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Abstract— Traffic simulation provides an essential support 
for developing intelligent transportation systems. It allows 
affordable validation of such systems using a large variety of 
scenarios that involves massive data input.  However, realistic 
traffic models are hard to be implemented especially for 
microscopic traffic simulation. One of the hardest problems in 
this context is to model the behavior of drivers, due the 
complexity of human nature. The work presented in this paper 
proposes a framework for learning driver behavior based on a 
Hidden Markov Model technique. Moreover, we propose also a 
practical method to inject this behavior in a traffic model used by 
the SUMO traffic simulator. To demonstrate the effectiveness of 
this method we present a case study involving real traffic 
collected from Timisoara city area.   
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I.  INTRODUCTION  

Traffic simulation and prediction is involved in 
development of all modern intelligent traffic systems. They 
represent the optimal way to test and validate such systems in 
safer conditions, without interfering with, or disturbing the real 
traffic. However, most traffic models used in modern 
simulators do not include accurate driver behavior models. In 
some situations, this can create a significant gap between 
simulation and traffic reality. 

To describe the behavior of people in traffic is not a trivial 
problem. A realistic model depends on several aspects, not very 
well explored since now. A first category is related with 
personality of the driver, which is hard to be captured and 
modeled at large scale. Other aspects are related with social 
nature of the traffic [1] and imply coordinate decision and 
behavior adaptation. Besides of that, persons are also 
influenced by cultural and socio demographic realities of the 
geographical area considered. Finally, road configuration and 
some traffic conditions could also influence driver actions. 

Several studies were conducted in the last decades in order 
to find various parameters that influence driving behavior. As 
an example, a qualitative method was proposed in [2] to 
investigate drivers’ speed choice. The analysis concludes that 

speed choices are related to the physical design of the road, 
interaction with other road users, personal attitudes and reasons 
related with respect for the law. Driving with passengers in the 
car, particularly children, influence drivers to choose a lower 
speed, except for some young drivers who reported speeding 
when driving friends. Several drivers expressed difficulties in 
maintaining a speed below the speed limit. The conclusion was 
that the consequence of speeding, such as increased accident 
risk, was given little consideration by the study participants.  

In context of developing realistic traffic simulation, one of 
the first aspects regarding driver behavior was the lane-
changing action. The SITRAS system presented in [3] 
describes two lane-changing models: the forced model, and the 
cooperative lane-changing model. The goal was to produce 
realistic flow-speed relationships during traffic congested 
conditions. After that, some other models was proposed, but all 
of them considers only specific actions and do not propose a 
general model for the behavior.  

The approach proposed here also does not aim to create a 
complete mathematical model to describe the behavior. Instead 
of that the model is learned from real traffic recorded from 
investigated area using a Hidden Markov Model technique.  

The rest of the paper is structured as following. Section II 
gives an overview of some popular traffic simulation systems 
and draws some conclusions useful in our attempt to extend the 
models by introducing the traffic behavior. Section III explains 
the framework proposed by us to support learning of the traffic 
behavior. Next section presents a way of using the learnt traffic 
behavior in order to enhance the simulation model in Sumo. 
Enhanced traffic model is validated in Section V by using a 
case study for a real segment of road. Last section concludes 
the work and presents some promising future improvements.     

 

II. TRAFFIC SIMULATION 

A. Traffic Simulation Models 
Traffic simulation is very important in context of the 

demand of increasing traffic safety and managing growing 
traffic flow. It allows evaluation and validation of various 
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solutions developed to deal with problems like traffic 
congestions or traffic patterns discovery [4]. In general, the 
traffic simulator systems support three categories of traffic 
models: macroscopic, mesoscopic and microscopic. 

Microscopic simulation describes each individual vehicle 
movement in terms of position, speed, acceleration and action. 
The most used microscopic models are derived from the car 
following model [5][6] and the cellular automata model [7]. 

Macroscopic simulation models analyze traffic flow at a 
macroscopic level, which has been inspired from the 
hydrodynamic theory. Instead of describing individual vehicle 
behavior, the model concentrates on statistical variables that 
summarize the traffic flown in the simulated area. In this 
respect the traffic is characterized by global variables as the 
flow rate, the flow density and the flow average velocity [8]. 

