Turkish Journal of Analysis and Number Theory, 2015, Vol. 3, No. 5, 128-139

Available online at http://pubs.sciepub.com/tjant/3/5/4
© Science and Education Publishing
DOI:10.12691/tjant-3-5-4

T2 SelEP

="/ science & Education

Publishing

New Extensions of Some Known Special Polynomials
under the Theory of Multiple g-Calculus

Mehmet Acikgoz', Serkan Araci®”, Ugur Duran®

'Department of Mathematics, Faculty of Arts and Science, University of Gaziantep, Gaziantep, Turkey
2Department of Economics, Faculty of Economics, Administrative and Social Science, Hasan Kalyoncu University, Gaziantep, Turkey
®Department of Mathematics, Faculty of Arts and Science, University of Gaziantep, Gaziantep, Turkey
*Corresponding author: mtsrkn@hotmail.com

Abstract In the year 2011, the idea of multiple g-calculus was formulated and introduced in the Ph.D. dissertation
of Nalci [9] in which this idea is simple but elegant method in order to derive new generating functions of some
special polynomials that are generalizations of known g-polynomials. In this paper, we will use Nalci’s method in
order to find a systematic study of new types of the Bernoulli polynomials, Euler polynomials and Genocchi
polynomials. Also we will obtain recursive formulas for these polynomials.

Keywords: Quantum calculus, Multiple quantum calculus, g-Bernoulli polynomials, g-Euler polynomials,

g-Genocchi polynomials, Generating function.

Cite This Article: Mehmet Acikgoz, Serkan Araci, and Ugur Duran, “New Extensions of Some Known
Special Polynomials under the Theory of Multiple g-Calculus.” Turkish Journal of Analysis and Number Theory,

vol. 3, no.5 (2015): 128-139. doi: 10.12691/tjant-3-5-4.

1. Introduction

1.1. g-Calculus. The usual quantum calculus (or
recalled g-calculus) has been extensively studied for a
long time by many mathematicians, physicists and
engineers. The development of g-calculus stems from the
applications in many fields such as engineering, economics,
math-ematics, and so on. One of the important branches of
g-calculus is g-special polynomials. For example, Kim [18]
constructed g-generalized Euler polynomials based on
g-exponential function. Moreover, Srivastava et al investigated
Apostol g-Bernoulli, Apostol g-Euler polynomials and
Apostol g-Genocchi polynomials. This is why g-calculus is
thought as one of the useful tools to study with special
numbers and polynomias. For more information related
these issues, see, e.g. [1,2,3,5,6,8-13,16-21].

Before starting at multiple g-calculus, we first give
some basic notations about g-calculus which can be found
in [3].

For a real number (or complex number) x, g-number
(quantum number) is known as

1-g*
[X]q = 1_q
X, if g=1

o ihazl (1.1)

which is also called non-symmetrical g-number. The
followings can be easily derived using (1.1):

[x+ y]q = [x]q +q* [y]q (g-addition formula) (1.2)

[x— y]q =—q*Y [y]q +[x]q (9-substraction formula) (1.3)

[xy]q = [x]q [y]qx (9-product rule) (1.4)

(1.5)

(g-division rule)

where X,y are real or complex numbers.
The g-binomial coefficients are defined for positive
integer n,k as

where [n] 1=[n] [n-1], [n-2],..[1],.
[0],!=1.

(1.8

n=21,2,..;

The g-derivative Dy f (x) of a function f is given as
f —f
D f (1) =)@ 41 40,0, (0)= £1(0),
d-a)x
provided f'(0) exists.

Forany zeC with |z|<1,

eq(z)ziiand Eq(z)ziq(z)[Zn %

n-olny! n=0

For the g-commuting variables x and y such as yx = gxy,
we know that

&q (X+y)=eq(x)eq(y).
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The g-integral was defined by Jackson as follows:
J'X f(y)dqy :(1—q)x§: f (q”x)q”
0 q .
n=

provided that the series on right hand side converges
absolutely.
1.2. Multiple g-calculus. All notations and all corollaries
written in this part have been taken from the Ph.D.
dissertation of Nalci [9].

