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Abstract  In this paper we study some remarkable properties of para Kenmotsu (briefly p -Kenmotsu) manifolds 
satisfying the conditions ( , ). = 0R X Y R , ( , ). = 0R X Y P  and ( , ). = 0P X Y R , where R(X, Y) is the Riemannian 
curvature tensor and P(X, Y) is the Weyl projective curvature tensor of the manifold. It is shown that a semi-
symmetric p -Kenmotsu manifold ( , )nM g  is of constant curvature and hence is an sp -Kenmotsu manifold. Also, 
we obtain the necessary and sufficient condition for a p -Kenmotsu manifold to be Weyl projective semi-symmetric 
and shown that the Weyl projective semi-symmetric p -Kenmotsu manifold is projectively flat. Finally we prove 
that if the condition ( , ). = 0P X Y R  is satisfied on a p -Kenmotsu manifold then its scalar curvature is constant. 
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1. Introduction 
The notion of an almost para-contact Riemannian 

manifold was introduced by Sato [7] in 1976. After that, T. 
Adati and K. Matsumoto [1] defined and studied p-
Sasakian and sp-Sasakian manifolds which are regarded as 
a special kind of an almost contact Riemannian manifolds. 
Before Sato, Kenmotsu [6] defined a class of almost 
contact Riemannian manifolds. In 1995, Sinha and Sai 
Prasad [9] have defined a class of almost para-contact 
metric manifolds namely para-Kenmotsu (briefly p-
Kenmotsu) and special para Kenmotsu (briefly sp-
Kenmotsu) manifolds. In a recent paper, the authors 
Satyanarayana and Sai Prasad [8] studied conformally 
symmetric p -Kenmotsu manifolds, that is the p-Kenmotsu 
manifolds satisfying the condition ( , ). = 0R X Y C , and 
they prove that such a manifold is conformally flat and 
hence is an sp-Kenmotsu manifold, where R is the 
Riemannian curvature and C is the conformal curvature 
tensor defined by  

 

( , )
( , ) ( , )1= ( , )

( , ) ( , )1

[ ( , ) ( , ) ].
( 1)( 2)

C X Y Z
g Y Z QX g X Z QY

R X Y Z
S Y Z X S X Z Yn

r g Y Z X g X Z Y
n n

− 
−  + −−  

+ −
− −

 (1.1) 

Here S  is the Ricci tensor, r  is the scalar curvature and 
Q  is the symmetric endomorphism of the tangent space at 
each point corresponding to the Ricci tensor S [3] i.e.,  

 ( , ) = ( , ).g QX Y S X Y  (1.2) 

A Riemannian manifold M is locally symmetric if its 
curvature tensor R satisfies 𝛻𝛻 R = 0, where 𝛻𝛻 is Levi-
Civita connection of the Riemannian metric [4]. As a 

generalization of locally symmetric spaces, many geometers 
have considered semi-symmetric spaces and in turn their 
generalizations. A Riemannian manifold Mn is said to be 
semi-symmetric if its curvature tensor R satisfies 

( , ). = 0R X Y R  where ( , )R X Y  acts on R as derivation [10]. 
Locally symmetric and semi-symmetric p-Sasakian 
manifolds are widely studied by many geometers [2,5]. 

In this study, we consider the p-Kenmotsu manifolds 
satisfying the conditions ( , ). = 0R X Y R , known as semi-
symmetric p-Kenmotsu manifolds, where ( , )R X Y  is 
considered as a derivation of tensor algebra at each point 
of the manifold for tangent vectors X and Y and the p-
Kenmotsu manifolds (Mn, g) (n > 2) satisfying the 
condition ( , ). = 0R X Y P , where P denotes the Weyl 
projective curvature tensor [12] defined by  

 
( , )1( , ) = ( , )  .

( , )1
g Y Z QX

P X Y Z R X Y Z
g X Z QYn

 
−  −−  

 (1.3) 

Here we consider the p-Kenmotsu manifolds Mn for n > 2; as 
if for n = 2, the projective curvature tensor identically vanishes. 

In section 3, it is shown that a semi-symmetric p-
Kenmotsu manifold (Mn, g) of constant curvature is an  
sp-Kenmotsu manifold. In the next section we obtain the 
necessary and sufficient condition for a p-Kenmotsu 
manifold to be Weyl projective semi-symmetric and 
shown that the Weyl projective semi-symmetric p -
Kenmotsu manifold is projectively flat. Finally we prove 
that if the condition ( , ). = 0P X Y R  is satisfied on a p -
Kenmotsu manifold then its scalar curvature is constant. 

