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ABSTRACT 

Many engineering structures, such as airplane wings, beams and shafts are subjected to higher torsional forces 

today due to advancement in Structural Engineering, in terms of size and technology. In this paper, we analyzed the 

resistance of circular beams, of different engineering materials, to their corresponding twisting moments. We obtained the 

torsional rigidity for the different beams as the ratio of twisting moment to the angle of twist per unit length. It is observed 

that torsional rigidity of the beams is a function of their areas and the engineering material they are made up of. 

Specifically it is observed that the circular beam made up of brass engineering material has the greatest torsional rigidity 

among the twelve engineering materials considered. 

KEYWORDS:  Beams, Torsional Rigidity, Twisting Moment, St. Venant Torsion, Brass 

INTRODUCTION 

When a beam is transversely loaded in such a manner that the resultant force passes through the longitudinal shear 

central axis, the beam only bends and no torsion will occur. When the resultant force acts away from the shear central axis, 

then the beam will not only bend but also twist. [1, 2, 4] 

Torsion is twisting about an axis produced by the action of two opposing couples acting in parallel planes [5]. 

Another name for couples is torque or twisting moment. Torsional rigidity of a beam is a ratio of moment to the angle of twist 

per unit length [6]. When torsion is applied to a structural member, its cross-section may warp in addition to twisting. If the 

member is allowed to warp freely, then the applied torque is resisted entirely by torsional shear stresses (called St. Venant’s 

torsional shear stress). If the member is not allowed to warp freely, the applied torque is resisted by St. Venant’s torsional 

shear stress and warping tension. This behavior is called non-uniform torsion [1, 2, 3, 4]. 

Beams of non-circular section tends to behave non-symmetrically when under torque and plane sections do not 

plane. Also the distribution of stress in a section is not necessarily linear[12]. 

St. Venant’s theory is usually applied when the cross-section is non-deformable out of its plain or those deformations 

are very small [10]. 

Consider a circular beam with length l , with one of its bases fixed in the xy − plane, while the other base (in the 

plane z l= ) is acted upon by a couple whose moment lies along x − axis. The beam twists through an angle determined by 

the magnitude of applied couple and the modulus of rigidity of the beam. The amount of twist produced can thus be used to 

determine the applied force [5]. 
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Saint-Venant (1885) was the first to produce the correct solution to the problem of torsion of bars subjected to 

moment couples at the ends  

In material science, shear modulus or modulus of rigidity, denoted by µ or G , is defined as the ratio of shear stress 

to the shear strain [6]. 

FORMULATION OF THE PROBLEM 

For a beam of constant circular cross-section subjected to torsion, the St. Venant’s torsion is given by [1, 2, 3, and 4] 

SV
d

T I
dzr
f

m=
                                                                                                                                                              

(1) 

Where, 

φ is the angle of twist (twist angle), 

µ isthemodulus of rigidity, 

SVT is St. Venanttorsion, 

Iρ is the polar moment of inertia, 

z isthedirectionalong axis of themember. 

d

dz

f
=  Twist rate 

By symmetry, anysection of the beam perpendicular to z − axis remains perpendicular to this axis during 

deformation and the action of the couple will merelyrota teeach section through some angleφ , called the angle of twist [5]. 

Theamount of rotation wil lclearlydependonthedistance of the section from the base 0z = , and since the deformations are 

small, the amount of rotationφ is proportional to the distance of the section from the fixed base. 

Theangle of twist can then be written as  

zf a= ,                                                                                                                                                                  (2) 

Wherea isthe twist per unitlength. 

It is therelative angular displacement of a pair of crosssectionsthat are unitdistanceapart. Letw  be the 

displacementalongz - axis. 

0,w = if the crosssection of the beam remainplaneafter deformation. Sincew is independent of z , we write 

µ( , )w T x ya=                                                                                                                                                          (3) 

Where
µT isthetorsión function 
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Consider a particle originalty at ( , , )x y z , since zf a= , for the displacement of this particle 

u zya= - , v zxa= , 0w = . 

The angle of twist f  can also be written as [5] 

T l

I r

f
m

=                                                                                                                                                                 (4) 

WhereT is the applied torque and l is the length of the beam.  