Mesoscopic simulation models combine the previous two 
models in various ways. They could decrease the simulation 
resource consumption by calculating traffic states only when 
something happens in the network [9]. 

The work presented in this paper aim to improve 
microscopic simulation models with real traffic characteristics 
close linked with non-uniform driving behavior developed by 
traffic participants. 

B. Traffic Simulators 
Traffic simulators are essential tools in developing 

intelligent traffic systems. They implement various traffic 
models and generate realistic vehicles movement data to be 
used as an input for these models. They manage road models 
and various scenario parameters as maximum vehicular speed, 
rates of vehicle arrivals, and rate of vehicle departures. The 
output has fine granularity and details the location of each 
vehicle at every time sample for the entire simulation time. 
Examples of popular simulators are SUMO [10], MOVE++ 
[11], CityMob [12], FreeSim [13], and Netstream [14]. 

We choose to extend in our work the traffic model of 
Simulation of Urban MObility [15]. SUMO is an open source 
microscopic road traffic simulation package designed to handle 
complex road networks [16]. It can import various types of 
maps, as for example complex OpenStreetMap [17], it can 
handle multiple lanes and traffic signals and it implements 
various traffic rules. Traffic configuration is based on 
individual routes for vehicles. A special designed module 
called Traffic Control Interface (TraCI) allows interaction with 
external tools and control systems [18]. 

The most used SUMO traffic demand model uses poison 
distribution to generate vehicles that are injected into the 
network simulation. All model information is written in XML 
format in standard configuration files. 

 

III. A FRAMEWORK FOR LEARNING DRIVING BEHAVIOR 

Driving behaviors are complex and they can be consistent 
within a specific range of population when facing a particular 
trajectory. In this paper, common driver behavior is captured 

from several recorded sequences of vehicle movement using 
Hidden Markov Model [14]. 

Using only road sensors vehicle movements can be 
recorded, but it is practically impossible to obtain drivers’ 
disposition while being on a certain trajectory. To derive 
unobservable driving attitudes using HMMs, vehicles 
movement data are treated as the observable states. 

The proposed methodology has four components: driving 
behavior learning, driving behavior decoding, driving behavior 
distribution adjustment, and population generation. 

Driving behavior learning component is based on a prior 
training period performed by drivers with different behaviors 
on individual road segments. The model aims to associate each 
sequence of vehicle movement on an individual road segment 
to a cognitive model. Five different cognitive models of human 
behavior are considered. 

Driving behavior decoding is acquired using Hidden 
Markov Models (HMMs) to characterize and detect driving 
maneuvers throughout various trajectories and place them in 
five different cognitive models of human behavior. 

The distribution adjustment component aims to find and 
adjust the frequency of the five cognitive models in order to 
obtain a distribution closer to the real model. 

This distribution will be used in the generation of the 
virtual population of drivers by the population generation 
component. 

The first step is to build individual models for each 
trajectory segment type. For that we choose the k-means 
algorithm, known also as the Lloyd algorithm [19], in order to 
optimally estimate model parameters for each model. We aim 
to obtain five clusters for each trajectory segment type, 
corresponding to five driving behavior types. 

The second step is to describe driving behavior as a 
succession of basic actions each defined by a set of observable 
parameters and particular states of the driver-vehicle 
environment. The observable states of the driver-vehicle 
environment are the effects of the driver’s internal state. The 
driver behavior recognition model prototype proposed here 
aims to subclass driving behavior in five different classes: B1, 
B2, B3, B4 and B5, corresponding to the five clusters. 

The frequency of a given behavior during the simulation 
may be relevant. Adjusting the frequency we can design the 
population behavior distribution that is more appropriate to a 
given problem. We aim to distribute the obtained driving 
behavior classes in order to obtain a virtual population of 
drivers having a behavior closer to real traffic. 

