
 T. Skopkó / Carpathian Journal of Electronic and Computer Engineering 5 (2012) 107-111 107
__

ISSN 1844 – 9689

Loss Analysis of the Software-based
Packet Capturing

Tamás Skopkó
University of Debrecen, Hungary, Debrecen, Hungary, skopkot@unideb.hu

Abstract— Gigabit per second and higher bandwidths imply
greater challenge to perform lossless packet capturing on
generic PC architectures. This is because of software based
capture solutions, which did not improve as fast as network
bandwidth and they still heavily rely on the OS's packet
processing mechanism. There are hardware and operating
system factors that primarily affect capture performance.
This paper summarizes these parameters and shows how to
predict packet loss ratio during the capture process.

Index Terms — Linux, Software-based packet capturing,
libpcap, Wireshark, Communication system traffic.

I. INTRODUCTION
ACKET capturing is an essential part of network
traffic monitoring. For network engineers there are

several monitoring solutions that allow traffic sampling
or capturing. Most advanced tools are capable of passive
monitoring that does not affect the monitored traffic itself
[1]. Using these hardware-accelerated monitoring devices
the traffic of large capacity network backbones can be
monitored on-the-fly. These tools feature hardware
timestamping of packets and lossless capturing at wire-
speed and they are quite expensive. The most
professional tools can perform distributed traffic
monitoring at multiple points of the network
infrastructure. For accurate timestamping, they have to be
able to synchronize their internal clocks. Software
developers, application programmers and researchers are
often interested only in the traffic of a specific host or
application and don’t need most of the extra
functionalities mentioned above. As an alternative,
software-based packet capturing is available on most
OS's and most architectures.

Timestamps can be generated at well-defined points
within the kernel during the data processing. On Linux
systems with MMAP support, timestamping is performed
at enqueuing to or dequeuing from the input packet queue
[2]. On other systems (e.g., Windows) timestamps are
generated at later processing phases that affect its
accuracy. This is not necessarily bad, it depends on what
the developer or software engineer wants to know about
the packet’s arrival time. If she is interested in the time
moment when the packet reaches an upper protocol layer
(like IP or above), the timestamp generated during
software-based packet capturing delivers closer arrival

times to the appropriate layer.
In cross-layer protocol analysis, packet flows through

the endpoint’s network layers are as interesting as their
way through the network infrastructure. From the point of
view of an application developer or protocol researcher,
timestamps generated in the kernel seem to be more
adequate.

Libpcap-based packet analyzer applications (e.g.,
Wireshark [3]) are very common, since they are available
on a wide range of systems and most of them are free and
open source. Using these tools, packets can be saved for
later analysis into PCAP or PCAPng file. These formats
are flexible, since they are supported by most of the
traffic analysis softwares.

II. PROBLEM DEFINITION
Software-based capture solutions did not improve as

fast as network bandwidth and computing hardware.
However 1 ns timestamp resolution can be reached on a
lot of systems, packet processing and capturing overhead
is still significant. We cannot therefore expect linear
scalability by improving only a specific system parameter
(i.e., CPU frequency).

Dumpcap itself uses relatively small system resources,
however it is executed on a general purpose system that
shares its resources between the running processes.
Accordingly, it is not trivial to separate packet processing
and capturing tasks from any other system and user
processes, even on systems with multiple processors.
Unfortunately, most of the device drivers in the Linux
kernel are not able to share the processing task of a single
NIC queue between two or more CPU cores [4]. Since the
trend is to add more cores to a CPU rather than raising its
frequency, serialized packet processing is a serious limit
for the scalability of software-based packet capturing.

Although general client applications don’t invoke
intense network traffic, server applications handling large
number of users and data flows, can produce excessive
network traffic even on a single interface. Moreover, flow
identification is generally done only during offline
analysis of the saved traffic, thus filtering traffic to
specific flows cannot be done during the capturing
process.

The goal of this paper is to present a method to
determine and improve the packet capturing performance

P

 T. Skopkó / Carpathian Journal of Electronic and Computer Engineering 5 (2012) 107-111 108
__

ISSN 1844 – 9689

TABLE I.
PACKET PROCESSING-RELATED KERNEL PARAMETERR

Parameter and purpose Default
value

net.netdev_max_backlog:
Size of the pre-processing queue of the
kernel

1000

net.core.netdev_budget:
Maximum number of packets taken from
an interface during one polling cycle

300

net.core.wmem_max:
Maximum size of the general packet
transmission buffer size (all packet
types).

131071

net.core.rmem_max:
Maximum size of the general packet
reception buffer size (all packet types).

131071

net.core.wmem_default:
Default size of the general packet
transmission buffer size (all packet
types).

126976

net.core.rmem_default:
Default size of the general packet
reception buffer size (all packet types).