 

Figure 1: Twisting of Circular Section 

 

Figure 2: Showing the Displacement Along 1x and 2x  

Assumptions 

• The bar is straight and of uniform cross section. 

• The material of the bar has uniform properties. 

• The only loading is the applied torque which is applied normal to the axis of the bar. 

• The bar is stressed within its elastic limit. 
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The Eulerian strain is given in terms of displacementu , v , w  by [5] 

, ,
1

( )
2ij i j j iu ue = +                                                                                                                                                      (5) 

Where ,
i

i j
j

u
u

x

¶
=

¶
, 1,2, 3;i = 1,2, 3j =  

1 ,u u= 2u v= and 3u w=  

1 ,x x= 2x y= and 3x z=  

1 2 3 2u u zy x x xa a fÞ = = - = - = -  

2 1 3 1u v zx x x xa a f= = - = =  

The representative strains, in matrix form, are as follows [5] 

µ

µ

µ µ

,12

,21

,1 ,21 1

0 0 ( )
2

0 0 ( )
2

( ) ( ) 0
2 2

ij

x T

x T

x T x T

f

f
e

f f

æ ö÷ç - + ÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷= + ÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷- + +ç ÷÷çè ø

           (6) 

Where
µ

µ
,1

1

T
T

x

¶
=

¶
, 
µ

µ
,2

2

T
T

x

¶
=

¶
, 
µ

µ
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,11

1

T
T

x

¶
=

¶
, 
µ

µ
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,22

2

T
T

x

¶
=

¶
 

The stress-strain relation is given as [5] 

( )
1 1 2ij ij kk ij

E u
d e e d

u u
= +

+ -
                                                                                                                  (7) 

Where ijd isthe stress tensor, E istheYoung’smodulus and u isthePoisson’s ratio. 

Sub stituting the respectivestrains in the stress-strainrelation, weget 

µ

µ

µ µ

,1 2

,2 1

,1 ,21 1

0 0 ( )

0 0 ( )

( ) ( ) 0

ij

T x

T x

T x T x

xf

d xf

xa xf

æ ö- ÷ç ÷ç ÷ç ÷ç ÷ç= + ÷ç ÷ç ÷÷ç ÷ç - + ÷çè ø

                                                                              (8) 

Where x is a lameconstant, given as 
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2(1 )

E
x

u
=

+
                                                                                                                                                       (9) 

Recall that 
µT is a function of 1x and 2x . 

\ for 1i = , 
µ

,11 0T =  

for 2i = , 
µ

,22 0T =  

µ µ
,11 ,22 0T TÞ + = (10) 

This is the Laplace equation. Hence, 
µT is a harmonicfunction. 

Since
µT is a harmonicfunction in thesimplyconnected región R, representingthecross-section of thebeam, there 

exist sananalyticfunction
µT iy+  of the complex variable x iy+ where ( , )x yy is a harmonic conjúgate of 

µT . 

ThefunctionssatisfytheCauchy-Riemann equations, namely 

µ2 2

1 2

T

x x

y¶ ¶
=

¶ ¶
 (i.e., 

µ
,1 ,2T y= )                                                                                                                       (11) 

And
µ2 2

2 1

T

x x

y¶ ¶
= -

¶ ¶
 (i.e., 

µ
,2 ,1T y= - )                                                                                                          (12) 

The harmonic conjugate y  of 
µT isgiven as  

2 2
1 2

2

1
( ) on C

2
and

0 in R

x xy

y

üïï= + ïïïïýïïïÑ = ïïïþ

(13) 

This is a Dirichlet problem. 

ANALYSIS 

The torsional rigidity of a beam is defined as a ratio of moment to the angle of twist per unit length [5]. The torsional 

rigidity of a beam with circular cross-section is given as [3, 5] 

3M
D

f
=                                                                                                                                                              (14) 
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Where 3M is the resulting momento on the surface3x l=  and is given as [8]: 

3 1 32 2 31( )
R

M x x dAd d= -òò                                                                                                                       (15) 

where 32d  and 31d  are stress tensorswith31 2
2

x
x

y
d xf

æ ö¶ ÷ç ÷= -ç ÷ç ÷ç¶è ø
 and 32 1

1

x
x

y
d xf

æ ö¶ ÷ç ÷= +ç ÷ç ÷ç¶è ø
. 

