
C. Diana et al. / Carpathian Journal of Electronic and Computer Engineering 6/1 (2013) 50-55                                               50 
________________________________________________________________________________________________________ 

ISSN 1844 – 9689                                                                                                                                                                 http://cjece.ubm.ro 

Defining spatial relations in a specific ontology for 
automated scene creation 

 

Contraş Diana, Pintescu Alina 
Technical University of Cluj-Napoca 

Baia Mare, Romania 
pdia17@yahoo.com, taly_74@yahoo.com 

 
 

Abstract— This paper presents the approach of building an 
ontology for automatic scene generation. Every scene contains 
various elements (backgrounds, characters, objects) which are 
spatially interrelated. The article focuses on these spatial and 
temporal relationships of the elements constituting a scene. 

Keywords— class, individual, object property, ontology, 
relation, scene 

I.  INTRODUCTION 
The scenes are ubiquitous. At any time, in any place we 

encounter scenes: in plays, in pictures, in films, in everyday 
life. All scenes contain various items such as backgrounds, 
characters, objects. To get a consistent scene elements must be 
related by spatial relationships. If we want the perfect scene 
for us, meaning a scene to include the desired items, it could 
be difficult to create it manually. An automatic system, 
specialized in this regard, would be useful. Using it we could 
choose the favorite items to generate the wanted scene. If the 
result is not satisfactory may return the choice made and 
generate again. Repeating the process we could get the perfect 
scene. 

A term from artificial intelligence (AI) refers to ontology. 
In [8] Gruber gave the most simple definition for the ontology 
- an explicit specification of a conceptualization. The elements 
of scene and the spatial relationships between them can be 
represented using ontologies. 

In this article we focus on the spatial relationships of a 
precisely ontology in order to mark out the importance of 
ontology in the process of automatic generation of the scenes. 

II. RELATED WORK 
The term scene may refer to arts and media, music and 

culture, science and technology and many other domanins. We 
find a scene in a film, we see a scene in a picture, we identify 
a scene as a moment in a restaurant or hospital or school. 
Could be quite difficult to shoot a film or to paint a picture or 
to describe an event that happened at a time. Our intention is 
to automate the generation of scenes regardless of the field of 
application. 

In recent years we find in the literature software 
specialized in generating images.  

In [2] is presented a methodology for the automated 
orientation of image blocks acquired with calibrated cameras 
and the successive object 3D reconstruction. All is done using 
two software: ATiPE and CLORAMA. 

CCP4mg [15] is software created in order to represent 
macromolecular structures. It has a wizard that facilitates the 
generation of complex scenes. 

The Painting Fool is a software that generates 
automatically the paintings. His author, Simon Colton of 
Imperial College, London, hopes that one day his product will 
be taken seriously as a creative artist [4].  

CarSim is a software created for automatic text-to-scene 
conversion. It analyzes written descriptions of car accidents 
and creates 3D scenes of them [1]. 

The WordsEye system is another text-to-scene software 
generation. With this software users can create 3D scenes only 
through natural language without special skill or training [6]. 

OntoPlant is a software package developed at Spatial 
Information Research Center of Fujian in Fuzhou University 
since 2002. The purpose of the software package is to provide 
an integrated software solution to realistic plant modelling, 
real-time scene rendering, growth simulation and applications 
at different scales from individual, stand (population, 
community) to landscape [18]. 

In [19] is presented a system that automatically generates 
multiple furniture arrangements based on hierarchical and 
spatial relationships between objects. 

In [11] is presented not a scene generation, but an image 
registration process. We mention it because are implemented 
two genetic algorithms with two selection criteria and both of 
them are proved to be feasible for image registration. 

Another usage of genetic algorithms is presented in [3] to 
evolve vector images which are composed of lists of discrete 
geometric shapes, such as circles, squares, and lines and are 
popular in illustration and graphic design. 

Ontologies are used in many areas from technological 
processes [10], [16], [17] to medical field [12], [14]. 

From a technical standpoint, the combination of ontologies 
with other artificial intelligence methods like genetic 



C. Diana et al. / Carpathian Journal of Electronic and Computer Engineering 6/1 (2013) 50-55                                               51 
________________________________________________________________________________________________________ 

ISSN 1844 – 9689                                                                                                                                                                 http://cjece.ubm.ro 

algorithms [13] or multi-agent systems [5] result in superior 
innovative solutions. 

