

Why Evolutionary Ontologies are a completely

different field than Genetic Algorithms

Oliviu Matei, Diana Contraș, Alina Pintescu
Technical University of Cluj-Napoca

Baia Mare, Romania

Abstract - Evolutionary ontologies (EO) are a field of

evolutionary computation as genetic algorithms (GA). Although

there are commonalities between the two concepts, we will

demonstrate by means of this article that there are significant

differences, which makes them completely distinct.

Keywords: evolutionary ontologies, genetic algorithms.

I. INTRODUCTION

Evolutionary computation is a field of computer

research inspired by the natural evolution. The algorithms that

appear in this area are called evolutionary algorithms and they

include subdomains such as genetic algorithms, evolutionary

strategies and genetic programming [26].

Genetic algorithms are adaptive heuristic search

techniques based on the principles of genetics and natural

selection, according to [6]. The individuals of GA are named

“chromosomes” and they are usually encoded as binary bit

strings. Initial population is chosen randomly. Each individual

is evaluated by fitness function according to the objective

problem. A series of steps are performed in a loop: parents are

chosen by the selection mechanism, offspring are generated by

crossing parents, offspring are modified through mutation

operator, offspring are evaluated by fitness function,

thereupon are selected the survivors that will form the

population of the new generation and the loop resumes [30].

In [19] Matei et al. have introduced the term of

"evolutionary ontologies" (EO). They are evolutionary

algorithms which manipulate ontologies as individuals.

 This article shows several reasons for which EO's are a

different field of genetic computation than GA, although they

share some commons aspects.

In section 2 we will present an overview of genetic

algorithms, then, in section 3 we will describe the evolutionary

ontologies and, finally, in section 4, the major differences

between the two are detailed.

II. GENETIC ALGORITHMS

Genetic algorithms, intoduced by Holland and his

students [9], are a family of computational models inspired by

evolution, according to [27].

Genetic algorithms are used in general for solving

optimization problems and in particular for combinatorial

problems [18].

A. GA Individuals

In solving problem using genetic algorithms an

important decision is the encoding of individuals. According

to [21] there are many ways to represent individuals by type of

problem to be solved. The most common encoding is a binary

encoding of individuals which gives many possible

chromosomes with a small number of alleles, according to

[15].

In ordering or queuing problems is used mainly

permutation encoding, where every chromosome is a string of

integer numbers [15].

When complicated values are required, value encoding

can be used. In this case every chromosome is a string of some

values as form number, real number or characters [15].

B. GA Selection

In GA selection operator is designed to allow the best

individual to transmit their genes to the next generation,

according to [25]. Usually, selection operator works at

chromosome’s level by fitness function.

An important parameter in GA is selection pressure

[25]. Selection pressure is the probability of selecting the best

individual compared with the average probability of selection

of all individuals [31]. A selection mechanism should be

chosen so as to achieve convergence to the global optimum

without causing a blockage in a local optimum [25].

Sivaraj classifies the methods of selection as traditional

mechanisms and alternative selection mechanisms. The first

category comprises Proportionate Selection methods (Roulette

Wheel selection, Deterministic Sampling, Stochastic

Remainder Sampling, Stochastic Remainder selection with

replacement, Stochastic remainder selection without

replacement, Stochastic universal selection), Ranking

Selection (Linear Ranking selection, Truncate selection) and

Tournament Selection (Binary Tournament Selection, Larger

Tournament Selection, Boltzmann tournament selection,

Correlative Tournament Selection). The second category

comprises of Range selection, Gender-Specific Selection

(Genetic algorithm with chromosome differentiation,

Restricted mating, Correlative Family- based selection) and

GR based selection (Fitness Uniform selection scheme,

Reserve selection). For a detailed description of these

selection methods see [25].

The purpose of all selection methods regardless of their

type is to create multiple copies of individual with high value

of fitness function [25]. It is impossible to say that a selection

method is better than another. It is important to choose the

right type of selection method for the problem to be solved so

as to achieve the optimality of the solution.

C. GA Crossover

The purpose of crossover operator is to recombine two

chromosomes to get a better chromosome, according to [20].

