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Abstract— Gigabit per second and higher bandwidths imply 
greater challenge to perform lossless packet capturing on 
generic PC architectures. This is because of software based 
capture solutions, which did not improve as fast as network 
bandwidth and they still heavily rely on the OS's packet 
processing mechanism. There are hardware and operating 
system factors that primarily affect capture performance. 
This paper summarizes these parameters and shows how to 
predict packet loss ratio during the capture process. 

Index Terms — Linux, Software-based packet capturing, 
libpcap, Wireshark, Communication system traffic. 

I. INTRODUCTION 
ACKET  capturing is an essential part of network 
traffic monitoring. For network engineers there are 

several monitoring solutions that allow traffic sampling 
or capturing. Most advanced tools are capable of passive 
monitoring that does not affect the monitored traffic itself 
[1]. Using these hardware-accelerated monitoring devices 
the traffic of large capacity network backbones can be 
monitored on-the-fly. These tools feature hardware 
timestamping of packets and lossless capturing at wire-
speed and they are quite expensive. The most 
professional tools can perform distributed traffic 
monitoring at multiple points of the network 
infrastructure. For accurate timestamping, they have to be 
able to synchronize their internal clocks. Software 
developers, application programmers and researchers are 
often interested only in the traffic of a specific host or 
application and don’t need most of the extra 
functionalities mentioned above. As an alternative, 
software-based packet capturing is available on most 
OS's and most architectures. 

Timestamps can be generated at well-defined points 
within the kernel during the data processing. On Linux 
systems with MMAP support, timestamping is performed 
at enqueuing to or dequeuing from the input packet queue 
[2]. On other systems (e.g., Windows) timestamps are 
generated at later processing phases that affect its 
accuracy. This is not necessarily bad, it depends on what 
the developer or software engineer wants to know about 
the packet’s arrival time. If she is interested in the time 
moment when the packet reaches an upper protocol layer 
(like IP or above), the timestamp generated during 
software-based packet capturing delivers closer arrival 

times to the appropriate layer. 
In cross-layer protocol analysis, packet flows through 

the endpoint’s network layers are as interesting as their 
way through the network infrastructure. From the point of 
view of an application developer or protocol researcher, 
timestamps generated in the kernel seem to be more 
adequate. 

Libpcap-based packet analyzer applications (e.g., 
Wireshark [3]) are very common, since they are available 
on a wide range of systems and most of them are free and 
open source. Using these tools, packets can be saved for 
later analysis into PCAP or PCAPng file. These formats 
are flexible, since they are supported by most of the 
traffic analysis softwares. 

II. PROBLEM DEFINITION 
Software-based capture solutions did not improve as 

fast as network bandwidth and computing hardware. 
However 1 ns timestamp resolution can be reached on a 
lot of systems, packet processing and capturing overhead 
is still significant. We cannot therefore expect linear 
scalability by improving only a specific system parameter 
(i.e., CPU frequency). 

Dumpcap itself uses relatively small system resources, 
however it is executed on a general purpose system that 
shares its resources between the running processes. 
Accordingly, it is not trivial to separate packet processing 
and capturing tasks from any other system and user 
processes, even on systems with multiple processors. 
Unfortunately, most of the device drivers in the Linux 
kernel are not able to share the processing task of a single 
NIC queue between two or more CPU cores [4]. Since the 
trend is to add more cores to a CPU rather than raising its 
frequency, serialized packet processing is a serious limit 
for the scalability of software-based packet capturing. 

Although general client applications don’t invoke 
intense network traffic, server applications handling large 
number of users and data flows, can produce excessive 
network traffic even on a single interface. Moreover, flow 
identification is generally done only during offline 
analysis of the saved traffic, thus filtering traffic to 
specific flows cannot be done during the capturing 
process. 

The goal of this paper is to present a method to 
determine and improve the packet capturing performance 
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TABLE I.   
PACKET PROCESSING-RELATED KERNEL PARAMETERR 

Parameter and purpose Default 
value 

net.netdev_max_backlog: 
Size of the pre-processing queue of the 
kernel 

1000 

net.core.netdev_budget: 
Maximum number of packets taken from 
an interface during one polling cycle 

300 

net.core.wmem_max: 
Maximum size of the general packet 
transmission buffer size (all packet 
types). 

