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Abstract In 1894, Rogers found the two identities for the first time. In 1913, Ramanujan found the two identities
later and then the two identities are known as The Rogers-Ramanujan Identities. In 1982, Baxter used the two
identities in solving the Hard Hexagon Model in Statistical Mechanics. In 1829 Jacobi proved his triple product
identity; it is used in proving The Rogers-Ramanujan ldentities. In 1921, Ramanujan used Jacobi’s triple product
identity in proving his famous partition congruences. This paper shows how to generate the generating function for
C'(n), C{(n), C"(n) and C{(n), and shows how to prove the Corollaries 1 and 2 with the help of Jacobi’s triple
product identity. This paper shows how to prove the Remark 3 with the help of various auxiliary functions and
shows how to prove The Rogers-Ramanujan Identities with help of Ramanujan’s device of the introduction of a
second parameter a.
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1. Introduction

In this article, we give some related definitions of
P(n) , C'(n) , Bo(n-m?} , Ci(n) ., c'(n)

Pn(n-m(m+1)) and C{(n) . We describe the

generating functions for C'(n), Pm(n—mz), Ci(n),

C"(n), Pn(n-m(m+1)) and C{(n), and establish the

Remarks 1 and 2 with numerical examples and also prove
the Corollaries 1 and 2 with the help of Jacobi’s triple
product identity [3]. We transfer the auxiliary function
into another auxiliary function with the help of
Ramanujan’s device of the introduction of a second
parameter a [5],

ie.,
n(5n+1)-2kn

Ge(ax)=I1(-1)a®x 2

i (1—ak x2k”) (o

to

m=0
where k =1, and a = x, it is used in proving The Rogers-
Ramanujan Identity 1. We prove The Rogers-Ramanujan
Identities with the help of auxiliary functions.

2. Some Related Definitions

P(n) [7]: The number of partitions of n like: 4, 3+1,
2+2, 2+1+1, 1+1+1+1 . P (4)=5.

C’(n) [6]: The number of partitions of n into parts
each of which is of one of the forms 5m + 1 and 5m+4 .

Pm(n—mz): The number of partitions of n—m? into
m parts at most.

C”"(n): The number of partitions of n into parts of the

forms 5m + 2 and 5m + 3.
C (n) : The number of partitions of n into parts without

repetitions or parts whose minimal difference is 2.
Pn(n-m(m+1)) : The number of partitions of

n—m(m+1) into m parts at most.

Cl”(n) : The number of partitions of n into parts not less
than 2 and with minimal difference 2.

3. Generating Functions for C’(n) and
Cn(n)

In this section we describe the generating functions for
C’(n) and C"(n) respectively. The generating function

for C'(n) is of the form [5];
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(1-x) (1=x¢) (2-x) (2-5°) oo (1)

2+x3+2x4+2x5+3x6+ 1 OO

=1+ ZC'(n) x"
-1

=1+X+X

where the coefficient C'(n) of x" is the number of
partitions of n into parts each of which is of one of these
forms 5m + 1 and 5m + 4.

Now we consider a special function, which is given
below:

- ;Z.;:z Pm(n—mz) X"

n
It is convenient to define P, (0)=1. The coefficient

P (n—mz) of x" in the above expansion is the number

of partitions of n-m? into m parts at most. Another

special function, which is defined as;

[°e] m

+y X

mzl(l—x)(l—x2

X X4

)
=l+1—x+(1—x) (

(1—xm)

=

x° . )

" (1-x) (1—x2) (1—x3) "

2

“1ex+x2 432 +2x°

#3813+
=1+ C{(n)x"
=1

where the coefficient C{(n) is the number of partitions of

n into parts without repetitions or parts, whose minimal
difference is 2.

From (1) and (2) we can establish the following
Remark:
Remark 1:

C{(11)=C'(11) ®3)

i.e., the number of partitions of n with minimal difference
2 is equal to the number of partitions of n into parts of the
forms 5m + 1 and 5m + 4.

Example 1: For n = 11, there are 7 partitions of 11 that

are enumerated by Cj(n) of above statement, which are

given bellow [6]:
11,10+1,9+2,8+3,7+4,7+3+1,6 +4+1,

s Ci(11)=7.
There are 7 partitions of 11 are enumerated by Cl'(n)

of above statement, which are given bellow:
119+1+1,6+4+1,6+1+1+1+1+1,

4+4+1+1+14+1+1+1+1+1+1+1],
114141414242 +1 414141,

. C(11)=7.

Hence, C{(11)=C'(11).

We can conclude that, C{(11)=C'(11).

1+§:C’(n)x” =l+icl’(n)x“.
n=1 n=1
0 m2
1+ X
m=1(1—X) (1—x2) . (1—xm)
> 1

=2 5m+l 5m+d)’
2]

which will be proved later as identity 1, it is known as The
Rogers-Ramanujan identity 1.