Consider basis vector § with coordinates ¢,q,,..., 0y

so that the multiple g-number can be de.ned as
n_gn

] ::q, Qj _
4di g —q;

[n]Qj,Qi : (1.7

which is symmetric. Hence, we can write N x N matrix
with g-numbers elements in the following form:

[n]%ql [n]quqz [”]ql,q,\,
([n]qim ): [n]??'ql [n](.].z.,qz [n]qZ’QN
[n]QNm [n]QNm [n]QNvQN

Diagonal terms of this matrix are defined in the limit
qj > as

n_qg"
= lim o9 =ng"t (1.9
9j—di Gi —0j

So, by (1.8), we see that this symmetric matrix can be
shown as

ng [n]ql,qz [n]QLQN
([n]qiyqj j: [n]q2q1 nqu‘._l [n]qz,qn
[n]qN Q1 [n]QN 42 anl

The followings can be easily derived using (1.7):
_qn m
[n+m]qi,qj =G [m]qi,q,- +4j [n]inQj
(g-multiple addition formula)
__ "M _ah—m
[n_m]inCIj =74 ([n]qi,q,- G [m]Qiijj
(g-multiple substraction formula)
[nm]CIinj :[m]in(Jj [n]qim,q’j“

(g-multiple product rule)

m non 11
m]qim qf" [m]qim

(g-multiple division rule)

N 1 M (3 g
[ Li'Qj :[ — :Jm
|

where n, m are real or complex numbers.

In multiple g-calculus, multiple g-derivative with base
g, gj is given by

f(qix)—f(qjx)
Dgq; f (X)=————~
(Qi—qJ')X
representing N xN matrix of multiple g-derivative
operators D:=(in,qj) which  is  sym-metric:

in’qj ZDOIjVQi whereiand j=1,2,...,N.

D D

O

o.q .42 a.AN
D D D
D=(Dq. _)= G204 02,02 42,aN
idj
Doy Pan.az Day.an

Corollary 1. For N=1case and ¢ =g, =q, we have

_ d
[nlgq =na"" and Dy, = Mq&
Xi
where My =q dx, Also, in the case q=1, we have the

standard number [n]llzn and the usual derivative

d
Dl,l —&-
Corollary 2. For N = 2 case, we have
n_ X
[n]ql,ql = "'(llnil,[n]q_m2 :[n]%ql ) ,
th— %
[Nlgy.0, = ngy
Mg -~ M
Dqlqleqj_i'Dqlq =D :u’
’ dx 42 02,0 (ql_qz)X
d
Doz, =May o

Corollary 3. Choosing g = 1 and g, = g gives non-
symmetrical case as

[0y = [l g =[]gs =[] [n], g =na™™,

d 1_Mq d

=— Dyq =Dy = Dy q=Mg—.

D11 =5 Pra = Pas o) 0.0 = Mg
Corollary 4. Taking ¢ =9 and 0q, :% gives

symmetrical case as

1 n-1
Plag =ra% (o2 <[l [l 2 =[]
q.q 1 q 19 q
My - M,
d q
Dq’q_Mq&, Diyq:Dqlz 1 X !
N
q
d
D = —.
11 =M1
qq q
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The multiple g-analogue of (x— a)n is the polynomial

(x+qi”‘la)(x+qi”‘2qja)...
(g, 1| (-2 2]
1, if n=1

, ifn>1

or equivalently

n k(k-1)
x+a q| 0 Z{ } (quj) 2 x"kgk
Gi.aj

k=0

where x and a is commutative, xa = ax. g-multiple
Binomial coefficients and multiple g-factorial are defined

by

My
_ {[n]m 0] [ _1]Qi aj

[2]qq; g, 1 121

1 if n>1

(neN).

Two types of multiple g-exponential functions are
de.ned by

€i.q; (X):n%[“]qim'

(qiqj) 2 [ .

Xn
|

M

Eaiaj (x) =

n=0

"y

which satisfy the following condition for commutative x
and y, xy = yx

=eq;.q; (X) Eqi.qj (¥)-

integral

€10 (X Y)giq;

The generalization of Jackson’s
multiple g-integral) is given by

gt St o

]

(called

:Ziozoakxk be formal power series.