A. Driving behavior learning procedure 
First, we train our model on the three different segment 

types considered: plain segment, sag curve, and crest curve. 
The training consists in a number of repetitions on this 
trajectory segments. It has to be performed by drivers having 
different driving behaviors. 

Second, we apply Lloyd algorithm to cluster the training 
data into clusters for each segment type. The Lloyd algorithm 
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is an unsupervised learning algorithm for clustering analysis. 
To map the Lloyd algorithm to driver behavior, the data point 
definition needs to be adapted. 

The initial means number is the number of clusters 
generated by the algorithm. In our approach we define five 
means, corresponding to the five clusters we want to obtain. 
Each cluster corresponds to a different driving behavior type. 

We define a data point p=(p1, p2, … pn) as a sequence of 
actions taken by the driver on a particular trajectory segment. 
In our approach the coordinates pi corresponds to the driver 
actions. These actions are characterized by a steering angle 
pi.st, and a velocity value pi.v. 

The distance between two data points, p=(p1, p2, … pn) and 
q=(q1, q2, … qn), computed as the Euclidean distance between 
two points in an n-dimensional space is adapted as follows: 

d(p,q)= 

 
                (1) 

The obtained clusters corresponding to different driving 
behaviors for each segment type are displayed in Table 1. 

TABLE I.  HIDDEN STATES TYPES 

Behavior 
types 

Segment types 
Plain segment Sag curve Crest curve 

B1 β1 μ1 τ1 
B2 β2 μ2 τ2 
B3 β3 μ3 τ3 
B4 β4 μ4 τ4 
B5 β5 μ5 τ5 

 
B. Driving behavior decoding 
The driving recognition system, based on HMM, is 

comprised of two stages. 

The first, an offline stage, is the training phase. We define a 
different HMM structure for each segment type. It would be 
irrational to have the same HMM structure, as the number of 
identifiable actions for each of the three segment types are 
different. 

The HMM representations for the sag curved segment type 
is presented in Figure 1. The other HMM structures 
corresponding to crest curve segment and to plain segment 
differ as number of states recorded to capture the behavior. 

The second is the recognition phase, as we are interested in 
recognizing the model, which most probably gave rise to the 
observed sequence. We train the model using more complex 

trajectory sequences made of the three segment types 
considered: plain segment, sag curve and crest curve segment. 
The aim is to partition each of the training trajectory 
sequences into states. 

We consider a HMM with state space S = {s1, s2,…, sn}, 
where the states take values from the driving behavior types 
identified by the Lloyd’s algorithm. 

 

 
Fig. 1. HMM structure for sag curve segment. 

An initial set of parameter values is obtained using the 
Viterbi Training algorithm [13] over the training data. We 
adjust the initial probabilities and the transition probabilities 
definitions. The initial probabilities are πi – the probability of a 
certain y.v being in state Si and ψi – the probability of a certain 
y.st being in state Si. 

The transition probability ai.j is the probability of 
transitioning from state si to state sj. Then we use the Viterbi 
algorithm [8] to find the most likely sequence of hidden states 
related to a given set of observations.  

For a sequence Y={(y1.v, y1.st), (y2.v, y2.st), ..., (yT.v, 
yT.st)} of observed outputs during vehicle movement, the most 
likely state sequence X={ x1, x2 ..., xT} that produces the 
observations is defined by the following recurrence relations: 

 
V1,K=P(y1.v | k)· πk +P(y1.st | k)· ψ k            (2) 

Vt,k= P(yt.v | k)· maxx∊S (ax,k· Vt-1,x) + 

P(yt.st | k)· maxx∊S (ax,k· Vt-1,x).                     (3) 
 

In these relations Vt,k is the probability of the most probable 
state sequence responsible for the first t observations that have 
k as its final state. 

The most likely sequence of hidden states is found by 
saving back pointers that remember the x state used in the (3) 
equation.  

C. Driving Behavior Distribution Adjustment 
 After obtaining the most likely sequence of hidden states 

for the training trajectories, we aim to extract the distribution 
of the driving behavior types.  

The distribution is calculated separately for each trajectory, 
considering the corresponding behavior type for each hidden 
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segment type. Each behavior type will be assigned a 
distribution value. 