On the surface3x l= , we have 1 2( , , 0)jx x x= , hence 3 0x = . Therefore, 1 0M =  and 2 0M =  

3 1 32 2 31( )
R

M M x x dAd dÞ = = -òò                                                                                                     (16) 

Letusconsidertheharmonicfunction [8] 

2 2 2 2
1 2( )c x x ky = - +                                                                                                                                    (17) 

wherec , k  are constants. 

2 2 2 2 2 2
1 2 1 2

1
( ) ( )

2
c x x k x xÞ - + = + ontheboundary, or 

2 2 2 2 2
1 2

1 1
( ) ( )
2 2

c x c x k- + + =                                                                                                                   (18) 

The curve defined by this equation is an ellipse 

2 2
1 2
2 2

1
x x

a b
+ =                                                                                                                                                    (19) 

If we choose 2 1

2
c <  and 

2

,
1
2

k
a

c

=

- 2

,
1
2

k
b

c

=

+

then 

2 2
2

2 2

1

2

a b
c

a b

-
=

+
, 

2 2
2

2 2

a b
k

a b
=

+
 

2 2 2 2
2 2
1 22 2 2 2

1
( )

2

a b a b
x x

a b a b

-
Þ - +

+ +
 

So, 31d becomes
2

2
2 2

2 a x

a b

xf-

+
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Similarly, 32d becomes
2

1
2 2

2 b x

a b

xf

+
 

From equation (16); the torsional momen to becomes 

2 2 2 2
1 22 2

2

R R

M b x dA a x dA
a b

xf æ ö÷ç ÷ç= + ÷ç ÷ç ÷ç+ è ø
òò òò                                                                                          (20) 

1 2

2 2
2 2

2
( )x xa I b I

a b

xf
= +

+
                                                                                                                             (21) 

where
1xI  and 

2xI  are the moments of inertia of the elliptical section about the1x -  and 2x - axes. 

But
1

2

4x
ab

I
p

=  and 
2

3

4x
a b

I
p

= , so we have 

3 3

2 2

a b
M

a b

pxf
=

+
                                                                                                                                                  (22) 

For a beam with circular cross-section; 

( )a b radius r= =  

3 3 4 4

2 2 2 2

a a a r
M

a a

pxf pxf pxf
\ = = =

+
.                                                                                                    (23) 

The torsional rigidity of the circular beam can be written as 

4

2

M r
D

px

f
= =                                                                                                                                              (24) 

but 2A rp=  

2A
r

p
Þ =                                                                                                                                                          (25) 

2
4

2

A
r

p
=                             (26) 

Substiruting equation (26) into (24), wehave 

2

22

A
D

px

p
=                                                                                                                                                          (27) 
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2

2

A
D

x

p
=   (Torsional rigidity)                                                                                                                         (28) 

2

2

2(1 )

D E

A

p
x

u
Þ = =

+
                                                                                                                              (29) 

\
( )

2

4 1

A E
D

vp
=

-
                                                                                                                                                 (30) 

For a circular beam; the moment of inertia about thex - axis is given as 

1

3

4x
r

I
p

=                                                                                                                                                            (31) 

Also, the moment of inertia about the y - axis isgiven as 

2

3

4x
r

I
p

=                                                                                                                                                            (32) 

Thus, the polar moment of inertia about the3x - axis is given as 

3 3

4 4p
r r

I
p p

= +                                                                                                                                              (33) 

3

2p
r

I
p

=                                                                                               (34) 

Hence, St. Venanttorsion becomes 

3

32SV
r d

T
dx

p m q
=                                        (35) 

With the boundary conditions 

3( ) 0xf = at 3 0x = , 3( )xf f=  at 3 ;x l=  

To find the twist anglef , we integratea long the length of thebeam as shownbelow 

3 3
3

SV

p

Td
dx dx

dx I

f

m
=ò ò                                                                                                                                (36) 

If SVT , m and pI � = ��
� constants along the beam. 
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3
SV

p

T
dx

I
f

m
= ò                                                                                                                                                (37) 

3SV

p

T x

I
f

m
\ =                                                                                                                                                    (38) 

If length of the beamalongz - axis isl , then 

SV

p

T l

I
f

m
=                                                                                                                                                            (39) 

From equation (3), the displacement is given as 

µ µ
3 1 2( , ) ( , )x T x y T x xa a= =                                                                                                                          (40) 

Displacement along1x  and 2x axes are  

1 3 2u x xa= - and 2 3 1u x xa=                                                                                                                        (41) 

respectively , since displacement along3x - iszero. 