2. p-Kenmotsu Manifolds  
Let Mn be an n-dimensional differentiable manifold 

equipped with structure tensors (Φ , ξ , η) where Φ is a 
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tensor of type (1,1), ξ is a vector field, η is a 1-form such 
that 

 ( ) = 1η ξ  (2.1) 

  2 ( ) = ( ) ; = .X X X X Xη ξΦ − Φ  (2.2) 

Then Mn is called an almost para contact manifold. 
Let g be the Riemannian metric in an n-dimensional 

almost para-contact manifold Mn such that  

 ( , ) = ( )g X Xξ η  (2.3) 

  = 0, ( ) = 0, rank = 1X nξ ηΦ Φ Φ −  (2.4) 

  ( , ) = ( , ) ( ) ( )g X Y g X Y X Yη ηΦ Φ −  (2.5) 

for all vector fields X and Y on Mn. Then the manifold Mn 
[7] is said to admit an almost para-contact Riemannian 
structure (Φ , ξ, η, g) and the manifold is called an almost 
para-contact Riemannian manifold. 

A manifold of dimension 'n′  with Riemannian metric 
'g ′  admitting a tensor field ' ′Φ  of type (1, 1), a vector 
field 'ξ ′  and a 1-form 'η′  satisfying (2.1), (2.3) along 
with  

 ( ) ( ) = 0X YY Xη η∇ − ∇  (2.6) 

  
( ) = [ ( , ) ( ) ( )] ( )

[ ( , ) ( ) ( )] ( )
X Y Z g X Z X Z Y

g X Y X Y Z
η η η η

η η η
∇ ∇ − +

+ − +
 (2.7) 

  2= = ( )X X X Xξ η ξ∇ Φ −  (2.8) 

  ( ) = ( , ) ( )X Y g X Y Y Xξ η∇ Φ Φ − Φ  (2.9) 

is called a para-Kenmotsu manifold or briefly p -
Kenmotsu manifold [9]. 

A p -Kenmotsu manifold admitting a 1-form 'η′  
satisfying  

 ( ) = ( , ) ( ) ( )X Y g X Y X Yη η η∇ −  (2.10) 

  ( , ) = ( )and ( ) = ( , ),
where  is an associateof  ,

Xg X X Y X Yξ η η φ
φ

∇
Φ

 (2.11) 

is called a special p -Kenmotsu manifold or briefly sp -
Kenmotsu manifold [9]. 

It is known that [9] in a p -Kenmotsu manifold the 
following relations hold:  

( , ) = ( 1) ( )  ( , ) = ( , )S X n X where g QX Y S X Yξ η− − (2.12) 

  
[ ( , ) , ] = [ ( , , )]

= ( , ) ( ) ( , ) ( )
g R X Y Z R X Y Z

g X Z Y g Y Z X
ξ η

η η−
 (2.13) 

  ( , ) = ( ) ( , )R X Y Y X g X Yξ η ξ−  (2.14) 

  
( , , ) = ( ) ( ) ;

when  is orthogonal to 
R X Y X Y Y X

X
ξ η η

ξ
−

 (2.15) 

where S  is the Ricci tensor and R  is the Riemannian 
curvature. 

Moreover, it is also known that if a p -Kenmotsu 
manifold is projectively flat then it is an Einstein manifold 
and the scalar curvature has a negative constant value 

( 1)n n− − . Especially, if a p -Kenmotsu manifold is of 

constant curvature, the scalar curvature has a negative 
constant value ( 1)n n− −  [9]. In this case,  

 ( , ) = ( 1) ( , )S Y Z n g Y Z− −  (2.16) 

and hence  

 ( , ) = ( , ) ( 1) ( ) ( ).S Y Z S Y Z n Y Zη ηΦ Φ + −  (2.17) 

Also, if a p -Kenmotsu manifold is of constant 
curvature, we have  

 
( , ) ( , )1' ( , , , ) = .

( , ) ( , )( 1)
S Y Z g X P

R X Y Z P
S X Z g Y Pn

 
 −−  

 (2.18) 

The above results will be used further in the next 
sections.  

3. p-Kenmotsu Manifolds Satisfying 
( , ). = 0R X Y R  

In this section, we consider semi-symmetric p -
Kenmotsu manifolds, i.e., p -Kenmotsu manifolds 
satisfying the conditions ( , ). = 0R X Y R  where ( , )R X Y  is 
considered as a derivation of tensor algebra at each point 
of the manifold for tangent vectors X  and Y . Now  

 
( ( , ) )( , )

= ( , ) ( , ) ( ( , ) , )
( , ( , ) ) ( , ) ( , ) .