Novelty we bring is the representation of scene elements 
and relationships between them using ontologies. In order to 
generate scenes automatically we will use ontology as 
population of genetic algorithms. In this article we insist on 
presenting relations between entities present in such an 
ontology. 

III. STRUCTURING THE ONTOLOGY 

A. Classes 
In [14] is mentioned the existence of more than 50 

ontology editors. Matei enumerate the reasons for choosing 
the editor Protégé, a free-open source from Stanford 
University. An ontology built in Protégé consists of Classes, 
Slots and Instances [9]. 

Before we present the relationships between classes we 
have to list the class hierarchy. In everyday life any scene 
consists of Frame and Content. These two will be the 
supercalsses of the ontology. A frame may refer to Interior or 
Exterior environment. The content has been adapted to these 
two situations: ExteriorContent and InteriorContent. 
Further classes are customized by introducing appropriate 
subclasses.The Fig. 1 illustrates the tree structure of the 
ontology. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Class hierarchy 

B. Object properties 
An ontology is consistent only when establishing 

relationships between entities. In an ontology object properties 
ensure the relationship between two individuals [7]. It could 
be the same individual or different individuals. 

Each scene consists of a frame and content. To build the 
scene must place items that represent the content in a certain 
logical order. For this reason the relationship between 
elements should express an element positioning in space by all 
or some of the other elements that make up the scene. When 
we place an object in space we use prepositions that establish 
the precise place of it depending of other objects: above, 
below, in front of, behind, left, right.  

Based on mereology’s axioms and primitive notions and 
mathematical notations we define the object properties for this 
ontology. R(x, y) is the convention for individual x is related 
to individual y via relationship R. 

 hasAbove(x, y)={∃x∈Furniture ∃y∈Picture} (1) 

hasAbove - the domain is Furniture and the range is 
Picture; we consider that the furniture can have above 
pictures.  

 hasBehind(x, y)={∃x∈HighPlant ∃y∈LandContent} (2) 

hasBehind - the domain is HighPlant and the range is 
LandContent; in a scene that contains tall plants like bushes 
and trees can be placed behind them a number of items such as 
cars or animals.  

 hasBelow(x, y)={∃x∈WaterObject ∃y∈WaterContent} (3) 

hasBelow - the domain is WaterObject and the range is 
WaterContent; ships and boats float on water and below 
them may be algae, fish and aquatic birds. 

 hasInFrontOf(x, y)={∃x∈HighPlant ∃y∈SmallPlant} (4) 

hasInFrontOf - the domain is HighPlant and the range is 
SmallPlant; in a scene we want to place small plants in front 
of high plants to be visible. 

 hasInterior(x, y)={ ∃x∈Interior ∃y∈InteriorContent} (5) 

hasInterior - the domain is Interior and the range is 
InteriorContent; is a more general relation which places all 
interior things in their appropriate medium.  

 hasLand(x, y)={ ∃x∈Land ∃y∈LandContent} (6) 

hasLand - the domain is Land and the range is 
LandContent; is the same type of relation as the above one, 
but it refers to land medium.  

 



C. Diana et al. / Carpathian Journal of Electronic and Computer Engineering 6/1 (2013) 50-55                                               52 
________________________________________________________________________________________________________ 

ISSN 1844 – 9689                                                                                                                                                                 http://cjece.ubm.ro 

 hasLeft(x, y)={ ∃x∈Content ∃y∈Content} (7) 

hasLeft - the domain is Content and the range is Content; 
is a relation that help us to place an object related to another 
object which is already placed on scene.  

 hasRight(x, y)={∃x∈Land ∃y∈Water} (8) 

hasRight - the domain is Land and the range is Water; if 
we would want to insert in a picture land and water we would 
have to know how to arrange them.  

 hasWater(x, y)={∃x∈Water ∃y∈WaterContent}  (9) 

hasWater - the domain is Water and the range is 
WaterContent; is the third general relation which places the 
water content on water. 

Each object property may have inverse property [9]. The 
inverse of a binary relation R(x, y) is the binary relation R-1 
defined: R-1

 isAbove(y, x)=has Above

(x, y) if and only if R(y, x). It means that if the 
property links individual y to individual x then the inverse 
property links individual x to individual y. In this ontology 
every object property has his inverse propety: 

-1

hasAbove - has the inverse property isAbove; if the 
furniture has above it a picture, then we can say that the 
picture is above furniture. 