O.Matei, D.Contras, A.Pintescu / Carpathian Journal of Electronic and Computer Engineering 7/1 (2014) 19-24 19

ISSN 1844 - 9689 http://cjece.ubm.ro

Malhotra et. al. classify crossover operator depending

on the method of encoding data. If binary encoding is used,

then one point, two point, uniformly or arithmetically

crossover may be suitable for use. For permutation encoding

one point crossover is appropriate. In case of value encoding

all types of crossover used for binary encoding can be

performed [15].

In the case of one point crossover, an integer number

between 0 and the length of the chromosome is selected. This

number is the crossover point. The first offspring is composed

of the genes to the left of crossover point from the first parent

and the genes to the right of crossover point from the second

parent [24]. The second offspring is composed of the genes to

the left of crossover point from the second parent and the

genes to the right of crossover point from the first parent. If

we have two chromosomes

x=(x1x2…xkxk+1…xr) (1)

y=(y1y2…ykyk+1…yr) (2)

and k is the cutting point will result two offspring

x'=(x1x2…xkyk+1…yr) (3)

y'=(y1y2…ykxk+1…xr) (4)

For two point crossover are chosen two different points

between 1 and r-1 (where r este the length of the

chromosome). The first offspring is composed of the genes to

the left of first crossover point from the first parent, the genes

to the right of first crossover point and the left of second

crossover point from the second parent and the genes to the

right of second crossover point from the first parent. The

second offspring is composed of the genes to the left of first

crossover point from the second parent, the genes to the right

of first crossover point and the left of second crossover point

from the first parent and the genes to the right of second

crossover point from the second parent [29]. If we have two

chromosomes

x=(x1x2…xk1xk1+1…xk2xk2+1…xr) (5)

y=(y1y2…yk1yk1+1…yk2yk2+1…yr) (6)

and k1, k2 are the two cutting points will result two offspring

x'=(x1x2…xk1yk1+1…yk2xk2+1…xr) (7)

y'=(y1y2…yk1xk1+1…xk2yk2+1…yr) (8)

In uniform crossover each gene of the first offspring

has a probability of 0.5 of inheriting from the first parent,

otherwise it inherits from the second parent. The second

offspring has genes selected inversely to the corresponding

gene of the first offspring [29].

In [18] is stated that for arithmetic crossover are used

arithmetic operation to produce offspring. The operation

depends on the representation of the individuals. Thus for

binary representation, operators like AND, OR, XOR may be

used, whereas operator as average may be used for float

representation.

D. GA Mutation

Mutation operator has the role of causing random

changes in the chromosome, generally applied in the genes.

Mutation restore genetic diversity of population helping it

avoid a local optimum level locking [12].

Like crossover, mutation depends on type of encoding.

For binary encoding mutation transform the bit 1 into bit 0 and

reverse. In permutation encoding two genes are selected

randomly and their order is changed. If value encoding is used

a small number will be added or subtracted from the selected

genes to produce offspring [15].

III. EVOLUTIONARY ONTOLOGIES

In artificial intelligence the ontology term, borrowed

from philosophy, was defined by Gruber [8] as an explicit

specification of a conceptualization. Nowadays the ontologies

are used in different areas from technological processes [14],

[22], [23] to medical field [16], [17].

Using ontologies as individuals rather than any other

data structure in a genetic algorithm an ontological

evolutionary algorithm breeds. The ontological space (called

"onto-space") is the definition given to the solution space, the

restriction and boundaries of this evolution.

The onto-space is an ontology describing a domain

specific knowledge, containing all the concepts along with

their allowed and denied relationships, according to [19]. The

onto-space defines the degrees of freedom as well as the

boundaries of the solution space to be searched by the

evolutionary process. Quite often, the solution space is infinite

and special algorithms are needed for exploring it efficiently.

An onto-space would be the ontology about all electronic

appliances and the solution required to be found is a possible

arrangement of a kitchen given some restrictions.

Formally, an onto-space

OS = (C, P, I) (9),

where C is the set of classes, P is the set of properties and I is

the set of instances.

Within the ontology OS, there are two disjunctive sub-

ontologies

OSe = (Ce, Pe, Ie) (10)

OSf = (Cf, Pf, If) (11)

OSe ∪ OSf = OS (12)

 OSe is the sub-ontology which will undergo the

evolutionary process and OSf is the fixed sub-ontology, e.g.

which will not change under the evolutionary process.

