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1. Introduction

The role of mathematical inequalities within the
mathematical branches as well as in its various application
should not be underestimated. The appearance of the new
mathematical inequality often puts on the firm foundation
for the heuristic algorithms and techniques utilized within
applied sciences. Among other one of the main inequality,
which provides for us an explicit error bounds in the
trapezodial and midpoint rules of a smooth function, called
Hermite-Hadamard’s inequality defined as [[1], p. 53]:

b
a+b)_ 1 f(a)+ f (b)
fl— |<— | f(X)dxs——>~  (1.1)
( 2 J b—a-a[ () 2
where f:[a,b] >R is a convex function. Both

inequalities hold in the reversed direction for f to be
concave. We note that Hermite-Hadamard’s inequality
may be regarded as a refinement of the concept of
convexity and it follows easily from Jensen inequality.
Inequality (1.1) has received renewed attention in recent
years and a remarkable variety of refinements and
generalization have been discovered [2,7,10,11] and the
refrences cited therein.

Theorem 1.1. ([3]) Let f:lcR—>R be a

differentiable function on 1° (interior of 1° ) a,bel
with a <b. if the mapping |f’| is convex on [a,b], and
then we have the following inequality:
[f(a)+f(b) 1 (b
| 5 —b_ajaf(x)dx
< (b-a)(|f'(a)]+|f'(b)])

8

(1.2

Theorem 1.2. ([3]) Let f:lcR—>R be a

differentiable function on 1° (interior of 1°) abel

with a <b. if the mapping |f|” is convex on [a,b], for
some fixed p>1 and then we have the following inequality:

[f(a)+f(b) 1 (b
| 5 —b_ajaf(x)dx
P P (1.3)
b—a ||f'(a)e-1+|f'(b)pt
< .
1 2
2(p+l)p
In similar manner to Dragomir and Agarwal

methodology, inequalities for differentiable convex
mappings associated with the left-hand side of Hermite-
Hadamard’s (midpoint) inequality was verified by
Kirmaci ,by means of the following illustration:

Theorem 1.3. ([5]) Let f:lcR—>R be a

differentiable mapping on 17, a,be1” with a<b. If ||
is convex on [a,b] then we have:

‘—1 bf(x)dx—f(—aerJ‘
b—a-a 2

_(o=a)( @)+ (o))
< 5 .
Theorem 1.4. ([4]) Let

(1.4)

f:lcR—>R be a
differentiable function on 1° (interior of 1°) abel

with a <b. If the mapping |f'|” is convex on [a,b], for
some fixed p>1,and then we have the following inequality:
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=R

< (b—a)(gl_:p JD £(a)|+| /(o).

([4]) Let

differentiable function on 1° (interior of 1°) abel

(1.5)

Theorem 1.5. f:lcR—>R be a

with a <b. If the mapping |f'|” is convex on [a,b], for

some fixed p>1 and |f’| is a linear map, we have the
following inequality:

‘leaI: F(x)dx— f (a%bj

In most recent years, For additional findings relating to
the Hermite-Hadamard integral inequality for utilizing
different kind of convexity, readers are directed to ([12-
17]). This work is organized in the following way. After
this Introduction, in Section 2 main results are
presented.In Section 3 application to special means are
considered. Finally Section 4, error is estimated for the
generalized quadrature formula.

b— '
S(Taj“ (a+b).(1.6)

2. Main results

To prove our main result, we need some important

lemma.
Lemma 2.1. Let f:[a,b]JcR—R be differentiable
19, is with a<b. If

function on where a,bel

f'e L([a,b]). Then the following inequality holds:
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0
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9
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b-at
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1
31//f’[1// 2a+b +(1—(//)aj

b-a

0

b-a
9

(a+b)/2
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3 3 b_a(23+b)/3

1
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b
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f(x) dx] ,
(x+b)/2
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f (x)dx].

This proves as required.

Theorem 2.2 Let f:[abJcR—>R be a

differentiable function on IO, where a,bel is with

a<b. such that f'eL([a,b]). If the mapping |f'] is

convex on [a,b], then we have the following inequality:

2a+b a+2b
f( 3 j”( 3 j 1 8
- —b_a_[f(x)dx
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+i(¢,/_1)f'[¢,,_

3
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1
+wa,(wa+2b +(1—l//)a—w]dl//
0

3

2

+(1—l//)2a+bjdw

a+2b
d
3 ) v

2.1

Proof. Using integrating by parts, and by making use of

the substitution
2a+b

X=y

we have

+(1-y)a

+ ()

(2.2

Proof. Using Lemma 2.1 and taking the modulus, we

have
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using the convexity of |f’|, we have
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(2.6)

3

Combing the above inequalities (2.3), (2.4), (2.5), and
(2.6), we obtain (2.2). This completes the proof.