 (x, y) (10) 

 isBehind(y, x)=hasBehind-1

hasBehind - has the inverse property isBehind; if a bush 
or a tree has behind it a car or an animal, then that car or 
animal is behind the heigh plant. 

 (x, y) (11) 

 isBelow(y, x)=hasBelow-1

hasBelow - has the inverse property isBelow; if a ship or a 
boat has below it algae, fishes or aquatic birds, then those 
algae, fishes or aquatic birds are below the ship or boat. 

 (x, y) (12) 

 isInFrontOf(y, x)=hasInFrontOf-1

hasInFrontOf - has the inverse property isInFrontOf; if a 
bush or a tree has in front of it a small plants like grass or 
flowers, then the small plants are in front of high plants. 

 (x, y) (13) 

 isInterior(y, x)=hasInterior-1

hasInterior - has the inverse property isInterior; if an 
interior frame contains interior objects, then those interior 
objects are contained in that interior frame. 

(x, y) (14) 

 isLand(y, x)=hasLand-1

hasLand - has the inverse property isLand; if an exterior 
frame like land contains land objects, then those land objects 
are contained in that specific frame. 

(x, y) (15) 

 isLeft(y, x)=hasLeft-1

hasLeft - has the inverse property isLeft; if an object O1 
has in its left side another object O2, then O2 is on the left side 
of O1. 

(x, y) (16) 

 isRight(y, x)=hasRight-1

hasRight - has the inverse property isRight; if a piece of 
land has water in its right side, then the water is on the right 
side of the land. 

(x, y) (17) 

 isWater(y, x)=hasWater-1

hasWater - has the inverse property isWater; if an 
exterior frame like water contains water objects, then those 
water objects are contained in that specific frame. 

(x, y) (18) 

For a more precise positioning of content into the 
framework we build particular spatial relationships by 
composing the existing ones.  

 hasLeftAbove(x, y) = hasLeft(x, y) ο hasAbove (x, y) =  
 {∃x∈ Locker ∃y∈ Picture} (19) 

The relationship hasLeftAbove is the result of the 
composition of two existing relationships has Above and 
hasLeft. It was created to toggle a picture not only above a 
locker, but at the left side of it. 

 hasLeftBehind(x, y)=hasLeft(x, y) ο hasBehind(x, y) = 
 {∃x∈ Tree ∃y∈ Car} (20) 

hasLeftBehind is a relationship created by the compositon 
of the relationships hasLeft and hasBehind. It puts a car 
behind the left side of a tree. 

 hasLeftBelow(x, y)=hasLeft(x, y) ο hasBelow (x, y) =  
 {∃x∈ Ship ∃y∈ Fish} (21) 

The composition of hasLeft relationship to hasBelow 
relationship generates hasLeftBelow relationship, which 
always places the fishes not only under the ships, but in the 
left side of them. 

 hasLeftInFrontOf(x, y)=hasLeft(x, y) ο hasInFrontOf (x, y) =  
 { ∃x∈ Bush ∃y∈ Flower} (22) 

The relationship hasLeft places an object on the left of 
another object. The relationship hasInFrontOf places the 



C. Diana et al. / Carpathian Journal of Electronic and Computer Engineering 6/1 (2013) 50-55                                               53 
________________________________________________________________________________________________________ 

ISSN 1844 – 9689                                                                                                                                                                 http://cjece.ubm.ro 

small plants in front of high plants. The composition of these 
two relations results in a relationship that indicates the 
positioning of flowers in front, to the left of the bushes. 

The last four relationships have inverse properties: 

 isLeftAbove(y, x)=hasLeftAbove-1

 isLeftBehind(y, x)=hasLeftBehind

(x, y) (23) 

-1

 isLeftBelow(y, x)=hasLeftBelow

(x, y) (24) 

-1

 isLeftInFrontOf(y, x)=hasLeftInFrontOf

(x, y) (25) 

-1

 

(x, y) (26) 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Object property hierarchy 

An object property between two classes A and B is 
functional if ∀ a∈A ∃ at most one individual b∈B that is 
related to the individual a through the property. 

 ∀ x∈Land ∃ at most one individual y∈Water (27) 

We consider that in a scene that includes both land and 
water is sufficient to present a piece of each. Therefore the 
relationship hasRight is functional. 