R X Y R U V W
R X Y R U V W R R X Y U V W

R U R X Y V W R U V R X Y W

⋅
−

− −
 (3.1) 

Putting =X ξ  in (3.1), and on using the condition 
( , ). = 0R X Y R , we get  

 
( ( , ) ( , ) , ) ( ( ( , ) , ) , )

( ( , ( , ) ) , ) ( ( , ) ( , ) , )
= 0.

g R Y R U V W g R R Y U V W
g R U R Y V W g R U V R Y W

ξ ξ ξ ξ
ξ ξ ξ ξ

−
− − (3.2) 

By using the equations (2.3) and (2.14), from (3.2) we 
get  

 

' ( , , , ) ( ) ( ( , ) )
( ) ( ( , ) ) ( ) ( ( , ) )
( ) ( ( , ) ) ( , ) ( ( , ) )
( , ) ( ( , ) ) ( , ) ( ( , ) ) = 0

R U V W Y Y R U V W
U R Y V W V R U Y W
W R U V Y g Y U R V W

g Y V R U W g Y W R U V

η η
η η η η
η η η ξ

η ξ η ξ

−
+ +
+ −
− −

 (3.3) 

where ' ( , , , ) = ( ( , ) , )R U V W Y g R U V W Y . 
On putting =Y U  in (3.3), we get  

 
' ( , , , ) ( ) ( ( , ) )

( ) ( ( , ) ) ( , ) ( ( , ) )
( , ) ( ( , ) ) ( , ) ( ( , ) ) = 0.

R U V W U V R U U W
W R U V U g U U R V W

g U V R U W g U W R U V

η η
η η η ξ

η ξ η ξ

+
+ −
− −

(3.4) 

Now putting = iU e , where { }, = 1,2,ie i n  is an 
orthogonal basis of the tangent space at any point, and 
taking the summation of (3.4) over i , 1 i n≤ ≤ , we get 
(2.16). 

Also, using the equations (2.12), (2.16) and (3.3) we get 
(2.18), shows that the manifold is of constant curvature. 

Thus we state the following result. 
Theorem 3.1: A semi-symmetric p  -Kenmotsu manifold 
is of constant curvature. 
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Now, from (2.16) and (2.18) we have  

 ' ( , , , ) = ( , ) ( , ) ( , ) ( , ),R X Y Z P g X Z g Y P g Y Z g X P− (3.5) 

and from equations (2.16) and (2.5), we have  

 ( , ) = ( 1)[ ( , ) ( ) ( )].S X Y n g X Y X Yη ηΦ Φ − − −  (3.6) 

On contraction of (3.6) with covariant tensor 
( , ) = ( , )X Y g X Yφ , we get  

 ( , ) = ( , ) ( ) ( ),X Y g X Y X Yφ η η−  

shows that the manifold is an sp -Kemotsu one. 
Thus, we state the following theorem. 

Theorem 3.2: If a semi-symmetric p -Kenmotsu 
manifold ( , )nM g  is of constant curvature, the manifold is 
an sp -Kenmotsu one.  

4. p-Kenmotsu Manifolds Satisfying 
( , ). = 0R X Y P  

In this section, we consider Weyl projective semi-
symmetric p-Kenmotsu manifolds, i.e., p-Kenmotsu 
manifolds satisfying the condition ( , ). = 0R X Y P . Now  

 
( ( , ) )( , )

= ( , ) ( , ) ( ( , ) , )
( , ( , ) ) ( , ) ( , ) .

R X Y P U V W
R X Y P U V W P R X Y U V W

P U R X Y V W P U V R X Y W

⋅
−

− −
 (4.1) 

Put =X ξ  in (4.1). Then the condition ( , ). = 0R X Y P  
implies that  

 
( ( , ) ( , ) , ) ( ( ( , ) , ) , )
( ( , ( , ) ) , ) ( ( , ) ( , ) , )

= 0.

g R Y P U V W g P R Y U V W
g P U R Y V W g P U V R Y W

ξ ξ ξ ξ
ξ ξ ξ ξ

−
− − (4.2) 

Then on using equations (2.12), (2.13) and (1.3), we get  

 ( ( , ) ) = 0.P X Y Zη  (4.3) 

On the other hand, by using (2.3), (2.4), and (4.3), we 
get  

 ( ( , ) ( , ) , ) = ( ( , ) , ).g R Y P U V W g P U V W Yξ ξ −  (4.4) 

Then from equations (4.2) and (4.3), the left hand side 
of (4.4) is zero, gives that ( ( , ) , ) = 0g P U V W Y  for all U, 
V, W and Y and hence ( , ) = 0P X Y . This leads to the 
following theorem: 
Theorem 4.1: A Weyl projective semi-symmetric p -
Kenmotsu manifold is projectively flat. 