131071 

net.core.rmem_max: 
Maximum size of the general packet 
reception buffer size (all packet types). 

131071 

net.core.wmem_default: 
Default size of the general packet 
transmission buffer size (all packet 
types). 

126976 

net.core.rmem_default: 
Default size of the general packet 
reception buffer size (all packet types). 

126976 

net.core.optmem_max: 
Maximum ancillary buffer size allowed 
per socket 

20480 

 

 
Figure 1. Data flow from physical layer to the 

libpcap-based capture application 

 

of a generic Linux system. It seems to be trivial that we 
hardly can expect lossless performance on fully saturated 
1 Gbps+ links with generic hardware layouts, but if we 
can consider and adjust the most important system 
parameters, we may capture all the packets of our interest. 

A measurement system has been set up and was driven 
to the extremes by targeted network traffic to imitate 
aggregated network connections. 

III. THE LINUX PACKET PROCESSING 

A. Data flow of software-based capturing 
 Figure 1 shows the schematic of data flow during 

packet capturing. Frames are received from the physical 
layer by the NIC driver. It pushes them towards to the 
kernel. The drivers typically operate in two different 
modes. In interrupt mode the kernel is interrupted after 
receiving a certain number of packets. In polling mode the 
kernel queries the NIC driver about the received frames. 
These two modes can be combined to better adopt the 
traffic intensity and optimize system load and this 
technique is named NAPI on Linux [5][6]. The 
importance of these modes is dual. Firstly, since software 
timestamps are generated at the enqueueing process, they 
reflect that time instead of the moment of arrival at the 
physical layer. Moreover, polling causes bursty packet 
forwarding towards the kernel and thus there is a need for 
appropriate sized buffers to handle them. 

After enqueueing, packets are available for user 
applications. Dequeueing is the process when they receive 
their own packets from the kernel. And also, after the 

capture application can access the packets. Using libpcap 
in MMAP-supported Linux systems this invokes filling up 
packet metadata called TPACKET_V2 and copying data 
from kernel to user space [6]. 

 

B. Packet buffers 
 The packets pass through a number of buffers (queues) 

while they get saved. The very first buffer is the memory 
on the NIC itself. Its size is relatively small and cannot be 
altered. The first in-RAM queue is the RX ring buffer in 
the NIC driver. If the driver supports it, its size can be 
changed using the ethtool application. In most of the 
drivers one NIC queue can be assigned to one CPU [6]. 

In case of non-NAPI drivers, the next queue is the 
backlog in the network stack. This is a per-CPU buffer 
storing the packets before they get processed by the 
kernel. Its size can be specified by the kernel parameter 
net.netdev_max_backlog. NAPI-enabled drivers work 
different, they are not sensitive to the backlog buffer 
setting but the net.core.netdev_budget that controls the 
number of packets being transferred during one polling 
cycle. 

Further buffers may be present on the processing path, 
depending on the upper layer protocols. If any of the 
buffers becomes full, packets will be lost. Table I shows 
the most important kernel parameters associated with 
kernel level packet buffers. Their default values on the 
measurement system in this paper are also specified (see 
Section IV). 

The applications open sockets for their network 
connections. Each connection has its own buffers, for both 
sending and receiving. Their size can be controlled at OS 
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Figure 2. Results of measurement Session 1 - 

Packet loss ratio and system load 

  
Figure 3. The measurement setup 

 

level by the parameters net.core.rmem_default and 
net.core.wmem_default and can be limited by the 
net.core.rmem_max and net.core.wmem_max. 

Packets can contain ancillary data related to protocols 
(e.g., timestamps) [4]. The OS controls an additional 
buffer for handling this information, which can be limited 
via the net.core.optmem_max parameter. 

 

IV. THE MEASUREMENT 
In measurement Session 1, packet processing and 

capturing performance of the measurement PC was 
investigated. In Sessions 2 to 4, improvements targeting 
the performance are presented and evaluated. Though the 
synthetic traffic generated during the sessions does not 
necessarily show a real life scenario, it makes the 
measurements repeatable and also makes possible to reach 
the performance boundaries faster. 