Applying multiple g-integral to the both sides of f(x)
gives
k+1

HE PR

Gi-qj

where C is constant.

In the next section, we will use Nalci’s method in order
to find a systematic study of new types of the Bernoulli
polynomials, Euler polynomials and Genocchi polynomials.
Also we will obtain recursive formulas for these
polynomials.

2. Main Results

Recently, analogues of Bernoulli, Euler and Genocchi
polynomials were studied by many mathematicians

[1,2,5,6,11,12,13,17,18,19,20,21]. We are now ready to
give the definition of generating functions, corresponding
to multiple g-calculus, of Bernoulli type, Euler type and
Genocchi type polynomials.

Definition 1. Let n be positive integer, we define

n

‘S'(X,Ziqi,qj'):gﬁ(XZQi’qj)ﬁ
= 1'4]

z
=—————€ q: (XZ 7|< 27
€i.aj (2)-1 aa; (12 <27)
o n
”(X’Z:qi’qj)zzfn(XZqi,qj) z ,
n=0 [n]cu,qj'

[y
_—eqi’qj (z)+1eqi’qj (xz) (|7<nx)

n

M(x,z:qi,qj)zi)é’n(xﬁivqj')ﬁ
n= idj

(I <7)

[2], ..z
Bl L] B (xz)
Gi.dj
€i.q] (z)+1
where 2, (x:q;,q;) . & (x:0;.q;) and G (x:q;.q5)
are called, respectively, Bernoulli-type, Euler-type and
Genocchi-type polynomials.
Corollary 5. Taking g; = g; = 1 for indexes i and j in the
case N =1 in Definition 1, we have

3 By ()% - (g <27)
n=0 "Nl e

n
S e (05 =2 e (2]<x)
n=0 n! eZ+1
® " 2z
%Gn(xm=ez+leﬂ (2] <)

where Bn(X), En.(X) and G,(x) are called Bernoulli
polynomials, Euler polynomials and  Genocchi
polynomials, respectively (see [4,7,14,15,19]).

Corollary 6. Substituting g; = 1 and g; = q for indexes i
and j in the case N = 1 in Definition 1, we have

>, B (x18) g7 = 5 % 09) (1l <27)
n=0 q°

& E z _ [2]q

ZO n(X|Q)[n]q' eq(z)+1eq(xz (2| < =)
o0 zn 2| z
oI5 g ) <7

where B (x|q), E,(x|q) and G,(x|q) are called

g-Bernoulli  polynomials, g-Euler polynomials and

g-Genocchi polynomials, respectively (see [18,20,21]).
Taking x = 0 in the above definition, we have

B, (O 1Gi, 0 ) =5, (qi ey ) (Bernoulli-type number)
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é”n(o:qi,qj):zoﬁ](qi,qj) (Euler-type number)

%(O:qi,qj):z g’n(qi,qj) (Genocchi-type number)

and from the above, we write
S(O,Z:qi,qj):zé’(z:qi,qj),
Z/(O,z:qi,qj)::é/(z:qi,qj),
/l//(O,z:qi,qj):z/i//(z:qi,qj).

2.1

From Definition 1 and (2.1), we get the following corollary.
Corollary 7. The following functional equations hold true:

5(X,Z:inQj)::5<Z:Qi’Qj)eqi,qj (x2),

é/(x,z:qi,qj)::é/(z:qi,qj)eqi’qj (xz),

M (% 2:6,05) = M (2:6,0) )eg o ().
By using Definition 1 and Corollary 7, it becomes

0 Zn
> 40 (x: 60,0 )
n=0 [n]quqJ -
00 Zn 00 n Zn
= X 8 (00— | = |
n=0 [n]qquj : n=0 [n]qllqj "
From the rule of Cauchy product, we get
0 Zn
> 4 (c0a)
(2.2)

n

2 imquj Alap [“]Z J

n=0| k=0 Gi.dj

n
[ R in (2.2), we have

Comparing the coefficients of
[n]qm i

0

5?1(X3Qi’qj)=2{ﬂ Z?k(qi,qj)x”‘k. (2.3)
6i.0j

k=0

From this, we can get similar identities for Euler-type
and Genocchi-type polynomials. Therefore, we state the

following theorem.
Theorem 1. The following identities hold true:

0

Z?r](x:qi,qj')i;iﬂq . ﬁk(Qi,qJ')xn—k,
= I'j
m SACTLTY
Gi 4]

G(x:a.95) = qui’q_ G (a.a3 K"

k=0

k=0

Now we are in a position to investigate some properties
of Bernoulli-type numbers and polynomials, Euler-type
numbers and polynomials and Genocchi-type numbers and
polynomials as follows.

From Definition 1 and by using Cauchy product, we get

z

e ()t
egqj (2)-1 " ei.aj (2)-1

[ ]Qi,qj' n=0[n]Qi,qJ"

If we compute both of side and then compare coefficent
n
of Z—I then for n > 1, we acquire
[n]qvq i

=0

2 B(w9)  G(w.a)
"g()[k]qi'qj ![n_k]%qj ! [n]%qi |

2| n
Z{k} B (a.95) =5, (ai.9;)- (2.4)
k=0L"dj,qj

From this, we can get similar identities for Euler-type
numbers and Genocchi-type numbers. The following
theorem is an immediate consequence of Eq. (2.4).

Theorem 2. (Recurrence Formula) For n > 1, we have

] 1 n=1

kgo_k_qi,qjﬁ((qi,qj)z{o, n>1

xn] [Z]q_ , =0

El9,9i )+ & (gi,a; )= -]

IZ;‘J_k_qi,qj k(q| qj)+ n(q| qj) {0‘ 151
< [n] 2], n=1
> gk<qilqj)+g;'l(qiqu)={[ ]q"ql _
k=0L"gj,qj , n>1

It is not diffucult to show the following equality:

n n-k n m+k
FI A A A
Klanai L ™ Joa; LMHKlgg L M Jgig;

By (2.5), we get readily the following theorem.
Theorem 3. For n e N, the followings hold true

n

b’n(x+y:qi’qj')=kz‘6[ﬂq . 5’|<(X:C|i,CIj)y”—k,
=\ i’j
m Ge(x:a.a5)y",
Gidj

m (X )y
Gi.aj

& (x+y:0.q)=

gn<x+y:Qile):

n
2.
k=0
n
2,
k=0



Turkish Journal of Analysis and Number Theory 132

Proof. If we change x by x + y in é’n(x,z:qi,qj), then
we acquire

n

ign(“'y:%qi)%

n=0 [ ]qinj-
=We%qj ((x+y)z)
zgﬁ(qi!qj)[n]qi’qj !g‘)[”]qi,qj !

_y " x:--“‘k—zn.
—;g;i@m%am v e

n

By computing the coefficient of both of side,

[ ]Q| QJ
then we have

oo}

Bn(x+y1Qi:qj')=Z{H By (x:qi.95)y" .
0i.0j

k=0

The others can be proved in a like manner.

Now we consider the special cases of Theorem 3 as
Corollary 8 and Corollary 9.
Corollary 8. Letting y = 1 in the Theorem 3, we then get

ﬁn(x+1:qi,qj):§m

k=0

@(Xi%:qj'),

Corollary 9. Letting x = 0 in the Theorem 3, we then get

ﬁ](x:qi,qj')=§{ﬂq . Hk(qhqj)xn—k,
N i.dj

&(x:a.0))= i{ qu k(%:q]')xn_k,
gn(x:qi,qj)=é{:}qi’q_g&(qi,qj)xn—k.