126976

net.core.optmem_max:
Maximum ancillary buffer size allowed
per socket

20480

Figure 1. Data flow from physical layer to the

libpcap-based capture application

of a generic Linux system. It seems to be trivial that we
hardly can expect lossless performance on fully saturated
1 Gbps+ links with generic hardware layouts, but if we
can consider and adjust the most important system
parameters, we may capture all the packets of our interest.

A measurement system has been set up and was driven
to the extremes by targeted network traffic to imitate
aggregated network connections.

III. THE LINUX PACKET PROCESSING

A. Data flow of software-based capturing
 Figure 1 shows the schematic of data flow during

packet capturing. Frames are received from the physical
layer by the NIC driver. It pushes them towards to the
kernel. The drivers typically operate in two different
modes. In interrupt mode the kernel is interrupted after
receiving a certain number of packets. In polling mode the
kernel queries the NIC driver about the received frames.
These two modes can be combined to better adopt the
traffic intensity and optimize system load and this
technique is named NAPI on Linux [5][6]. The
importance of these modes is dual. Firstly, since software
timestamps are generated at the enqueueing process, they
reflect that time instead of the moment of arrival at the
physical layer. Moreover, polling causes bursty packet
forwarding towards the kernel and thus there is a need for
appropriate sized buffers to handle them.

After enqueueing, packets are available for user
applications. Dequeueing is the process when they receive
their own packets from the kernel. And also, after the

capture application can access the packets. Using libpcap
in MMAP-supported Linux systems this invokes filling up
packet metadata called TPACKET_V2 and copying data
from kernel to user space [6].

B. Packet buffers
 The packets pass through a number of buffers (queues)

while they get saved. The very first buffer is the memory
on the NIC itself. Its size is relatively small and cannot be
altered. The first in-RAM queue is the RX ring buffer in
the NIC driver. If the driver supports it, its size can be
changed using the ethtool application. In most of the
drivers one NIC queue can be assigned to one CPU [6].

In case of non-NAPI drivers, the next queue is the
backlog in the network stack. This is a per-CPU buffer
storing the packets before they get processed by the
kernel. Its size can be specified by the kernel parameter
net.netdev_max_backlog. NAPI-enabled drivers work
different, they are not sensitive to the backlog buffer
setting but the net.core.netdev_budget that controls the
number of packets being transferred during one polling
cycle.

Further buffers may be present on the processing path,
depending on the upper layer protocols. If any of the
buffers becomes full, packets will be lost. Table I shows
the most important kernel parameters associated with
kernel level packet buffers. Their default values on the
measurement system in this paper are also specified (see
Section IV).

The applications open sockets for their network
connections. Each connection has its own buffers, for both
sending and receiving. Their size can be controlled at OS

 T. Skopkó / Carpathian Journal of Electronic and Computer Engineering 5 (2012) 107-111 109
__

ISSN 1844 – 9689

Figure 2. Results of measurement Session 1 -

Packet loss ratio and system load

Figure 3. The measurement setup

level by the parameters net.core.rmem_default and
net.core.wmem_default and can be limited by the
net.core.rmem_max and net.core.wmem_max.

Packets can contain ancillary data related to protocols
(e.g., timestamps) [4]. The OS controls an additional
buffer for handling this information, which can be limited
via the net.core.optmem_max parameter.

IV. THE MEASUREMENT
In measurement Session 1, packet processing and

capturing performance of the measurement PC was
investigated. In Sessions 2 to 4, improvements targeting
the performance are presented and evaluated. Though the
synthetic traffic generated during the sessions does not
necessarily show a real life scenario, it makes the
measurements repeatable and also makes possible to reach
the performance boundaries faster.

A. Environment description
For the measurements, a simple network configuration

with two direct attached endpoints has been set up. One of
the endpoints was a generic PC, the other one was a
custom FPGA-based packet generator device. The
generator hardware ran a dedicated firmware for packet
transmission: it listens for an UDP packet with the
command describing the size and amount of Ethernet
frames to be sent, as well as the size of inter-frame gap
(IFG) between them. Despite the existence of a large
number of network performance testing software, I
decided to use a dedicated generator device, since its
primary purpose is to produce packet flows with a precise
timing in hardware [7]. It guarantees that no packet will
be lost at the generator side and they will be sent with
uniform interval.

 The PC is based on an Intel Core-i7 870 CPU with
4x1 GB 1333 MHz DDR3 memory on the motherboard. It
also featured an Intel 82571EB PCI Express Gigabit
Ethernet NIC card. As operating system, Linux kernel
version 2.6.39.2 was used, the NIC card was driven by the
e1000e module. The driver operates in NAPI mode and
module parameters were left at their default values [8].
However this NIC has multiple hardware RX/TX queues,
the driver allows only one queue per interface. Driver
design change would be needed to make use of multiple
input queues in the kernel [9].