A. Environment description 
For the measurements, a simple network configuration 

with two direct attached endpoints has been set up. One of 
the endpoints was a generic PC, the other one was a 
custom FPGA-based packet generator device. The 
generator hardware ran a dedicated firmware for packet 
transmission: it listens for an UDP packet with the 
command describing the size and amount of Ethernet 
frames to be sent, as well as the size of inter-frame gap 
(IFG) between them. Despite the existence of a large 
number of network performance testing software, I 
decided to use a dedicated generator device, since its 
primary purpose is to produce packet flows with a precise 
timing in hardware [7].  It guarantees that no packet will 
be lost at the generator side and they will be sent with 
uniform interval. 

  The PC is based on an Intel Core-i7 870 CPU with 
4x1 GB 1333 MHz DDR3 memory on the motherboard. It 
also featured an Intel 82571EB PCI Express Gigabit 
Ethernet NIC card. As operating system, Linux kernel 
version 2.6.39.2 was used, the NIC card was driven by the 
e1000e module. The driver operates in NAPI mode and 
module parameters were left at their default values [8]. 
However this NIC has multiple hardware RX/TX queues, 
the driver allows only one queue per interface. Driver 
design change would be needed to make use of multiple 
input queues in the kernel [9]. 

 TSC clocksource was selected for lowest overhead 
timestamping [10]. Traffic was captured using the 
dumpcap application of the Wireshark 1.6.2 package. 
CPU load was monitored with the mpstat tool. The 
network connection was a direct link through 2 meters of 
an AMP Cat6A patch cable. 

B. Session 1 
Similarly to every following session, this one is made 

up from series of measurements. In every step, capturing 
performance of the traffic of a specific packet size and 
IFG was monitored. Packet sizes ranged from 72 to 1200 
bytes, incremented by 8. IFG was fixed at 12 bytes. The 
packet size contains the frame headers without the 
preamble and checksum fields. Each measurement was 
run for at least 5 seconds to surely fill the buffers. All of 
the kernel parameters related to packet buffers were kept 
at their default values. 

In lossless term, capture performance showed poor 
results, almost regardless of packet size. Kernel packet 
loss (continuous red line) shows the ratio of lost packets 
against generated packets, dropped by the kernel since 
those packets could not be processed in time. Dumpcap 
packet loss (continuous blue line) represents the ratio of 
dropped packets against kernel-processed packets, after 
they were processed and enqueued by the kernel but they 
were not processed in time by the capture application 
itself. 

At small packet sizes (below 168 bytes) heavy system 
load was detected on the cores doing packet processing 
due to the complex capturing tasks. Since these processes 
are not parallelized in the current software environment 
(see Section II), only two of the 8 available cores 
participated the job. We can see that at the smallest packet 
sizes, dumpcap lost very few packets. Because most of the 
packets were dropped before enqueueing, dumpcap had to 
process relatively small number of packets, so it was able 
to do its task. The larger packet sizes the fewer kernel 
packet drops are occurred. 

Of course, when capturing larger packets, fewer packets 
were lost. However, my expectation for such a powerful 
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Figure 5. Results of measurement Session 2 - 

Snaplength option efficiency 

 

 
Figure 4. Results of measurement Session 3 - The 

effect of extended kernel and capture buffers 

 

TABLE II.   
MODIFIED KERNEL BUFFER PARAMETERS FOR EXTENDED BUFFERS 

Parameter Modified 
value 

net.core.netdev_budget 19200 
net.core.wmem_max 8388544 
net.core.rmem_max 8388544 
net.core.wmem_default 8388608 
net.core.rmem_default 8388608 
net.core.optmem_max 1310720 

 

system was lossless packet capture at least for larger 
packet sizes. 

I summarized user and kernel space load because of 
dumpcap involves user as well as kernel space loads (two 
separate processes while packet data is copied from kernel 
to user space). And this is also the reason why this sum is 
sometimes higher than 100 %. 

C. Session 2 
In this session, I tried to ease dumpcap's tasks. During 

traffic monitoring and cross-layer protocol analysis, whole 
packet data is slightly needed. We can truncate them to a 
specific size and still keep important header and protocol 
data. This step reduces the amount of memory copies and 
makes processing faster. Dumpcap has an option called 
snaplength to do truncation. I repeated the measurements 
for three different snaplength sizes: 256, 128 and 96 bytes. 
Greater snaplength sizes may hold application protocol 
headers, but 96 bytes are still enough to keep at least 
transport layer information. A developer or researcher 
should consider the depth of inspection. 