Moreover, our objective is to analyze the frequency of each 
behavior type and adjust this frequency in order to be more 
appropriate to the real system. Based on this appropriate 
frequency, we obtain a new distribution named real 
distribution.  

D. Population generation  
    Our main purpose is to create a virtual population of drivers 
where the global behavior of the population resembles a set of 
driving behavior types. The occurred frequency of a given 
behavior helps in designing a behavior distribution in the 
population that is more appropriate to a given issue.  

    This will be implemented by taking a set of drivers from the 
simulated traffic system in order to assess the assigned 
distribution. The selection of the drivers that will be modified 
in the population is carried out by the evaluation of driving 
behavior distribution, and a driver can remain in the new 
population if a certain threshold of the real distribution is 
reached, else the driver behavior is modified.  
  

IV. GENERATING DB ENHANCED TRAFFIC IN SUMO  
The proposed software architecture consists of the SUMO 

simulator, a driving behavior component and a broker between 
the simulation engine and the driver behavior component, as 
presented in Figure 3.  

The SUMO [7] simulator is microscopic, explicitly defining 
each vehicle by at least an identifier, the departure time, and 
the vehicle’s route through the network. The mobility model in 
SUMO is based on the car following model proposed by 
Krauss [17]. The simulator allows departure/arrival properties 
to be defined, for example the acceleration and deceleration 
properties, maximum speed, the minimum longitudinal and 
lateral clearances can be specified.  

     To couple the road traffic to the behavior component we 
use TraCI [9], which acts as a broker between the two 
components. It connects the two in real time thus enabling the 
control of mobility attributes of each simulated vehicle. TraCI 
uses TCP based client/server architecture to provide access to 
the SUMO traffic simulator. Thereby, the traffic simulator acts 
as server and the behavior component acts as a client. Once 
the TCP connection is established, the behavior component 
controls the traffic simulator via the data exchange protocol, 
which enables movement changes for each simulated vehicle, 
making it is possible to instantaneously adjust the movement 
of individual vehicles.  

      The behavior component perceives the simulation through 
the broker and implements the proposed framework for 
learning driving behavior, making the necessary updates into 
the simulation.  

First, in the simulation environment are trained various 
vehicles having different behaviors on different segment types. 
The Driving Behavior Component keeps track of these vehicles 

by sending periodically a query to the traffic simulator 
regarding the velocity and position of the vehicle and receives 
a response that is added to the collected amount of data. When 
data collection is concluded, a clustering task is performed on 
this data, and different behavior types are identified for each 
segment type. 

Second, the driving behavior component manages a set of 
vehicles on complex trajectories from the simulation 
environment. Using the behavior types identified, it decodes 
the information received in order to find the distribution of the 
behavior types identified earlier.  

In the next phase, the driving behavior component proceeds 
to generate a virtual population of drivers that respects the 
distribution value of the different behavior types. In order to 
respect this distribution value, only a portion of the population 
of drivers shall be modified during simulation. The Driving 
Behavior Component sends periodically for these drivers, 
every simulation step a command to the traffic simulator that 
contains the actual simulation time plus one simulation step. 
The simulator performs the next simulation step and the 
resulting vehicle positions are sent back to the Driving 
Behavior Component to be processed.  

This approach can affect a bit the performance of the 
simulation, since the Driving Behavior Component must wait 
the simulation environment responses before requesting to 
continue to the next step, but represents a flexible solution that 
allows SUMO to be used without major improvements. 

The population aims to reflect the proportion of drivers, 
which have different driving behavior types, and hence do not 
respect the car following model. The population generation is 
actually a simulation phase where this proportion of drivers 
that do not respect car following model will be modified 
through the broker and the assigned updated values will be 
committed into simulation. 

 

 
Fig. 2. Architecture overview. 

 

V.  CASE STUDY FOR MODEL VALIDATION 
First, we obtain our hidden state types as a result of a 

number of training repetitions on each segment type as plain 
segment, crest curve and sag curve. The segments used for 
training are presented in Figure 3. 