The generating function for C”"(n) is of the form [1];

< 1
mZ::o (1_X5m+2) (1_X5m+3)
1
) 1) o) ) e @
=1+ 0x+ X2+ ext e xP +2x8 1 2x 4+ oo
=1+§C”(n)xn
n=1

where the coefficient C"(n) is the number of partitions of

n into parts of the forms 5m + 2 and 5m+3.
Now we consider a special function, which is of the
form [1];

m(m-+1)

where the coefficient Py (n—m(m+1)) of x" in the

above expansion is the number
n—m(m+1) into m parts at most.

Another special function, which is defined as;

of partitions of
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0 Xm(m+1)
1+nqz=:1(1—x) (1-52) . (1-x)
B x? x°
_1+1—X+(1—x) (1—x2)
x? oo (5)

Ym0 o) o)

12+ x3 e xt e xP 1 2x8

w2x" 438+ L w
=1+ > C{(n) x",
=1

where the coefficient C{(n) is the number of partitions of

n into parts not less than 2 and with minimal difference 2.
From (4) and (5) we can establish the following

Remark:

Remarks 2:

c(n)=c"(n), ©)

i.e., the number of partitions of n into parts not less than 2
and with minimal difference 2 is equal to the number of
partitions of n into parts of the forms 5m + 2 and 5m + 3.
Example 2: If n = 11, the four partitions of 11 into parts
not less than 2 and with minimal difference 2 are given
below:

11, 9+2, 8+3, 7+4.

Hence, C{(11)=4.

Again the four partitions of 11 into parts of the form 5m
+ 2 and 5m + 3 are given as;

8+3, 7+2+2,3+3+3+2, 3+2+2+2+2
Hence, C"(11)=4.
- C{(11)=C"(11).
We can conclude that, C{(n)=C"(n).

ie, 1+ > C{(n) x" =1+ > C"(n) x"
] -1

. © Xm(m+1)
") (1) - (17
i !

m=0 (1_ X5m+2) (1_ X5m+3) '

which will be proved later as identity 2, it is known as The
Rogers-Ramanujan identity 2.

Now we give two Corollaries, which are related to the
Jacobi’s triple product identity [3].
Corollary 1:

rE[O (1— X5n+1) (1_ X5n+4) (1_ X5n+5)

Proof: From Jacobi’s Theorem [2] we have;

0

m {(1_X2n) (1+ X2n+1z) (1+X2n71271)}

n=0
o0
2
= > x"z"
N=-—00
forall zexceptz=0, if x| <1.

If we write x%2 for X, ~x¥2 for z and replace n by n +
1 on the left hand side we obtain;

ﬁ (1_ X5n+1) (1_ X5n+4) (1_ X5n+5)

n=0
=1-x—x*+x +xB -
w n(5n+3)
=2 ()% 2
N=—o0

Hence, the Corollary.
Corollary 2:

N=—o0
Proof: From Jacobi’s Theorem we have;

nfflo(l_xzn) (1+ xzn*lz) (1+ X2n—1271)

o0
2
= > x"z"
N=—o0
for all z except z = 0, when |x| <1.

If we write x%2 for X, —x¥2 for z and replace n by n +
1 on the left hand side we obtain;

A 5n+2 5n+3 5n+5
nl;lo(l X ) (1 X ) (1 X )
=1-x° -3 +x0+x -
w n(5n+1)
= ¥ (A 2
N=—o0

Hence the Corollary.

4. The Rogers-Ramanujan Identities

First we transfer the following auxiliary function into
another auxiliary function. Let us consider the auxiliary

function [1, 2] with |x| <1 and |a| <1.

" n(5n+1)-2kn

Gy (a,x)=I1(-1)"a®"x 2

i (1— akx2kn ) Cn (7

it is known as Ramanujan’s device of the introduction of a
second parameter a, wherekis0, 1 or2and Cy =1,
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(1-a) (1-ax) . (1-ax")

(1-x) (1 X ) (l—x”) .

Ch=

Hence,

n(5n+1)—2kn
(-1)"a®x 2 (1 akx2k”)

(1-a) (1-ax) .. (1—ax”‘1)

0 ) )

n(5n+1)-2kn
(-1)"a%"x 2

T () - (i)
x(l—ax”) (1 ax“+1) ||

n(5n+1)-2kn
(_1)[1 a2n X 2

M

>
]
o

M

(1 akx2kn ) PQn ()

n=0
no1
where P, =11 ,
r=11-x"
Qn(a)=11 ! -=Hy (ax) 8)
r=nl-ax

which is another auxiliary function, and it is used in
proving The Rogers-Ramanujan Identities [1].

But from (7) we can easily verify that with k = 1, 2 and
a=x

Gy (% x)=1-x—x*+x" +x® —. 0

Gy (x,X) = Il (1_X5n+1) (l_X5n+4) (1_X5n+5)

n=0 ©)
(by Corollary 1).
Gy (%, %) =1-x% —x3 +x% +-xM — 0
(1 5me2) (4 5m+3) (1 ,5m+5
Gz(x,x)—ml':lo(l X ) (1 X ) (1 X )(10)

(by Corollary 2).