A. EO Individuals

An individual is a subset of the ontology, represented

as

Ch = (Ci, Pi, Ii) (13)

where Ci ⊂ C is a subset of classes in OS, Pi ⊂ P is a subset of

properties in OS and Ii ⊂ I is a subset of instances in OS.

Further on, a genetic individual consists of an evolving part

Che = (Cie, Pie, Iie) (14)

which will be changed during the evolutionary process, and a

fixed part

Chf = (Cif, Pif, Iif) (15)

The two parts hold the following relations:

Che ∪ Chf = Ch (16)

Che ∩ Chf = ∅ (17)

Moreover:

Che ⊂ OSe (18)

Chf ⊂ OSf (19)

Ch ⊂ OS (20)

O.Matei, D.Contras, A.Pintescu / Carpathian Journal of Electronic and Computer Engineering 7/1 (2014) 19-24 20

ISSN 1844 - 9689 http://cjece.ubm.ro

A population consists of a given (µ) such individuals

and does not necessarily cover the entire onto-space, therefore

 ∪i Chi ⊂ OS (21)

B. EO Selection

In the case of EO it is used deterministic selection (µ,

λ) – selection or (µ + λ) – selection. For first type of selection

µ parents produce λ offspring (λ > µ) and only the offspring

undergo selection. For the second type of selection µ parents

produce λ offspring and all solutions compete to survival.

The deterministic selection is chosen in favor of other

types of selections as it is rather difficult to correlate

mathematically ontologies with their relative fitness, needed

for other techniques.

C. EO Crossover

For EO can distinguish three types of crossover

operators: class crossover, instance crossover and relation

crossover.

In an ontology classes are organized hierarchically.

Two groups of related classes and subclasses are randomly

selected as parents, a cutting point is chosen, it changes

between the two parent classes to the point of cutting and the

two resulted groups are the offspring. In doing so is likely the

ontology to become inconsistent. In such cases the repair

operator (see subsection 3.5) will be used to validate the

ontology.

In an ontology for each class can be established as

many instances as wanted. The instances are not independent,

but related through object properties. For crossover, two

groups of related instances are selected randomly as parents.

In an ontology, there are two types of properties: the

object level and the data level. At object level are elected two

object properties P1 and P2 as parents. Each property has a

domain and a range from among the classes:

C11 P1 C12 (22)

C21 P2 C22 (23)

After crossover will get:

C21 P1 C12 (24)

C11 P2 C22 (25)

or

C11 P1 C22 (26)

C21 P2 C12 (27)

As in the class crossover case the result may be

inappropriate. The repair operator (see subsection 3.5) will

remove inconsistency.

In an ontology each data property (DP) has a do-main

from among the classes and a range from different data types

like integer, double, float etc. At data level crossover are

selected as parents two classes with several data properties:

C1 (DP11, DP12 , DP13,..., DP1n) (28)

C2 (DP21, DP22 , DP23,..., DP2m) (29)

A cuting point is selected and the result of the

crossover will be the same classes with modified properties:

C1 (DP21, DP22 , DP13,..., DP1n) (30)

C2 (DP11, DP12 , DP23,..., DP2m) (31)

The repair operator (see subsection 3.5) will be also

applied if appropriate result is not obtained.

The pseudo code for the crossover operator is de-

scribed in algorithm 1.

Algorithm 1 Crossover - pseudo code showing the

crossover operator

1: procedure recombine(population)

2: newPopulation = ∅;

3: parentPopulation = select λ individuals randomly

4: for all ind1 and ind2 ∈ parentPopulation do

5: choose a random cutting point (in the tree

 formed by the classes)

6: create two offspring by preserving the ordering

 position of symbols in the corresponding

 sequences of the parents

7: adjust the object properties according to the new

 class structure

8: add the two offspring to the newPopulation

9: end for

10: end procedure

D. EO Mutation

Like crossover, the mutation operator for EO requires

different treatment for classes, for instances, respectively for

properties. It is applied for each individual with a probability

pm.

The pseudo code for mutation is shown in algorithm 2.

