Now, using Theorem 3.2,  

         ( ) .(z))(),z(  )y(  )x( f(x),  : (z) *f y
k

n
0n

nn
k >ℜ∑<=ℜ

∞

=
φτψψψφ  

                               )y(), )( f,( n
k

nn
0n

ψφψψ ℜ∑=
∞

=
. 

 Now, by the arguments used in the proof of Theorem 3.3, 

 ( ) dz (z) *fb
a

2k∫ ℜ φ 2k
n

2
n

0n
), () (f, φψψ ℜ∑=

∞

=
 

               
2

2
qkq2

n
0n

2
n  ),f( φλψ +−∞

=
ℜ∑≤ ; 

 so that  

               )(C)*f( qkk φαφα +≤ , for some constant C > 0. 

THEOREM 4.2. Let A,  and  'Af ∈∈ φ  then the following identity holds:  

            ( ) .    . . . 0,1,2,   m                  ),m(  )m(f   )m(*f ~ == ∧∧ φφ                 (4.2)  

 where )m(f ~  denotes generalized integral transform of f  in A'. 

Proof.  Since A*f ∈φ , its generalized eigen function transform exists. As in the proof of Theorem 4.1,  

            ( ) )z(),)( f,(  )z(*f nnn
0n

ψφψψφ ∑=
∞

=
.                                  (4.3) 
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 Using ortho normality condition, we get  

 ( ) ( )( ) .    . . . 0,1,2,   m                  ),,( )f,()z(  ,)z(*f  )m(*f mmm ===∧ ψφψψφφ  

   ).m( )m(f    ~ ∧= φ  

GENERALIZED CONVOLUTION OF TWO DISTRIBUTIONS 

 Let A.    'Ag,f ∈∈ φand  Then by Theorem 4.1, .A*g ∈φ  Therefore, we can define f*g by  

 ( ) z)(y,  g(y),  f(z),   (z)  ),z(g*f φφ =  

 ( ) .)z(*g  ),z(f φ=                               (5.1) 

 It can easily be shown that  f*g  is a linear, continuous functional on A, so that A'. g*f ∈  

THEOREM 5.1. Let  ;A' g,f ∈  then  

  ( ) G(m). )m(F)m(g*f ~ =                                          (5.2)  

Proof:  Let .A∈φ  Using (4.3) and (5.1) we have  

( ) ( )∑=
∞

=0m
mmm )z( ),( g,  f(z),   (x)  ),x(g*f ψφψψφ   

               ( )( )∑=
∞

=0m
mmm  , ,fg, φψψψ  

                             .(z)  ),z( G(m) F(m) 
0m

m∑=
∞

=
φψ                                                 (5.3) 

 But in view of the fact that ,'Ag*f ∈  we have 

 ( ) ( )∑=
∞

=0m
m

~ (z)  ),z(  )m(g*f    (z)  ),z(g*f φψφ .                                       (5.4) 

 Hence, by uniqueness of generalized integral transform, (5.3) and (5.4), yield 

          ( ) F(m)G(m).   )m(g*f ~ =  

THEOREM 5.2 Let f, g, h 'A∈ ; then the following holds:  

 (i) ( ) ( )(x), f*g  (x) g*f =                                               (5.5) 

 (ii) h)*(g*  f    h*)g*f( = .                      (5.6) 

  

Proof.  By Theorem 5.1, we have  
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 ( ) .  . 0,1,2,..m     ,)m(f)*(g  F(m) G(m) G(m) F(m)   )m(g*f ~~ ====  

 Uniqueness property of the transform gives (i).  Next, in view of (5.1) for ,A∈φ  we have  

                   (x) )*(h  (x), g)*(f    (x)  ),x](h*)g*f[( φφ =  

              .(x))] *(h*[g f(x), φ=                       (5.7)  

 But  

                          ( ) (z)   h(z),   g(y),       )x)](*h(*g[ yφτφ =  

                           ( ) .y)(z,    ),y(h*g  φ=                                   (5.8)  

 From (5.7) and (5.8), we get  

                y)(z,  (y), h)*(g f(x),    (x)  ),x](h*)g*f[( φφ =  

            ](x)*h)*[(g  f(x), φ=  

            (x)  (x),h)] *(g* [f φ= . 

 This is the conclusion of part (ii). 

REMARK 5.3. Convolutions for Legendre transform [11], Chebyshev transform [2], Jacobi transform [5], Laguerre 

transform [3], Hermite transform [6] and many other discrete transforms can be derived as special cases of (5.1), and hence 

their properties can be investigated.  
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