If ∀ x R(x, x) the relationship is reflexive; if ∀ x ¬R(x,x) 
the relationship is irreflexive. An object property is irreflexive 
when an object is never in the relation to itself. 

 ∀x∈HighPlant ¬hasBehind(x, x) (28) 

The object property hasBehind relates an individual from 
the class HighPlant with an individual from the class 
LandContent. But the class HighPlant is a subclass of 
LandContent. Therefore the object property allow an 
individual from class HighPlant to relate with itself. Because 
we do not want this, we set the property to be irreflexive. The 
same situation we meet for the object property hasBelow and 
their inverse properties isBehind, isBelow. 

If (R(x,y)∧R(y, z))→R(x, z) the relationship is transitive. 

 ∀x,y,z∈Content and (hasLeft(x,y)∧hasLeft(y,z))  
 → hasLeft(x, z) (29) 

If an object O1 hasLeft an object O2 and the object O2 
hasLeft an object O3, then object O1 hasLeft object O3. We 
conclude that the property hasLeft is transitive. 

C. Individuals 
The ontology is not complete until the addition of 

individuals. For every class we can establish as many 
individuals as we want. For this ontology we considered that 
an individual or two for a class are enough. As the individuals 
are added we associate the appropriate object and data 
properties. In Fig. 3 there is an individual which is related 
through spatial relationships to another individuals. 

 

 

 

 

 

 

 

 

 

Fig. 3.  Properties of the individual named Tree1 

 

 



C. Diana et al. / Carpathian Journal of Electronic and Computer Engineering 6/1 (2013) 50-55                                               54 
________________________________________________________________________________________________________ 

ISSN 1844 – 9689                                                                                                                                                                 http://cjece.ubm.ro 

Fig. 4, Fig. 5, Fig. 6 demonstrate that the relationship 
hasLeft is transitive. 

Fig. 4 illustrates the properties of the individual Locker1. 
On its left side is positioned the individual FlowerPot1. 

Fig. 4.  Properties of the individual named Locker1 

Fig. 5 illustrates the properties of the individual 
FlowerPot1. On its left side is positioned the individual 
Chair1. 

Fig. 5. Properties of the individual named FlowerPot1 

Fig. 6 illustrates the properties of the individual Chair1. It 
is positioned on the left side of the individual Locker1, which 
demonstrates that the relation hasLeft is transitive. 

Fig. 6.  Properties of the individual named Chair1 

In Fig. 7 we can see that composing relationships hasLeft 
and hasInFrontOf we obtain a more precise positioning of the 
flower from the bush. 

 

Fig. 7.  Properties of the individual named Bush1 

D. Classifying the ontology 
We use a reasoner to process the ontology. The reasoner 

verify the consistency of the ontology: it examines if there is 
no inferred in the class hierarchy and if every classes can have 
individuals [9]. We use HermiT, an open-source released 
under LGPL reasoner, to verify the ontology which is proved 
to be consistent. 

With the reasoner started we apply DL Query on this 
ontology in order to prove that it is correctly created. In this 
article we present some examples of such queries. 

In order to determine furniture which has above paintings 
we write: 

 hasAbove some Picture  (30) 

Fig. 8 depicts the result of query (30). 
 

 

 

 

 

 

Fig. 8.  Furniture which has above paintings 

In order to determine furniture which has above, but 
precisely at left side, we write: 

 hasLeftAbove some Picture (31) 

 

 

 

 

 



C. Diana et al. / Carpathian Journal of Electronic and Computer Engineering 6/1 (2013) 50-55                                               55 
________________________________________________________________________________________________________ 

ISSN 1844 – 9689                                                                                                                                                                 http://cjece.ubm.ro 

The result of query (31) is shown in Fig. 9. 

 

 

 

 

Fig. 9.  Furniture which has left above paintings 

In order to determine the land that has is his right side a 
particular water and has trees which has left behind a 
particular car, we write: 

 (hasRight value Water1) and  (hasLand some (hasLeftBehind  
 value Car1)) (32) 

Fig. 10 illustrates the result of query (32). 
 

 

 

 

 

Fig. 10.  The wanted land 

IV. CONCLUSIONS AND FURTHER WORK 
In this article we focus on the spatial relationships between 

ontology classes. We use the object properties to place objects 
on a scene. Being given a scene that contains an object, by 
choosing other objects will be generated some different scenes 
depending on the position of the new objects to the original 
object. This action is possible because of spatial relationships 
between elements. 