Algorithm 2 The Mutation - pseudo code describing the

mutation procedure

1: procedure mutate(newPopulation)

2: for all ind ∈ newPopulation do

3: choose a random number r ∈ [0, 1)

4: if r < pm then

5: choose a random integer number rm ∈ 1, 2

6: if rm = 1 then

7: applyInstanceMutation(ind)

8: else

9: applyClassMutation(ind)

10: end if

11: end if

12: end for

13: end procedure

Instance mutation means replacing a randomly se-

lected instance i belonging to a class C (i ∈ C) with another

individual i' ∈ C from the onto-space OS. This operator

preserves the number of ontological instances in an individual.

A class mutation means replacing all the instances in a

class C by other individuals belonging to a random subclass

SC ⊆ C in the onto-space.

The property mutations may be approached separately

for data properties, respectively for object properties.

E. Repair Operator

Applying classical genetic operators: crossover and

mutation on ontologies, they can be easily corrupted on the

strength of their complex structure. That is why Matei et al.

[19] introduced a new operator, called repair, which is a

O.Matei, D.Contras, A.Pintescu / Carpathian Journal of Electronic and Computer Engineering 7/1 (2014) 19-24 21

ISSN 1844 - 9689 http://cjece.ubm.ro

deterministic operator. It can be applied on the population

each time another genetic operator is used or only once, after

crossover and mutation. Repairing an individual means

adjusting its instances and properties so that they respect all

the rules defined in the onto-space.

F. Other Genetic Operator

The EO’s have a strong expressivity power due to it

symbolic nature. Therefore several new genetic operators may

be defined at a class level as well as at individual level.

Moreover, the relationships of an ontology are very suited for

subject of new operators, such as union, intersection and

composition.

IV. GENETIC ALGORITHMS VS. EVOLUTIONARY

ONTOLOGIES

First of all, although evolutionary computation is a sub-

symbolic field of artificial intelligence [11], evolutionary

ontologies are symbolic simply because ontologies are

symbolic intelligence [1]. However this is not the first step

towards bridging the two major domains: symbolic and

subsymbolic, as shown by Goertzel in [7]. For instance,

Andrews et al. try in [5] to extract rules from neural networks.

However, it is for the first time when Matei et al. [19] apply

the genetic principles to ontologies.

The strength of EO consists in the fact that they make

use of the power of mathematical algorithms and the

expressivity of ontologies. We cannot say anymore that

evolutionary ontologies are subsymbolic intelligence as they

make use of ontologies, therefore semantic; on the other hand

they are not pure symbolic because they evolve using

mathematical principles, which is never the case of other

symbolic fields, such as knowledge-based systems [3] and

intelligent agents [28].

The individuals of EO are ontologies themselves as

they contribute to the evolutionary algorithm with all their

elements: classes, individuals, relations, properties. In EO

classes and instances increase in number and/or receive

improved properties and relations as the result of their

participation in the evolutionary act. On the other hand, the

individuals of GA are strings of integer or float number or

characters depending on the specific problem to be solved.

The crossover operator is represented in EO in three

stages: class crossover, instance crossover and relation

crossover. As shown in subsection 3.3 the three types of

operators behave differently depending on individuals used as

operands. If it is applied class crossover operator the result

would be new class structure. When applying instance

crossover the result would be new instances. Finally, relation

crossover determines new relations or new properties in the

ontology. In GA there are several types of crossover operator

depending on the data encoding. Whatever crossover operator

is applied to two strings representing parents will get two

strings (not very different from the default) which are the

offspring.

The mutation operator in EO is also differentiated

according to the ontological element to which it applies. With

class mutation it is obtain a new class structure by replacing

all individuals of a class with individuals of a random subclass

of that class. Instance mutation signifies the replacement of an

individual with another individual from the same class as the

initial individual. Data property mutation means the change of

initial value depending on the type of data. In GA are

identified more types of mutation operator based on the kind

of encoding chosen. No matter what mutation operator is

applied the result would be a string representing a

chromosome with random genes modified from the default.

The selection operator used in EO is based on the

model used in ES, namely (µ, λ)-selection or (µ + λ)-

selection, unlike GA where are used mainly types of selection

based on fitness function.

The need of repair operator is required by the results of

crossover and mutation operators in EO. The resulting

evolutionary ontology may present evidence of inconsistency,

which will be removed by repair operator. Affenzeller et al.

show in [2] that a repair operator is often used in GA in order

to convert an illegal chromosome to a legal one. There are

more than one repair operators in GA depending on the

specificity of the problem.