If the length of the beam along3x - axis isl  

1 2u xf= - and 2 1u xf=  (since zf a= ) 

1 2
p

T z
u x

Im
= - , 2 1

p

T z
u x

Im
=                                                                                                                        (42) 

If the length of the beam along3x - axis isl , then 

1 2
p

T l
u x

Im
= - , 1 1

p

T l
u x

Im
=                                                                                                                         (43) 

From equation (13), the harmonic conjúgate y , of the torsión function which is a function of 1x  and 2x , is 

considered for the different values of 1x  and 2x and plotted on a graph as shown in Figure 2. 

Table 1: The Following Chart Gives Typical Values for the Modulus of Rigidity, Young’ S  
Modulus and Poisson Ratios for Different Engineering Materials [6, 9] 

Engineering 
Materials 

Modulus of 
Rigidity 

(Psi X 106) 

Young’s 
Modulus 

(Psi X 106) 

Poisson 
Ratio 
( u ) 

Beryllium copper 6.7 17 0.285 
Brass 5.8 102 – 125 0.331 
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Table 1: Contd., 
Bronze 6.5 96 – 120 0.34 
Copper 6.58 17 0.355 
Iron (Malleable) 9.4 28.5 0.271 
Magnesium 2.39 6.4 0.35 
Molybdenum 17.16 40 0.307 
Monel 9.57 26 0.315 
Nickel silver 5.6 18.5 0.322 
Nickel steel 10.8 29 0.291 
Titanium 5.94 27 0.32 
Zinc 6.1 12 0.331 

 
For this paper, we consider a circular beam, for twelve different engineering materials of diameter 1.2m, angle of 

twist of 30o, length of 10m and the Torque (T) as the St. Venant Torsion (TSV). Table 2 shows the calculated values of polar 

moment ( pI ), St. Venant Torsion (SVT ) and  torsional rigidity (D ).   

i.e 0.6r m= , 30f = o , 10l m= , SVT T=
 

Table 2: Calculated Values of Polar Moment pI , St. Venant Torsion SVT and Torsional Rigidity D  

Engineering 
Materials 

m pI  
SVT  D 

Beryllium copper 6700000 0.34 6834000 1.347 
Brass 5800000 0.34 5916000 8.683 
Bronze 6500000 0.34 6630000 8.207 
Copper 6580000 0.34 6711600 1.278 
Iron 9400000 0.34 9588000 2.283 
Magnesium 2390000 0.34 2437800 0.483 
Molybdenum 17160000 0.34 17503200 3.116 
Monel 9570000 0.34 9761400 2.013 
Nickel silver 5600000 0.34 5712000 1.425 
Nickel steels 10800000 0.34 11016000 2.287 
Titanium 5940000 0.34 6058800 4.757 
Zinc 6100000 0.34 622000 0.918 

Displacement along 1x  and 2x  for circular beam of different engineering materials, with 10l m= , 

0.34pI =
 

Table 3: Displacement Along 1x  and 2x  for Circular Beam with Different Engineering Mater ials 

1x  2x  1u  2u  

1 1 -30 30 
2 2 -60 60 
3 3 -90 90 
4 4 -120 120 
5 4 -150 150 
6 6 -180 -180 
7 7 -210 210 
8 8 -240 240 
9 9 -270 270 
10 10 -300 300 
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The Relationship between µ  , SVT   and D  

When two variables x  and y  are related, they are said to be correlated [11]. In order to define the linear relationship 

and the amount of linear relationship between  µ  , SVT andD , we adopt the concept of regression and correlation 

coefficient. We deduced the following: 

2970474 0.688458SVTµ = +
                                                                                                                               

(44) 

and 

R = 0.878477                                                                                                                                                                (45) 

Similarly, we have 

94.9 10 3.104177D µ−= − × + (46) 

And 

R = -0.00659                                                                                                                                                               (47) 

Where r is the correlation coefficient, (1 1r− ≤ ≤ ). 