 TSC clocksource was selected for lowest overhead
timestamping [10]. Traffic was captured using the
dumpcap application of the Wireshark 1.6.2 package.
CPU load was monitored with the mpstat tool. The
network connection was a direct link through 2 meters of
an AMP Cat6A patch cable.

B. Session 1
Similarly to every following session, this one is made

up from series of measurements. In every step, capturing
performance of the traffic of a specific packet size and
IFG was monitored. Packet sizes ranged from 72 to 1200
bytes, incremented by 8. IFG was fixed at 12 bytes. The
packet size contains the frame headers without the
preamble and checksum fields. Each measurement was
run for at least 5 seconds to surely fill the buffers. All of
the kernel parameters related to packet buffers were kept
at their default values.

In lossless term, capture performance showed poor
results, almost regardless of packet size. Kernel packet
loss (continuous red line) shows the ratio of lost packets
against generated packets, dropped by the kernel since
those packets could not be processed in time. Dumpcap
packet loss (continuous blue line) represents the ratio of
dropped packets against kernel-processed packets, after
they were processed and enqueued by the kernel but they
were not processed in time by the capture application
itself.

At small packet sizes (below 168 bytes) heavy system
load was detected on the cores doing packet processing
due to the complex capturing tasks. Since these processes
are not parallelized in the current software environment
(see Section II), only two of the 8 available cores
participated the job. We can see that at the smallest packet
sizes, dumpcap lost very few packets. Because most of the
packets were dropped before enqueueing, dumpcap had to
process relatively small number of packets, so it was able
to do its task. The larger packet sizes the fewer kernel
packet drops are occurred.

Of course, when capturing larger packets, fewer packets
were lost. However, my expectation for such a powerful

 T. Skopkó / Carpathian Journal of Electronic and Computer Engineering 5 (2012) 107-111 110
__

ISSN 1844 – 9689

Figure 5. Results of measurement Session 2 -

Snaplength option efficiency

Figure 4. Results of measurement Session 3 - The

effect of extended kernel and capture buffers

TABLE II.
MODIFIED KERNEL BUFFER PARAMETERS FOR EXTENDED BUFFERS

Parameter Modified
value

net.core.netdev_budget 19200
net.core.wmem_max 8388544
net.core.rmem_max 8388544
net.core.wmem_default 8388608
net.core.rmem_default 8388608
net.core.optmem_max 1310720

system was lossless packet capture at least for larger
packet sizes.

I summarized user and kernel space load because of
dumpcap involves user as well as kernel space loads (two
separate processes while packet data is copied from kernel
to user space). And this is also the reason why this sum is
sometimes higher than 100 %.

C. Session 2
In this session, I tried to ease dumpcap's tasks. During

traffic monitoring and cross-layer protocol analysis, whole
packet data is slightly needed. We can truncate them to a
specific size and still keep important header and protocol
data. This step reduces the amount of memory copies and
makes processing faster. Dumpcap has an option called
snaplength to do truncation. I repeated the measurements
for three different snaplength sizes: 256, 128 and 96 bytes.
Greater snaplength sizes may hold application protocol
headers, but 96 bytes are still enough to keep at least
transport layer information. A developer or researcher
should consider the depth of inspection.

If compared to the original measurement (constant red
line), the smaller snaplength the fewer lost packets by
dumpcap. Of course, for smallest packet sizes this option
does not really help since there is not much data to be cut
down (Fig. 4).

We should note that summarized user and kernel CPU
load caused by the application is not significantly reduced.
This means that high CPU load is not the only cause for
packet losses. Small buffers may also raise difficulties.

D. Session 3
Since realtime monitoring of the buffer state is not easy

to implement, I had to estimate the values of the scale
parameters to extend kernel buffer sizes by. Default buffer
sizes may deliver good performance in a typical desktop
environment with low intensity connections.

During packet capturing, additional higher level buffers
are utilized by the capture application in promiscuous
interface mode. For traffic intensity in the measurements,
buffers in the kernel had to be extended 64-fold to

significantly improve the performance at kernel level: a
more intense traffic (consisting of smaller packets, with
continuous green line) could be processed with less loss
(Fig 5). However, total packet loss (dashed green line)
was still high.

In the second half of this measurement session, the
application buffer has also been extended. Dumpcap's
internal buffer is called capture buffer. It is primarily
intended to compensate the latency of I/O subsystem
during writing the trace data to disk. Since I needed
statistical information instead of the trace file itself, I used
memory disk during the capturing according to the

technique in [11]. This fact makes storage performance a
less relevant question in this paper. Table II shows the
modified values of the corresponding kernel parameters.

Since the parameter net.netdev_max_backlog applies
only to non-NAPI drivers, in this measurement it was left
at the default value. Instead, net.core.netdev_budget has
been increased to reduce the number of interrupts and
allow more packets to be transferred from the device
driver to the kernel at one polling cycle.