From the 70 GA is an open research area. Were thus

introduced several new operators to the standard ones, like a

new mutation operator developed to increase GA performance

to find the shortest distance in the Traveling Salesman

Problem [4] or new crossover operators namely sequential and

random mixed crossover applied to a deep beam problem and,

a concrete mix design problem [10] and the list goes on. EO is

a new field of evolutionary computation. We customized the

standard genetic operators: selection, crossover, mutation to

EO and we have demonstrated the need to use repair operator

in EO. Further we consider as future work the implementation

of new operators due to the complexity of ontology elements

and the relations between them.

V. CONCLUSIONS

We have proved in this article that between genetic

algorithms and evolutionary ontologies there are several

similarities:

• both are instantiations of evolutionary computation;

• the general algorithms are very similar, implying

individuals which evolve undergoing some genetic

operators, out of which three are classical: crossover,

mutation and selection;

• the aim of both is optimization.

However, the gap between them, shown in table 1 is so

large that make the evolutionary ontologies a distinct domain.

Table 1. The differences between GA and EO

Aspect GA instantiation

of the aspect

EO instantiation

of the aspect

Intelligence level Subsymbolic,

entirely

mathematical

algorithms

Symbolic

concepts evolved

with subsymbolic

algorithms

O.Matei, D.Contras, A.Pintescu / Carpathian Journal of Electronic and Computer Engineering 7/1 (2014) 19-24 22

ISSN 1844 - 9689 http://cjece.ubm.ro

Solution space The set of strings

with the encode

depending on the

problem to be

solved

An ontological

space containing

the possible

instances and their

relations

The individuals Strings Ontologies

Crossover Depends on the

type of encoding –

binary,

permutation or

value

Actually we have

three different

operators, one for

classes, one for

instances and one

for relations

Mutation Depends on the

type of encoding –

binary,

permutation or

value

There are three

different

mutations for

classes, instances

and relations

Repair operator Frequently used,

but not mandatory
Absolutely needed

as the individuals

may contain very

complex internal

and external

relations

Selection Based on fitness

function
Deterministic

New operators New operators

were introduced

and continue to

occur

New specific

operators may be

defined because

ontologies imply

different concepts

and princples

Acknowledgments. This paper was supported by the Post-

Doctoral Programme POSDRU/159/1.5/S/137516, project co-

funded from European Social Fund through the Human

Resources Sectorial Operational Program 2007-2013.

REFERENCES

[1] Aerts, Diederik, and Marek, Czachor, (2003). Quantum aspects of

semantic analysis and symbolic artificial intelligence. arXiv preprint

quant-ph/0309022.

[2] Affenzeller, Michael, Wagner, Stefan, Winkler, Stephan and Beham

Andreas, (2009). Genetic Algorithms and Genetic Programming:

Modern Concepts and Practical Applications p. 131 ISBN 978-1-

58488-629-7

[3] Akerkar, Rajendra, and Priti Sajja, (2010). Knowledge-based systems

p. 19 ISBN-13: 978-0-7637-7647-3.

[4] Albayrak, Murat, and Novruz, Allahverdi, (2011). Development a

new mutation operator to solve the Traveling Salesman Problem by

aid of Genetic Algorithms. Expert Systems with Applications, vol. 38,

ISSN 09574174 p. 1313-1320.

[5] Andrews, Robert, Joachim Diederich, and Alan B. Tickle, (1995).

Survey and critique of techniques for extracting rules from trained

artificial neural networks. Knowledge-based systems, vol. 8, ISSN

0950-7051 p. 373-389.

[6] Ferariu, Lavinia, (2013). Sisteme inteligente hibride. zharieBucurești:

Conspress.

[7] Goertzel, Ben, (2012). Perception processing for general intelligence:

Bridging the symbolic/subsymbolic gap. Artificial General

Intelligence, vol. 7716, ISSN 1946-0163 p. 79-88.

[8] Gruber, Thomas R., (1993). A translation approach to portable

ontology specifications. Knowledge acquisition, vol. 5, ISSN 1042-

8143 p. 199-220.

[9] Holland, John, (1975). Adaptation in natural and artificial system

ISBN 0-262-58111-6

[10] Kaya, Mustafa, (2011). The effects of two new crossover operators on

genetic algorithm performance. Applied Soft Computing, vol. 11,

ISSN 1568-4946 p. 881-890.