Recall that 

D = Torsional rigidity, 

pI = Polar moment of inertial about 3x - axis, 

SVT = St. Venant torsion, 

m = Modulus of rigidity 

The Relationship between the Cross-Sectional Area (A) and Torsional Rigidity (D) 

In this section we are interested in finding out if there is any relationship between the cross sectional area of the 

beams and torsional rigidity of the beams of different engineering materials. As shown in tables (4)-(8), where r is the radius , 

we considered five cases where the diameter of the cross sectional area is given values 1.2, 2.2, 3.2, 4.2 and 5.2 respectively. 

Table 4: Torsional Rigidity of Beams with Different Materials When Cross-Sectionalareais 1.130973m2 

 
r A E v D 

BerylliumCopper 0.6 1.130973 17 0.285 1.346606406*10^6 
Brass 0.6 1.130973 113.5 0.331 8.679859374*10^6 
Bronze 0.6 1.130973 108 0.34 8.203776869*10^6 
Copper 0.6 1.130973 17 0.355 1.277040024*10^6 
Iron 0.6 1.130973 28.5 0.271 2.282412788*10^6 
Magnessium 0.6 1.130973 6.4 0.35 4.825486315*10^5 
Molybdenum 0.6 1.130973 40 0.307 3.115152316*10^6 
Monel 0.6 1.130973 26 0.315 2.012530533*10^6 
Nickel Silver 0.6 1.130973 18.5 0.322 1.426568663*10^6 
Nickel Steels 0.6 1.130973 29 0.291 2.286475953*10^6 
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Table 4: Contd., 
Titanium 0.6 1.130973 27 0.32 2.082019130*10^6 
Zinc 0.6 1.130973 12 0.331 9.176943822*10^5 

 
Table 5: Torsional Rigidity of Beams with Different Materials When Cross-Sectionalareais 3.801327m2 

Engineering Material R A E v D 
BerylliumCopper 1.1 3.801327 17 0.285 1.521270401*10^7 
Brass 1.1 3.801327 113.5 0.331 9.805696062*10^7 
Bronze 1.1 3.801327 108 0.34 9.267862436*10^7 
Copper 1.1 3.801327 17 0.355 1.442680787*10^7 
Iron 1.1 3.801327 28.5 0.271 2.578457226*10^7 
Magnessium 1.1 3.801327 6.4 0.35 5.451384652*10^6 
Molybdenum 1.1 3.801327 40 0.307 3.519208725*10^7 
Monel 1.1 3.801327 26 0.315 2.273569408*10^7 
Nickel Silver 1.1 3.801327 18.5 0.322 1.609166175*10^7 
Nickel Steels 1.1 3.801327 29 0.291 2.583047410*10^7 
Titanium 1.1 3.801327 27 0.32 2.352071148*10^7 
Zinc 1.1 3.801327 12 0.331 1.036725575*10^7 

 
Table 6: Torsional Rigidity of Beams with Different Materials When Cross-Sectionalareais 8.042477m2 

Engineering 
Material 

R A E v D 

BerylliumCopper 1.6 8.042477 17 0.285 6.809505981*10^7 
Brass 1.6 8.042477 113.5 0.331 4.389222715*10^8 
Bronze 1.6 8.042477 108 0.34 4.148477786*10^8 
Copper 1.6 8.042477 17 0.355 6.457723385*10^7 
Iron 1.6 8.042477 28.5 0.271 1.154168245*10^8 
Magnessium 1.6 8.042477 6.4 0.35 2.440147154*10^7 
Molybdenum 1.6 8.042477 40 0.307 1.575267148*10^8 
Monel 1.6 8.042477 26 0.315 1.017694453*10^8 
Nickel Silver 1.6 8.042477 18.5 0.322 7.202944776*10^7 
Nickel Steels 1.6 8.042477 29 0.291 1.156222903*10^8 
Titanium 1.6 8.042477 27 0.32 1.052833377*10^8 
Zinc 1.6 8.042477 12 0.331 4.640587891*10^7 

 
Table 7: Torsional Rigidity of Beams with Different Materials When Cross-Sectional Area is 13.85442m2 