If compared to the original measurement (constant red 
line), the smaller snaplength the fewer lost packets by 
dumpcap. Of course, for smallest packet sizes this option 
does not really help since there is not much data to be cut 
down (Fig. 4). 

We should note that summarized user and kernel CPU 
load caused by the application is not significantly reduced. 
This means that high CPU load is not the only cause for 
packet losses. Small buffers may also raise difficulties. 

D. Session 3 
Since realtime monitoring of the buffer state is not easy 

to implement, I had to estimate the values of the scale 
parameters to extend kernel buffer sizes by. Default buffer 
sizes may deliver good performance in a typical desktop 
environment with low intensity connections. 

During packet capturing, additional higher level buffers 
are utilized by the capture application in promiscuous 
interface mode. For traffic intensity in the measurements, 
buffers in the kernel had to be extended 64-fold to 

significantly improve the performance at kernel level: a 
more intense traffic (consisting of smaller packets, with 
continuous green line) could be processed with less loss 
(Fig 5). However, total packet loss (dashed green line) 
was still high. 

In the second half of this measurement session, the 
application buffer has also been extended. Dumpcap's 
internal buffer is called capture buffer. It is primarily 
intended to compensate the latency of I/O subsystem 
during writing the trace data to disk. Since I needed 
statistical information instead of the trace file itself, I used 
memory disk during the capturing according to the 

technique in [11]. This fact makes storage performance a 
less relevant question in this paper. Table II shows the 
modified values of the corresponding kernel parameters. 

Since the parameter net.netdev_max_backlog applies 
only to non-NAPI drivers, in this measurement it was left 
at the default value. Instead, net.core.netdev_budget has 
been increased to reduce the number of interrupts and 
allow more packets to be transferred from the device 
driver to the kernel at one polling cycle. 

Default capture buffer size of 2 MB was extended to 32 
MB. This caused unexpected reduction of kernel-related 
small-sized packet loss (continuous blue line). This step 
made a serious improvement, since total packet loss 
became more predictable and the traffic of 352-byte 
packets at wire speed could be all captured (dashed blue 
line). 
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Figure 6. Results of measurement Session 4 - The 

combined effect of snaplength option and extended 
buffers 

 

The improvement during kernel buffer adjustments 
gives to make a conclusion that default kernel buffer 
parameters could not compensate bursty processing of 
small sized packets within the kernel. 

The result of this session showed again that the more 
small sized packets enqueued the more dropped by 
dumpcap. 

E. Session 4 
In the final measurement session, snaplength option 

was combined with buffer adjustments. Figure 6 
represents the worst versus the best scenario: the original 
setup with default buffer sizes and without using 
snaplength option is compared to the measurements with 
tuned buffers at kernel and application levels and also 

using 96-byte snaplength in dumpcap. 
The improvement is the most significant compared to 

any previous sessions. Varying packet loss ratio at all 
packet sizes got stabilized and capturing performance got 
more reliable even at small packet sizes of 200 bytes. 
After the optimizations, this system could capture traffic 
of packets greater than or equal to 256 bytes without loss. 
Although packet loss at small packet sizes could not be 
reduced greatly, mean packet loss ratio became almost 
linear. 

V. CONCLUSION 
During the measurement series, a method for 

determining the capture performance of a generic Linux 
PC has been introduced. Reasons of packet loss have been 
revealed and factors affecting packet processing and 

capturing performance have been summarized. The 
measurements showed that default buffer settings are not 
enough for 1 Gbps+ software-based packet capturing at 
wire speed. Performance bottleneck caused by the lack of 
parallel packet processing could be successfully 
compensated by reducing the amount of memory copies. 
After optimizing the buffers and enabling snaplength 
functionality, capture performance was greatly improved 
and became more predictable. 

Future design of NIC drivers should utilize the power 
of multiple CPU cores. However, multi queuing improves 
packet processing and capturing performance only if the 
monitored traffic consists of relatively large number of 
flows. 
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