From (8) we can also find that, if k =1 and a = x, then;
Gy (x,x)

(1-x) (1— xz) (1— x3)... 0

L [

(1-x) (1—x2) (1—x3) e OO

Hy(x,x)=

3 s

Again for k = 2 and a = x, we get;
G, (x,x)

(1-x) (1—x2) (1—x3)... ©

) ml—:IO (1_ X5m+2) (1_ X5m+3) (1_ X5m+5) o

(1-x) (l—xz) (1—x3) e OO
l .
(1 X5m+1) (1_X5m+4)

Now we can consider the following Remark [2].
Remark 3: H, —Hy_4 = ak’lan_k , Where the operator
n is defined by 7 f(a) = f(ax), and k =1 or 2.

Proof: From (8) we have;

Hk = Hk(a,X)

Ha (x,x) =

- i

n(5n+1)-2kn
(-1)"a®"x 2 (1 akx2kn ) P,Qn(2),
n=0

0

h 1 d 2
where P, = ,and Q,(a)=
" r=11—x" n( ) r=n1—ax"

It is convenient to define Py =1, Hy =1. We have;

Hy —Hyg
n(5n+1)
(-1)"a®"x 2

o (5n+1) | gk-2yn(k) (l— ax” )

= Z (_1)n a¥™x 2 x PaQn-
n=0 +x KN (1— x”)
Now  we  have, (1— ax") Q,=Quq and

(1— X" ) P, = P,_4, hence,

Hy —Hka
» n(5n+1)+2n(k-1)
n 2 k l

z " 2 I:)nQn+1
n=0

o n(5n+1)-2kn
+ Z (_1)n a2nX 2 F)n—lQn-

n=0

In the second sum on the right hand side of the Identity
we change n into n + 1. Thus,

n(5n+1)+2n(k-1)

0 7
= z (_1)n a?M 1y 2 PiQns1

(n+1)(5n+6)-2k(n+1)

_i (_1)n a2(n+1)x 2

PnQn+1-
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=n§0(_1)n o) (n+1)(5n+6)-2K(ns1) [ NN+
—a + X 2
> K a2n+k—1xw .
‘EO(‘) @(1_a37kx<2n+1><sfk>) HQne1
Y ()| akt aanw .
_n%(—) a ™y x(l—a3_kx2n(3_k))  Qnit-

We have Q,,; =7Q, and so,

Hi —Hya
w n(5n+1)-2n(3-k)
_ ak—lnz (-1)" 22"y 2 (1_ 23Ky 2n(3-k) ) PO,
n=0
=a“pHg .

Hence, the Remark.
The Rogers-Ramanujan ldentities
Identity 1 [4]:

143 l
") (1) x)
. L

Identity 2 [4]:

. © Xm(m+1)
") (1) x)
-1l ! .

m=0 (1_ X5m+2) (1_ X5m+3)

Proof: From (8) we have;
Gk (a,x)
(1—a) (1—ax) vr OO

Hy (a,x) = (13)

where Hy =0.
From above Remark we have;

k-1
Hy —Hyg =a" "nHa

where the operator 7 is defined by 7 f(a) = f(ax), and k = 1

or 2. In particular

Hy =nH,,
H2—H1=a77H1. (14)
So we have,
H2 =77H2 +a772H2. (15)

Suppose now that;

H, =1+¢a+cya +..00. (16)

where the coefficients depend on x only. Substituting this
into (15), we obtain;

1+ (:1a+(:2a2 +..0

=1+cax+ czazx2 +..0+ a(1+ clax2 +c2a2x4 +...oo).

Hence, equating the coefficients of various powers of a
from both sides we get;

G L C X2 C,C X4 C

= 2: [} 3:_ 217"

1-x 1-x? 1-x3
Xn(n—l)

(1—x)(1—x2)...(1—x”)'

From (13) and (16), we have for k = 2;

ACRY)
(1-a) (1-ax) ..o
=H;(a,x)
a a®x?
=1+ +
—X (1-x) (1—x2)
. a3x® e
(1-x) (1—x2) (1—x3)
If a = x, then;
4
1+ X + X

Therefore,
0 sz
H m=1(1-X) (l— xz)...(l— x™ )
i S

m=0 (1_ X5m+1) (1_ X5m+4)

Hence the Identity 1.
Again from (13), (14) and (16) we have with k = 1,

Gy (ax)

+ + ... 00,

0 )

If a = x, then we have;
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Therefore,
0 Xm(m+1)
R () ()
- 1

ml_:[() (l— X5m+2) (1_ X5m+3) '

Hence the Identity 2.

5. Conclusion

In this study, we have shown C{(n)=C'(n) with the

help of a numerical example when n=11, and also have
shown C{(n)=C"(n) with the help of a numerical

example when n =11. We have transferred the auxiliary
function into another auxiliary function with the help of
Ramanujan’s device of the introduction of a second
parameter a,

ie.,

n(5n+1)-2kn

Gy (a,x)= i (-1)"a?"x 2

i (1—ak x2k”) C,

to

Gy (%) = i;:o(l_xsmz) (1_X5m+3) (1_X5m+5),

where k =2, and a = x, it is used in proving The Rogers-

Ramanujan ldentity 2. Finally we have proved The Roger-

Ramanujan Identities with the help of auxiliary function,
Gk (a, X)

(1-a) (1-ax) ..o’

H (a,x) =

where Hy =0.
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