Engineering 
Material 

R A E V D 

BerylliumCopper 2.1 13.85442 17 0.285 2.020751239*10^8 
Brass 2.1 13.85442 113.5 0.331 1.302521396*10^9 
Bronze 2.1 13.85442 108 0.34 1.231079267*10^9 
Copper 2.1 13.85442 17 0.355 1.916358186*10^8 
Iron 2.1 13.85442 28.5 0.271 3.425045690*10^8 
Magnessium 2.1 13.85442 6.4 0.35 7.241245398*10^7 
Molybdenum 2.1 13.85442 40 0.307 4.674675445*10^8 
Monel 2.1 13.85442 26 0.315 3.020053630*10^8 
Nickel Silver 2.1 13.85442 18.5 0.322 2.137505955*10^8 
Nickel Steels 2.1 13.85442 29 0.291 3.431142979*10^8 
Titanium 2.1 13.85442 27 0.32 3.124329957*10^8 
Zinc 2.1 13.85442 12 0.331 1.377115133*10^8 
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Table 8: Torsional Rigidity of Beams with Different Materials When Cross-Sectional Area is 21.23717m2 

Engineering 
Material 

R A E V D 

BerylliumCopper 2.6 21.23717 17 0.285 4.748200693*10^8 
Brass 2.6 21.23717 113.5 0.331 3.060561278*10^9 
Bronze 2.6 21.23717 108 0.34 2.892692239*10^9 
Copper 2.6 21.23717 17 0.355 4.502906190*10^8 
Iron 2.6 21.23717 28.5 0.271 8.047900209*10^8 
Magnessium 2.6 21.23717 6.4 0.35 1.701490304*10^8 
Molybdenum 2.6 21.23717 40 0.307 1.098418091*10^9 
Monel 2.6 21.23717 26 0.315 7.096282046*10^8 
Nickel Silver 2.6 21.23717 18.5 0.322 5.022541645*10^8 
Nickel Steels 2.6 21.23717 29 0.291 8.062227127*10^8 
Titanium 2.6 21.23717 27 0.32 7.341302272*10^8 
Zinc 2.6 21.23717 12 0.331 3.235835711*10^8 

 
RESULT DISCUSSIONS 

The numerical calculations were carried out for a circular beam of length l, with one of its bases fixed in the xy-

plane, while the other base (in the plane z= l) is acted upon by a couple whose moment lies along the z-axis (x3-axis).  As an 

illustration, the length l of the beam is taken to be 10m, the diameter,1.2m, the angle of twist, 30o and the polar, 0.34. (i.e 

l=10m, r=0.6m, Æ=300, Ip = 0.34. Twelve different engineering materials with different values of E, mand ʋ were considered. 

The results are shown on the various tables and figures. It is observed from table 2, that circular beams of brass engineering 

material has the highest torsional rigidity under St. Venanttorsion, while circular beam made of magnesium engineering 

material has the lowest torsional rigidity. Clearly from the value of R in equation (45), which is approximately 0.9, it shows 

there is a strong positive correlation between the modulus of rigidity and St. Venant torsion, and equation (44) shows there is a 

linear relationship between modulus of rigidity and St. Venant torsion. Also, that the higher the modulus of rigidity of the 

engineering material the higher the St. Venant torsion.  However, the value of R in equation (46), which is approximately -

0.01, shows that apart from the fact that torsional rigidity and modulus of rigidity have a negative correlation, the correlation 

is very weak. This implies that the value of the modulus of rigidity has a little negative effect on the resistance of twist of a 

circular beam. The effect of the cross sectional area of the circular beam is shown in tables (4),(5),(6),(7) and (8).It can easily 

be seen that the cross-sectional area of the beams affect the torsional rigidity of the beams. The wider the cross-sectional area 

the higher the torsional rigidity.  

CONCLUSIONS 

This work deals with the analysis of torsional rigidity of circular beams with different engineering materials 

subjected to St. Venant torsion. The torsional rigidity of these beams were calculated as a ratio of twisting moment to the 

angle of twist per unit length. It is shown that the circular beam made of brass engineering material has high torsional rigidity, 

relatively, when subjected to St. Venant’s torsion. Concerning the cross-sectional area of circular beams made of different 

materials; it was deduced that the wider the cross sectional area the higher the torsional rigidity and vice versa. This 

phenomenon is of great importance, especially in the field of civil and mechanical engineering. 
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