Corollary 2.3 Under the con

(2a+bj (a+2b
f + f
3 3

ditions of Theorem 2.2,

‘ 2

< @i+l

Using the convexity of |f’(x

we have
f(2a+bj+ ¢ (a+2b
3 3

)

)

b
_a£ f (x)dx

I

)|s M, for all xe[a,b],

‘ 2

b-a

jf(x)dx <(b9a]|v|.

a
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Proof . The assertion follows from Theorem 2.2 and
utilizing the convexity of |f’|.
Theorem 2.4 Let f :[a,b]= R — R be a differentiable

function on IO, where a,bel is with a<b. such that

f'L([a,b]). If the mapping |f? is convex on [a,b],

then we have the following inequality :

2a+b

(

1

a+2b
3
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b
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+
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Proof. Using Lemma 2.1 and Hoélder inequality we

have
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using the convexity of | f'|, we have
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2
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3

(2.11)
q

Combing the above inequalities (2.8), (2.9), (2.10), and
(2.11), we obtain (2.7). This completes the proof.

Theorem 2.5 Let f :[a,b]= R — R be a differentiable
function on IO, where a,be |l is with a<b. such that
f'e L([a,b]). If the mapping |f'|* is convex on [a,b],

for some fixed g=>1, then we have the following
inequality :

2a+b a+2b
Hsj”[sj 18
- f (x)dx
b_a£ ()
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—
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(2.12)

o
N
Q-

Proof. Using Lemma 2.1 and power mean inequality
we have

(2a+b) (a+2bj
f + f b
‘ 3 3 ) 1 b-a

f (xX)dx| < ——
‘ 2 b-a )

9

L1 a+2b b e
i Wi Lol 73
+ f!//dl// fl// f ath dy
° G

e

using the convexity of |f'| , we have

1 q

I(// f'(l// 2a3+b+(1—!//)aj dy
0 , (2.13)
q
slf'[z‘”bj Lt (a)f
3 3 6
1 q
[ a+b 2a+b
j(l—y/)‘f(y/T+(l—y/) - j‘ dy
0 (2.14)
1‘ ,(a+qu 1‘ ,(2a+qu
< f|—| +=|f ,
6 2 3 3
1 q
[ a+2b a+b
I f( 2 )—j dy
0 (2.15)
1‘ ,(a+2qu 1‘ ,(a+qu
e | iy i | i
3 3 6 2
1 q
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j(l_,,/)‘f (y/b+(l—1//) : Jdc//
0 (2.16)

1., 1l..(a+2p)°
E|f(b)| +§‘f[ 3 j
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Combing the above inequalities (2.13), (2.14), (2.15),

. . ’ q
and (2.16), we obtain (2.12). This completes the proof. using the convexity of |f | , We have

Theorem 2.6 Let f :[a,b] R — R be a differentiable 1 q
. 0 o It w22 yyal dy <[t [P 21s)
function on |-, where a,bel is with a<b. such that 5 3 6
f’e Ly ([a,b]). If the mapping |f|" is concave on [a,b], .
for some fixed g>1, then we have the following inequality: J' f'(v,aLb (1_ )2a+bj‘ d
2 3
‘f(2a+bj+f(a+2bj 0 (2.19)
b q
3 3 1 7a+5b
_ f(x)d <|f’
2 b—a'[ (x)ax ( 12 j
1 1 a+2b a+b !
9= '
_b-afg-1)q 2.17) If(W 3 +(1-v) > j dy
8 \2q-1 - 0 . (2.20)
5a+7b
<|f’
‘f (we+20) ‘ ‘ 7a+5bj‘ ‘ (222
5a+7b 2a+10b | 1 a+2b\° a+5b )
+| ' + f’ ' - < f'f—
‘ [ ‘ ‘ 5 ]‘ _([f(y/b+(1 v) . de_ f( - ) [(2.21)
~ Proof. Using Lemma 2.1 and well known Holder Combing the above inequalities (2.18), (2.19), (2.20),
inequality we have and (2.21), we obtain (2.17). This completes the proof.
Corollary 2.7 Under the conditions of Theorem 2.6,
2a+b a+2b Lo
f + f b assume that function is a linear map,
3 3 1 f (x0dxl < b-a
‘ > J fooa <22 ‘f(2a+bj+f(a+2bj b
3 3 2L [fax
r E T 2 b_aa
1 9 q
[y tdy g1
0 q-1
< f'(a+b)|.
1 12 (zq 1) | ( )|
1 g
J‘ f'(l/f 2a+b+(1_l//)a] dy ‘ _Proof. !t is a direct consequence of Theorem 2.6 and
5 using the linearity of the function.
01 Theorem 2.8 Let f :[a,b]= R — R be a differentiable
1 g function on IO, where a,bel is with a<b. such that
+ I 1-y)q 1d!// _ _
0 f'e L([a, b]) If the mapping |f’|q is concave on [a,b],
1 for some fixed gq=>1, then we have the following
1 q . .
J‘ f’[z//a;b (1_W)233+b)‘ q inequality :
0 2a+b a+2b
X 1 : f 3 +f 3 L b
9-1
L4 Vg - —b_ajf(x)dx
+ Jydy i
0
1 f,(14a+4b Hf, 11al;7bj‘
1 £ a+2b 1 a+b q d _b a .
| (1-y)— 18 ,(7a+1]bj ,(4a+14b]
0 +| f +|f
18 18
g-1
1 q T : /9
N J.(l—l//)ﬁd!// - Proo-f. By the concavity of |f|" and Power-mean
0 inequality we have
1 , g ([0 N
3 PRI [ £ (@) ) 2w |+ (v £ ()
J.f’(‘/’[”(l V)3 j‘ d : e
o | 2 (w[f(x)]+ (=) £'(v))
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And thus
y) 2 v |0+ @=w)[F (v,