[11] Kelley, Troy D., (2003). Symbolic and sub-symbolic representations

in computational models of human cognition what can be learned

from biology? Theory & Psychology, vol. 13, ISSN 0959-3543 p.

847-860.

[12] Konak, Abdullah, David W. Coit, and Alice E. Smith, (2006). Multi-

objective optimization using genetic algorithms: A tutorial. Reliability

Engineering & System Safety, vol. 91, ISSN 0951-8320 p. 992-1007.

[13] Koza, John, (1992). Genetic programming: on the programming of

computers by means of natural selection ISBN 0-262-11170-5

[14] Lobonțiu, Mircea and Petrovan, Adrian, (2012). A Product

development ontology(1). Information integration concepts. Revista

de Management și Inginerie Economică, vol. 11, ISSN 1583-624X p.

43-56

[15] Malhotra, Rahul, Narinder, Singh and Yaduvir Singh, (2011). Genetic

algorithms: Concepts, design for optimization of process controllers.

Computer and Information Science, vol 4, ISSN 1913-8989 p. 39.

[16] Matei, Oliviu, (2008). Defining an Ontology for the Radiograph

Images Segmentation. 9th International Conference on Development

and Application Systems, place Suceava, Romania, 22.05.2008

[17] Matei, Oliviu, (2008). Ontology-Based Knowledge Organization for

the Radiograph Images Segmentation. Advances in Electrical and

Computer Engineering, vol 8, ISSN 1582-7445 p. 56-61.

[18] Matei, Oliviu, (2008). Evolutionary Computation: Principles and

Practices p. 19-29 ISBN 978-973-751-944-3

[19] Matei, Oliviu, Contraș, Diana and Pop Petrică, (2014). Applying

Evolutionary Computation for Evolving Ontologies. Proceedings of

CEC 2014, China, 06.07.2014

[20] Mathew, Tom, (2012). Genetic algorithm. Report submitted at IIT

Bombay.

[21] Nedjah, Nadia and Macedo Mourelle, Luiza de, (2002). Minimal

Addition-Subtraction Chains Using Genetic Algorithms. Advances in

Information Systems, vol. 2457, ISSN 1532-0936 p. 303-313

[22] Petrovan, Adrian and Lobonțiu, Mircea, (2012). Product development

ontology. A case study, Quality - Access to Success, vol. 13, ISSN

1582-2559 p. 393-398.

[23] Petrovan, Adrian and Lobonțiu, Mircea, (2013). Broadening the Use

of Product Development Ontology for One-off Products. Applied

Mechanics and Materials, vol. 371, ISSN 1662-7482 p. 878-882

[24] Shukla, Anupam, Ritu, Tiwari and Rahul, Kala, (2012). Real life

applications of soft computing p.161 ISBN 978-1-4398-2289-0

[25] Sivaraj, R. and Ravichandran, T. (2011). A review of selection

methods in genetic algorithm. International journal of engineering

science and technology, vol. 3, ISSN 2141-2820 p. 3792-3797.

[26] Stoean, Cătălin and Stoean, Ruxandra, (2010). Evoluție și inteligență

artificială. Paradigme moderne și aplicații ISBN 978-973-650-277-4

[27] Whitley, Darrell, (1994). A genetic algorithm tutorial. Statistics and

computing, vol. 4, ISSN 0960-3174 p. 65-85.

[28] Wooldridge, Michael and Nicholas, R. Jennings, (1995). Intelligent

agents: Theory and practice. The knowledge engineering review, vol.

10, ISSN 0269-8889 p. 115-152.

[29] Xinjie, Yu and Mitsuo Gen, (2010). Introduction to evolutionary

algorithms p.43-44 ISBN 978-1-84996-129-5

[30] Zaharie, Daniela, (2013). Curs Calcul neuronal și evolutiv. Facultatea

de Matematică și Informatică, Universitatea de Vest Timișoara.

[31] Zaharie, Daniela, (2006). Algoritmi genetici - Curs 3. Algoritmi

evolutivi - metode de selecție

O.Matei, D.Contras, A.Pintescu / Carpathian Journal of Electronic and Computer Engineering 7/1 (2014) 19-24 23

ISSN 1844 - 9689 http://cjece.ubm.ro