As further work we intend to apply on this particular 
ontology a genetic algorithm in order to obtain automatically 
generated scenes. We obtain in this way a visual effect for a 
better understanding of evolutionary ontologies research. 

Another further development is represented by the defining 
of temporal ontological relations for movies. 

 
 
 
 
 
 
 
 
 

REFERENCES 
 

[1] O. Âkerberg; H Svensson, B Schulz; P Nugues, “CarSim: an automatic 
3D text-to-scene conversion system applied to road accident reports”, 
Proceedings of the tenth conference on European chapter of the 
Association for Computational Linguistics-Volume 2. Association for 
Computational Linguistics, 2003 

[2] L Barazzetti, F Remondino; M Scaioni, “Automation in 3D 
reconstruction: results on different kinds of close-range blocks”, 
International Archives of Photogrammetry, Remote Sensing and Spatial 
Information Sciences, Vol. XXXVIII, Part 5, UK. 2010 

[3] S Bergen, B. J. Ross, “Automatic and interactive evolution of vector 
graphics images with genetic algorithms”, the Visual Computer, 2012, 
28.1: 35-45 

[4] S Colton, “The painting fool: Stories from building an automated 
painter”, Computers and creativity. Springer Berlin Heidelberg, 2012, 3-
38 

[5] C Costea, “Applications of multi-agent system technologies to power 
system”, International Symposium for Design and Technology of 
Electronic Packages, Baia Mare, 2007 

[6] B Coyne, O Rambow, J Hirschberg, R Sproat, “Frame semantics in text-
to-scene generation”, Knowledge-Based and Intelligent Information and 
Engineering Systems. Springer Berlin Heidelberg, 2010, 375-384 

[7] N Drummond, M Horridge, H Knublauch, “Protégé-OWL tutorial”, In 
8th International Protégé Conference, 2005 

[8] T Gruber, “A Translation Approach to Portable Ontology Specication”, 
1993 

[9] M Horridge, H Knublauch, A Rector, R Stevens, C Wroe, “A Practical 
Guide To Building OWL Ontologies Using The Protg-OWL Plugin and 
CO-ODE Tools Edition 1.0.”, University of Manchester, 2004 

[10] M Lobonţiu, A Petrovan, “Product development ontology(1). 
Information integration concepts”, Revista de Management şi Inginerie 
Economică, ISSN 1583-624X, 4(46) vol. 11, 2012, 43-56 

[11] S. A Malik, R. S Kunwar, M. E Haque, “Automatic image registration 
using evolutionary algorithm”, Recent Research in Science and 
Technology, 2012, 4.1 

[12] O Matei, “Defining an Ontology for the Radiograph Images 
Segmentation”, 9th International Conference on Development and 
Application Systems, 2008 

[13] O Matei, “Evolutionary Computation: Principles and Practices”, 
Risoprint, 2008. 

[14] O Matei, “Ontology-Based Knowledge Organization for the Radiograph 
Images Segmentation”, Advances in Electrical and Computer 
Engineering, 8(15), 2008 

[15] S McNicholas, E Potterton, K.S Wilson, M.E.M Noble, “Presenting your 
structures: the CCP4mg molecular-graphics software”, Acta 
Crystallographica Section D, Biological Crystallography, ISSN 0907-
4449, 2011 

[16] A Petrovan, M Lobonţiu, “Product development ontology. A case study, 
Quality Access to success”, ISSN1582-2559, S5 vol. 13, 2012, 393-398 

[17] A Petrovan, G Lobonţiu, S Ravai-Nagy, “Broadening the Use of Product 
Development Ontology for One-o Products”, Applied Mechanics and 
Materials Vol. 371, 2013, 878-882 

[18] L Tang, C Chen, J Zou, Y Lin, D Lin, J Li, “OntoPlant: an integrated 
virtual plant software package for different scale applications”, Spatial 
Data Mining and Geographical Knowledge Services (ICSDM), 2011 
IEEE International Conference on. IEEE, 2011 

[19] L. F Yu, S. K Yeung, C. K Tang; D Terzopoulos, T. F Chan, S Osher, 
“Make it home: automatic optimization of furniture arrangement”, ACM 
Trans. Graph., 2011 

 

 

 


	I.  Introduction
	II. Related work
	III. Structuring the ontology
	A. Classes
	B. Object properties
	C. Individuals
	D. Classifying the ontology

	IV. Conclusions and further work
	References