Theorem 4. The following expressions hold true for n e N
G (x+1:01,05) = 5 (x: 6 ) =[n]g o X
& (x+1: Gi 0 )Jré}1 (x:qi,qj )+:[2]qi,qj' X

G (x+1:01,05 )+ G (X601 ) = [2]g, . [0l g, ¥

n

Proof. By using definitions of these polynomials and
numbers, one can easily obtain these relations.
Theorem 5. (ldentity of Symmetry) The followings hold
truefor ne N:

Z?n(l—x:qi,qj) (-1)" 5 (X q.,q,)
& (1-x:05,07) = (1) & (x: 0,05 ),
Go(1-x:61,0;) = (-1 G (x: 01,0, ).
Proof. Setting 1—x instead of x in (ﬁ](x,z:qi,qj), we
then get
meqim ((1-x%)z)

n

% A foxa )t

n=0 [ ]inQj !

- (_(Z_)z_)—leqi aj (X(—Z))

Zn

=3 (Y A (xianay)
n=0 [n]qi,qj ;

Compairing coefficients both of side in above

Q| ql

equality, we have desired the result. Similar to that of this
proof, it can be proved for Euler-type polynomials and
Genocchi-type polynomials. So we completed this proof.
Theorem 6. (Raabe’s Formula) For neN , the
followings hold true

5, (dx:q;,0;) = d”lzﬁ[x+ q,,qjj (dez+)
& (dxg;,05)
-1
4" (1) 4(x+
k=0
%@wmm)
—g" 12
Proof. By using Definition 1, then we have

) d-1 n
1 k_ z
Z[dﬂ ZBH(XJ”E'Q"qj)]ﬁ

n=0 k=0 [ ]ql'qj -

g:qi,qj] (d=1 (mod 2))

é’n(x+ q.,qjj (d =1 (mod 2))

-3 5 (o q,,qj)ﬁ.
n=0 Gidj

Similarly, we can prove this theorem for Euler-type
numbers and Genocchi-type polynomials. So we omit
them. Hence, we complete the proof of this theorem.
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Theorem 7. The three relations between Euler-type
numbers and polynomials and Genocchi-type numbers
and polynomials are given by

g T
&(qi,qj)=%,
G 10;,0j
%(x;qi,qj):w’

gk+l(qi'qj)xn—k
k+1

é;](x:qi’qj):kz‘(‘){ELq
- i

Proof. By Definition 1, we can easily obtain these
relations. So we omit the proof.

Let us now apply the multiple g-derivative Dq aj with
respect to x, on the both sides of Definition 1,
0 Zn
in,qj' Zﬁn(x:qi,qj)[n] I
n=0 Gi.0j
Zn
ZDCh gj ( q"ql)[n] |
=0 gi.gj
z
= Dg: qi€q q: (XZ)
eQiﬁIJ (Z) -1 i.4j ~4i.4j
2
z
=——¢ (xz)
eQi,qJ (Z) -1 Gi.aj
Zn+1
= Z‘gn(x:qi’qj)W'
n=0 0i.gj
n
Matching the coefficients of o R gives us
[n]QLQj '
DqI qJ (X ql'qj) [ ]inqj 6,n—1(X:qilqj)-
Thus we procure the following theorem.
Theorem 8. The following identities hold true:
in,qjgn (X:Qi:qj):[n]qiyqj gn—l(X:Qi’qJ'>,
in,qun(Xifhlqj'):[n]qi,qj Ea(x:ai.a;)
and
in,qjg’n(X1Qi1qj')=[n]qi,qj Gna(x:ai,0;).
Applying k-times the operator in’qj denoted by

qu(i 9 and the limit t — 0, respectively, to the Definition 1,

we derive that

zeq q: (X2)
A (x:q,q;)=limpk it 77
n(X Qi QJ) ti’g G 0] €0 (2)-1

So we conclude the following theorem.
Theorem 9. For k>0 and n>0, we have

z6q . (X2)
- k Gi.aj
Kn(X.quqJ) tl—>0 0i.dj eq aj (—) 1’
(25 q;
. k bi-9j
éﬂ"(x'q"qj)_t“—% O €4i.0; (Z)+1eqi'qi (2)
and
[2]
G (x:45.9j)=lim DY i

t—0 4i-gdj &; QJ( )+1EQ|QJ( )

Definition 2. Let 0 < a < b. The definite multiple g-
integral has the following representation:

Lo Lpoyrla-aps 5

qk
. q qlk+1
and

b X b X a X
ja f[ajd(ﬁx_jo f(q—i]dqjx—jo f(q—qu.jx.
Qi q q

1
Theorem 10. The following holds true:

b X X
_[0 f (E)in’qj g [q—ijdqjx

Gi
-3 f{ i b}[g[quJ g q‘kﬂb}
o Lot o ) ot
Proof. From Definition 2, we write that

b X X
b3 e g(q‘i]d?x
|

& q
( qJ)bZ L [qklﬂ

) (2.6
qj
Dy 4.9| —=b |,
gi.q
k

4]
where Dy aj 9 [Fb] equals to
1

k+1
qj aj
gl —bl-9 b
[Q| ] {Cﬁk{L J
(ci )

Combining the Eq. (2.6) with the Eq. (2.7) gives us the
proof of the theorem.

2.7

4 <1 and i,je{l,

Qi

Theorem 11. 2,..,N}. Then we

have

1 X, _
J.oﬁn[q_i'q"qJqujx_

5n+1(1:qi!qj)_5n+l(qi’qj)

qi [n+1]qi,qj
1 5}1+1(1 ql’qj) n+l(Qi’Qj)
g0 i )

qi Gi.aj
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) g’nﬂ(l:qi,qj)—é’nu(%nqj')

1 X
IO%[q_i:qi!qud(qjx—

. [n +1]Qi'(1j
Proof. By using Theorem 1, Definition 2 and for Al <1,
Gi
we have
1 X .
_[Oﬁn (a-qi:qjjdqjx
g
I
k k
n s 95 | %
B sl oSk o
1=0L" dgj,qj k=0 Ui i
51, Sl
= n-1\Y9-Yj J;r
i-oL! 0i.qj [|+1]inqj
 Bya(Ligia)) - Bha(aiaj)
[n+1]qi,qj

Similarly, the identities of Euler-type polynomials and
Genocchi-type polynomials can be shown. Therefore, we
complete the proof of theorem.

3. Further Remarks

Here we list a few values of Bernoulli-type, Euler-type
and Genocchi-type numbers as follows:
Bernoulli-type number:

.11
=",
2 (q)= L+ 2 _[3]g

4, 1 2 [3,

2,1, 12 2

q

Table 1.
& (ai.a;)=1
Bl(qi’qj):_[z]ql-q'
14
BZ(inqJ')_ [3]Qi:Qj [2]qi,Qj
_1 2 By
@(qi’qj)__["']qi,qj +[2]qi,qi _[Zﬁi'qj
1
1 1 gy | Bl
54(qivqj)‘"[5]qi,qj +[2]qi,qj +[2]q“q" RO
(2.4,

[4]inQj 1 2 [3]Qiij

2y |y ey 121,

Substituting g; = 1 and g; = ¢ for indexes i and j in the
case N =1 in the Table 1, then we get

By(q)=1

Substituting 0; = 1 and g; = g for indexes i and j in the
case N =1 in the Table 1, then we get
BO =1

30

Moreover the first few Bernoulli-type numbers can be
shown N x N matrix with multiple g-numbers elements in
the following form

1 w1
1
(@)(Qi!q J)) =
1 1 .1
_1 1 1
2q1 [Z]qlqu [z]ql,qN
1 1 1
(4i(aa1)=| [Pl 202 (2l an
B 1 B 1 B 1
[Z]QNv‘h [Z]Qqul [2]an
1 3 1 B 1
3ql2 [3]111412 [3]q1 aN
1 1 N 1
—
20 2y (2]
— 1 l — !
[S]qzﬂa 305 [ ]q2'qN
(&(a.9;))= L1 b 1
[2]q2 0 2q2 [ ]QZrQN
1 1 1
[S]qN q [ ]qN a2 30|ﬁ
1 1 1
—_
[Z]qN a4 [ ]qN .02 2qN
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From Definition 1 and the Table 1, we easily acquire