Second, we train our model on a chosen trajectory. The 
trajectory represents a street portion from Timisoara, located at 
21.26 degrees latitude and 45.72 longitudes. The traffic flow is 
regulated and uninterrupted on this trajectory. 
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In order to use this area in SUMO the corresponding 
OpenStreetMap file has to be converted from a map to a 
SUMO network file. The conversion extracts the information 
related to the simulation from the OpenStreetMap file and puts 
it out in the SUMO network file. The network file is imported 
in SUMO as presented in Figure 5. 

We perform a number of training repetitions on this 
trajectory where we obtain a sequence of states for each 
repetition. In the Table II, we have the states corresponding to 
the training performed. 

 

  
a. b. 

 
c. 

Fig. 3. Example of segment types: a. sag curve, b. crest curve, c. plain 
segment [25] 

 
Fig. 4. View of the entire case study region [25] 

  Next we calculate the distribution for each behavior type. 
The obtained distribution is 20,5 percents for B1 behavior 
type, 23 percents for B2 behavior type, 9,2 percents for B3 
behavior type, 35,3 percents for B4 behavior type, and 12 
percents for B5 behavior type. The most frequent behavior 
obtained is B4, corresponding to a stressed driver behavior.   
 
 
 

 
Fig. 5. Map representation in SUMO. 

 

Based on the observed frequencies, we can now create a 
virtual population of drivers having an increased distribution of 
the B4 behavior type. 

 

TABLE II.  STATES SEQUENCE FOR THE TRAINING PHASE 

No States 

1 β1 τ1 β2 μ3 β1 τ4 β4 τ2β5 μ5β1 μ2β4τ5β1 μ3β1 

2 β4 τ2 β4 μ5 β1 τ1 β2 τ4β3 μ4β4 μ2β2τ1β4 μ5β1 

3 β4 τ4 β5 μ2 β2 τ2 β2 τ2β1 μ4β4 μ2β4τ1β2 μ3β4 

4 β2 τ4 β3 μ4 β5 τ4 β3 τ4β1 μ4β5 μ4β4τ5β1 μ4β4 

 
 

We compare the proposed framework with the SUMO 
simulation and with the real time traffic behavior for the 
proposed trajectory. We monitor the real traffic for thirty 
minutes, counting the number of vehicles that enter the 
trajectory and the number of vehicles that leave the trajectory 
each minute. The chosen trajectory is not a crowded road, 
excepting the peak time. Therefore, the experiment is 
registered the flow on a relevant peak time interval. 

We used the same input traffic as the one registered from 
the chosen trajectory during the selected time interval to 
perform a SUMO simulation. Next, we repeated the experiment 
considering the same registered traffic as input, but performing 
an enhanced SUMO simulation adding the behavior computed 
using proposed framework.  
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Fig. 6. Experimental results. 

The results of the two experiments are presented in the 
Figure 6. They demonstrate the accuracy of simulation 
achieved when drivers’ behavior is considered. On the chosen 
trajectory, the mean squared error of output traffic for the 
proposed solution is 1,53. This mean squared error is lower 
than the value of 2,55 obtained for the classic SUMO 
simulation on the same trajectory. Moreover, we can assume 
even a larger difference in case of a longer trajectory and for 
heavy traffic conditions. Overall, the results indicate that the 
proposed framework was capable of simulating the flow in a 
more realistic manner, closer to the real traffic than in case of 
using the exiting SUMO simulation model. 

 

VI. CONCLUSIONS  
This paper proposes a new method for enhancing traffic 

simulation models by adding driver behavior. The goal is to 
provide accurate simulation environments for developing 
complex intelligent transportation systems. 

The method is based on two steps. First step involves 
capturing the driver behavior from several recorded sequences 
of vehicle movement using Hidden Markov Model. This 
information is then used by the second step to inject this 
behavior into an existing traffic model. 

To validate the work we present a case study involving a 
real segment of a road from Timisoara city area. The 
experimental results demonstrate the improvement of the 
simulation model comparing with the real traffic recorded from 
considered area. 
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