Default capture buffer size of 2 MB was extended to 32
MB. This caused unexpected reduction of kernel-related
small-sized packet loss (continuous blue line). This step
made a serious improvement, since total packet loss
became more predictable and the traffic of 352-byte
packets at wire speed could be all captured (dashed blue
line).

 T. Skopkó / Carpathian Journal of Electronic and Computer Engineering 5 (2012) 107-111 111
__

ISSN 1844 – 9689

Figure 6. Results of measurement Session 4 - The

combined effect of snaplength option and extended
buffers

The improvement during kernel buffer adjustments
gives to make a conclusion that default kernel buffer
parameters could not compensate bursty processing of
small sized packets within the kernel.

The result of this session showed again that the more
small sized packets enqueued the more dropped by
dumpcap.

E. Session 4
In the final measurement session, snaplength option

was combined with buffer adjustments. Figure 6
represents the worst versus the best scenario: the original
setup with default buffer sizes and without using
snaplength option is compared to the measurements with
tuned buffers at kernel and application levels and also

using 96-byte snaplength in dumpcap.
The improvement is the most significant compared to

any previous sessions. Varying packet loss ratio at all
packet sizes got stabilized and capturing performance got
more reliable even at small packet sizes of 200 bytes.
After the optimizations, this system could capture traffic
of packets greater than or equal to 256 bytes without loss.
Although packet loss at small packet sizes could not be
reduced greatly, mean packet loss ratio became almost
linear.

V. CONCLUSION
During the measurement series, a method for

determining the capture performance of a generic Linux
PC has been introduced. Reasons of packet loss have been
revealed and factors affecting packet processing and

capturing performance have been summarized. The
measurements showed that default buffer settings are not
enough for 1 Gbps+ software-based packet capturing at
wire speed. Performance bottleneck caused by the lack of
parallel packet processing could be successfully
compensated by reducing the amount of memory copies.
After optimizing the buffers and enabling snaplength
functionality, capture performance was greatly improved
and became more predictable.

Future design of NIC drivers should utilize the power
of multiple CPU cores. However, multi queuing improves
packet processing and capturing performance only if the
monitored traffic consists of relatively large number of
flows.

ACKNOWLEDGMENT
The work was supported by the TÁMOP 4.2.2.C-

11/1/KONV-2012-0001 project. The project was
implemented through the New Széchenyi Plan, co-
financed by the European Social Fund.

REFERENCES
[1] Endace DAG board. [Online]. Available: http://www.endace.com
[2] P. Orosz and T. Skopko, “Timestamp-resolution problem of

traffic capturing on high speed networks,” January 28-30, 2010,
ICAI international conference, Eger, Hungary

[3] Wireshark Network Protocol Analyser. [Online]. Available:
http://www.wireshark.org

[4] The Linux Kernel. [Online]. Available: http://www.kernel.org
[5] P. Orosz, T. Skopko, and J. Imrek, “Performance Evaluation of

the Nanosecond Resolution Timestamping Feature of the
Enhanced Libpcap,” 6th International Conference on Systems and
Networks Communications, ICSNC 2011, October 23-28, 2011,
Barcelona, Spain, ISBN 978-1-61208-166-3, Proceeding p. 220-
225.

[6] C. Benvenuti, "Understanding Linux Network Internals", ISBN 0-
596-00255-6, 2005

[7] A. Shriram, M. Murray, Y. Hyun, N. Brownlee, A. Broido, M.
Fomenkov, and k. claffy, “Comparison of Public End-to-End
Bandwidth Estimation Tools on High-Speed Links'', in Passive
and Active Network Measurement Workshop (PAM), Boston,
MA, Mar 2005, vol. 3431, pp. 306--320, PAM 2005.

[8] Intel 1 GbE NIC driver manuals. [Online]. Available:
http://www.intel.com/

[9] Yi, P.P. Waskiewicz Jr.: “Enabling Linux Network Support of
Hardware Multiqueue Devices”, 2007 Linux Symposium Vol.
Two

[10] P. Orosz and T. Skopko, “Performance Evaluation of a High
Precision Software-based Timestamping Solution for Network
Monitoring,” the International Journal on Advances in Software,
ISSN 1942-2628, 2011 Vol 4. No. 1 & 2 p. 181-188.

[11] Y. Klonatos, M. Marazakis, and A. Bilas “A Scaling Analysis of
Linux I/O Performance”, Poster at ACM EuroSys Conference,
2011.

	I. Introduction
	II. Problem definition
	III. The Linux Packet Processing
	A. Data flow of software-based capturing
	B. Packet buffers

	IV. The Measurement
	A. Environment description
	B. Session 1
	C. Session 2
	D. Session 3
	E. Session 4

	V. Conclusion
	Acknowledgment
	References