the first few Bernoulli-type poly-nomials
Bernoulli-type polynomials

(%(X:qi’qj)): 1

o (x:05.95) =1 LT
1
B (x:000)) =X .
By (x:0;,05) = x* —x- t 1 MO I S —
1Gi,dj )=
[ ]qi,qj [Z]Qiﬂj qu [z]qquZ [2]q1 aN
Usual Bernoulli polynomials 1 1 w1
By =1 = [2](12 a 202 [ ]QMN
1
B1:X——
? 1 X— 1 X— ! X— 1
B, = X2 _X_E [Z]quql [Z]quql [z]qN
Moreover, the first few Bernoulli-type polynomials can
be shown N xN matrix with g-numbers elements in the
following form
2 1 1 2 1 1 2 1 1
XS =X ———+— XS —Xx— X2 — X —
2
34 2% Blag  [Pae Blaan  Paan
X% —x— ! + ! xz—x—iJri X2 —x— 1 1
. 2
(b’z(x.qi,qj))= ] 3q; 2% Blopay  Plap.an
2 1 1 2 1 1 2 1 1
XS —X— + XS —X— + XE=X——+—
2
Blava  Play.a Blivg, [Play.e 3ay 20
Euler-type Numbers and Polynomials:
We begin to compute the first few value of &, (qi /dj ) as follows:
Table 2.
(2],
Ca. )= idj
& (o a;)=—
[2]g; q;
idj
&(ga5)=- 2
2
5’2(Qi,q1)=— R
oaa)--Paa By Pao [, Py
sV 4 4 4
P (q- q_):_[Z]Qi,q,' +[4]qirqj [Z]inQj +[4]qirqj [3]Qirqj [Z]inQj 1 _§+[2]qivqj
A 4 4 8 2] . 2 4
quQJ
P (q q )_ [Z]Qi,qj' +[5]qirqj [2]%(1] +[5]Qier [4]qivqj [Z]Qi,qj' 3 1
5149495 )=~ T
4 4 4 4 [Z]Qim
[S]qiwqj [4]%%‘ [3]qivqj [Z]Qi 4aj 3 [Z]Qi 4aj
' 16 2] Ty
Gi 0]

Substituting g; = 1 and g; = g for indexes i and j in the case N = 1 in the Table 2, we have
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Eo(q):%
El(Q)=—%

2
Ez(q)=—%+([%)

1 3
£ (q)o [2], [4,(2], [4],[3],02], | (2] 2
4(a)=- 4 4 8 [2],

21 [5].[2]. [5].[4].[2
E5m):_[jq+[k£]q+[h[jq[h _%_[éqJ
[5]q[4]q[3]q[2]q[ 3, [Z]qJ

" 16 2], T

Substituting ¢; = 1 and g; = q for indexes i and j in the case
N =1 in the Table 2, we have

Eo(9)=1
B (1) = —
E»(9)=0
Es(q)=%
E4(9)=0
Es(0)-—3

Moreover the first few Euler-type numbers can be
shown NxN matrix with g-numbers elements in the
following form

o [2]%% [Z]qlqu
2 2
[2] 2, [2] N
(¢o(a.a5))= —2h g .
(20 2y,
q2 8 q2 2 an
% [2](11#12 [ ]%UIN
S T ey
[2],, 2, a0
(4(a.9;))= ——Ft —q?z -
[Plye Paya o
4 4 )

(52(X5Qi,qj'))

[2](11!‘12 [Z]QLCIN
W & | ¢ K
2020 (g || ()
- 8 8
[2]CI2'Q1 [ ]Q2-QN
N o & e
N (Foe) | 27 | (@)
" 8 8
[Z]QN i [Z]QN 02
g 4 oy @
(oa) || (Hoe) | 2 2
" 8 " 8

From Definition 1 and the Table 2, we easily acquire
the first few Euler-type polynomials
Euler-type polynomials

(2],
& (x:01,05) =
é’(X'q- q_):[z]tn,q,' X_[Z]Qi,qj'
A 2 4
2
Py, (Phay)
E(xig.q;)=—t 2 i9j
3 (x:00)) = O
2
Ay [Py )
- +
4 8
Usual Euler polynomials
Eo =1
1
E, =x-=
1 =X >
E2=x2—x