Using Lemma 2.1 and the Jensen’s integral inequality,
we have

¢ (2a3+b)+ ‘ (aga)
> _
_J:;y/f’[y/ +(1—l//)ajdl//

+J- ( a+b+(1_w)2a3+bjdw

|f'(t//x+(1—w)

b-a
—X
9

1 b
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b_a£ (x)
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f' -
fwdl//
0
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< x| +
9 (
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Jo( -]
A0)
f 1
f'//dl//
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£ 0 3

1
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0

Corollary 2.9 Under the conditions of Theorem 2.8,

(2a+b) (a+2bj
f + f

[f'(a+b)|

b
1 _
[ (0dx cb-2
2 -a 18

Proof. The assertion is a direct consequence of
Theorem 2.8 and using the linearity of function.

3. Application to Some Special Means

Let us recall the following means for arbitrary real
numbers a and b.
The Arithmetic mean

A=A(a,b):a—;rb a,b>0.

The Harmonic mean

A=A(a,b)=aii a,b>0.
+

Generalized-logarithmic mean

a, if a=b

L, (a, b) = l: pn+l _ g+l
(

m} , if a%b

The Logarithmic mean

a, if a=b
SL@b)=y b-a gy
Inb—Ina’

Now utilizing outcomes of Section 2, some new
inequalities are derived for the above means.

Proposition 3.3.1. Let a,b e R",a<b, and n e R.then,

we have
n n
A (2a+bj l(a+2bj _1" (ab)
3 3

<l 252 el o)

Proof. By corollory 2.3 applied for the mapping
f(x)=x", xeR , we have the above inequality
(3.1).This completes the proof.

(3.1)

Proposition 3.3.2. Leta,be R*,a<b, and n e R.then,
we have

‘H1(2a+b,a+2b)_|_(
3 3

<22 Ao bl 7) .2

Proof. By corollory 2.3 applied for the mapping

f(x)=2,

This completes the proof.

xe R, we have the above inequality (3.2).

4. Application to Quadrature Formula

Let D be the partition {a=xy <X <
of the interval [a,b], and consider the quadrature formula

e < Xngg <Xy =D}

b
[ f(x)}dx=Q(f,D)+E(f,D),
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where

For the quadrature version and E(f,D) denotes the

approximation error.

Proposition 4.1. Let

f:[ab]cR—>R be

differentiable mapping on 1° (interior of 1 ) abel

with a <b. If the mapping |f'| is convex on [a,b], then

for every division D of [a,b], the following holds:

+2 f! Xi+xi+1
2

+| f ,(Xi+1)|

1
|E(f'D)|§a(Xi+1—Xi)2
, [ 2% + X
o |t (xi)|+4‘f ('T'*lj
<2
+4‘ f (Xi +2Xi+1j
3

k=0

Proof. Using Theorem 2.2 on the subintervals [X;, X;,]

(i=0,1,...,n-1) of the division D, we have

ll:fr(zxi +Xi+lj+ f!(xi +2Xi+lj:|
2
3 3 < X=X
a 54

l Xi+1
- I f (x)dx
Xiy1 — X%

|f'(Xi)|+4 f,[zxi +Xi+1j +2‘f,[xi +Xi+1J
3 2

+4‘f(Xi+szi+l) +|f'(xi+1)|
n-1%i+1 n-1

[E(f.D)|=
2% + Xis
I f (x)dx—EZ f (Tj

i=0| ¢ (Xi + 2%,
3

Ef 2% + X1 L f Xi +2%1
n-1 2 3 3

i=0 X

(X1 = %)
I

(4.1)

X 4.2)

(4.3)

a

By combining (4.2) and (4.3), we obtain (4.1). This
completes the proof.
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