But it is known that [11], a projectively flat Riemannian 
manifold is of constant curvature. Also it can be easily 
seen that a manifold of constant curvature is projectively 
falt. Hence we have the following theorem. 
Theorem 4.2: A p -Kenmotsu manifold is Weyl 
projective semi-symmetric if and only if the manifold is of 
constant curvature. 

Also it is known that a p -Kenmotsu manifold of 
constant curvature is an sp -Kenmotsu manifold [8]. 
Hence we conclude the following result: 

Theorem 4.3: A Weyl projective semi-symmetric p -
Kenmotsu manifold is of constant curvature and hence is 
an sp -Kenmotsu manifold.  

It is trivial that in case of a projective symmetric 
Riemannian manifold the condition ( , ). = 0R X Y P  hold 
good.  

5. p-Kenmotsu Manifolds Satisfying 
( , ). = 0P X Y R  

It is known that the condition ( , ). = 0R X Y P  does not 
imply ( , ). = 0P X Y R . In this section, we study the 
remarkable property of p -Kenmotsu manifolds satisfying 
the condition ( , ). = 0P X Y R . 

Now, we have  

 
( ( , ) )( , )
= ( , ) ( , ) ( ( , ) , )

( , ( , ) ) ( , ) ( , ) .

P X Y R U V W
P X Y R U V W R P X Y U V W

R U P X Y V W R U V P X Y W

⋅
−

− −
 (5.1) 

Put =X ξ  in (5.1). Then the condition ( , ). = 0P X Y R  
implies that 

 
( ( , ) ( , ) , ) ( ( ( , ) , ) , )
( ( , ( , ) ) , ) ( ( , ) ( , ) ),

= 0.

g P Y R U V W g R P Y U V W
g R U P Y V W g R U V P Y W

ξ ξ ξ ξ
ξ ξ ξ ξ

−
− − (5.2) 

Putting =X ξ , =Z U  in (1.3) and on using (2.12) and 
(2.13), we get  

 
( ( ( , ) , ))

1= ( )[ ( ( , ) ) ( ( , ) )].
(1 )

R P Y U V W

U R Y V W R QY V W
n

η ξ

η η η−
−

 (5.3) 

Similarly, by putting =X ξ , =Z V  in (1.3) and on 
using (2.12) and (2.13), we get  

 
( ( , ( , ) )

1= ( )[ ( ( , ) ) ( ( , ) )].
(1 )

R U P Y V W

V R U Y W R U QY W
n

η ξ

η η η−
−

 (5.4) 

In similar by putting =X ξ , =Z W  in (1.3) and on 
using (2.12) and (2.13), we get  

 
( ( , ) ( , ) )

1= ( )[ ( ( , ) ) ( ( , ) )].
(1 )

R U V P Y W

W R U V Y R U V QY
n

η ξ

η η η−
−

 (5.5) 

On using (4.3), (5.3), (5.4) and (5.5), we get from eqn 
(5.2) that  

 

1( )[ ( ( , ) ) ( ( , ) )]
(1 )

1( )[ ( ( , ) ) ( ( , ) )]
(1 )

1( )[ ( ( , ) ) ( ( , ) )] = 0.
(1 )

U R Y V W R QY V W
n

V R U Y W R U QY W
n

W R U V Y R U V QY
n

η η η

η η η

η η η

−
−

+ −
−

+ −
−

(5.6) 

By putting =Y U  in eqn (5.6), we get  
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1( )[ ( ( , ) ) ( ( , ) )]
(1 )

1( )[ ( ( , ) ) ( ( , ) )]
(1 )

1( )[ ( ( , ) ) ( ( , ) )] = 0.
(1 )

U R U V W R QU V W
n

V R U U W R U QU W
n

W R U V U R U V QU
n

η η η

η η η

η η η

−
−

+ −
−

+ −
−

(5.7) 

Then on using (2.12) and (2.13), we get  

 
( , ) ( ) ( , ) ( )

( ) = 0.1 [ ( , ) ( ) ( , ) ( )]
(1 )

g U W V g V W U
W

S U U V S V U U
n

η η
η

η η

− 
 
 − −
 −  

(5.8) 

Now putting = iU e , where = 1,2,i n  and taking the 
summation of (5.8) over i , 1 i n≤ ≤ , we get = ( 1)r n n − , 
since ( ) 0Vη ≠ , shows that the scalar curvature is constant. 

Hence we have the following theorem. 
Theorem 5.1: If a p  -Kenmotsu manifold satisfies the 
condition ( , ). = 0P X Y R  then its scalar curvature is 
constant. 
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