Moreover the first few Euler-type polynomials can be
shown N x N matrix with multiple g-numbers elements in
the following form

(<o (ai.a)

4 [2]q11q2 [Z]QLQN
— o Ty
O .
Ploy.a [Playao

an

2 2
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q w3 [Z]ql,qz X_[Z]ql,qz [Z]ql,qz X_[Z]CILQN
152 2 4 2 4
[2]q1|qz X_[Z]QZ"M q w_J2 [2]q1,q2 X_[Z]qzqu
(él(XZQi,qJ'))Z 2 4 257 T2 4
m%az X_[z]qN,ql [Z]QLQZ X_[Z]qN,qz q x_In
aen N
2 4 2 4 2
2 2
X2 —q2x—&+£ [2]qlqu X2 _([z]quqN ) X_[Z]fh-qN +([2]qlqu )
1t 5 2 4 4 8
2 2 2 2
o B Bae) ey (Bae)  Hae o Bow)  Pae (@)
(52(X-qi'qi))— 2 4 4 8 2 4 4 8
2 2
(Y I P (Y o G G
2 4 4 8 AN

Genocchi-type Numbers and Polynomials:
We begin to compute the first few value of & (qi /4 ) as follows:

Table 3.

% (9i,9j)=0

2y
gl(Qi,Qj)= >

2
(215

gz(Qi:qJ')=—(l+qjj

By e, 2 |
staa)- 2, (Pl

[4]qi’qi [Z]qi~qi [4]qi'qj [S]qi,Qj [Z]Qim [4]Qi~Qj [S]in(ﬂ ([Z]Qi,qj jz
)= 4 ' 8 ) 8 B R
)< By Py Pl Pl M Pl {_“ P ]

_[S]qi,qj _[4]qi,qj [Z]qi,qj+[4]Qi’qj [3]Qi,qj [Z]qi,qj _[4]qi,qj [3]inqj _[Z]qi,qj+([2]qi’qj)

8 2 2 2

Substituting ; = 1 and g; = q for indexes i and j in the case N = 1 in the Table 3, we have

& (a)=0
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@Z(q):([z]j)
) 2
63(q):% _[Z]q"'([ ]zq)
) 2

&5(q)=- [S]q [2]q + [S]q [4]q [2]q o [S]q [4]q [3]q {_1+ [22]q ]

4 8 8
5] [41,13], (2], [4],[3] (121,)
g [l S 2],
8 at-a 2 2 4 2
Substituting g; = 1 and g; = g for indexes i and j in the From Definition 1 and the Table 3, we easily acquire
case N =1 in the Table 3, we have the first few Genocchi-type poly-nomials
Gy =0 Genocchi-type polynomials
G =1 %(Xi%vq]'):o
G,=-1 [2]g;
. ]
- (e, ()
Gs =0 g’z(x:qi,qj)= Gi.aj X— Gi.gj
Moreover the first few Genocchi-type numbers can be ) 2 4
shown N x N matrix with multiple g-numbers elements in ~ Usual Genocchi polynomials
the following form Gp=0
0 Gl =1
.0 G2 =2x-1
(% (qinj )) = Moreover the first few Genocchi-type polynomials can
""""" be shown NxN matrix with multiple g-numbers
00 .0 elements in the following form
o [z]qmz [ ]%QN 8 g 8
. 0L ((5))-
42.% 42.4N
(G(aa;))=| 2 % 5 00 .0
aN-% AN a2 [ ] [2]
5 5 N q wge oy
2 2
(4 (59) N
2 =l 2 2
% ([ ]qlqu) _([z]qlqu )
4 4
2 2 [Z]QN il [Z]QN 42 q
B _([2]%0!1) _ﬁ _([Z]QMN ) 2 2 N
= . .
([ ]quql) _([Z]QN’qz) A
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2 ([Z]ql,qz )2 ~ ([Z]cu,qz )2

(Paga) (D)

2 2x—q—1
% 2

(%(x:a.0;))= ([Z]ngl) —([2]‘12'(11)

2

(e P 2 PP T )

4 2 4
¢ (Epa) (2
2 2 4

a3

2 4
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