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1. Introduction

Let real function f be defined on some nonempty
interval | of real line R. The function f is said to be
convex on | if inequality

f(tx+ (L—1)y) <tf (x) + (1—t) F (y)

holds for all x,y e and t [0,1].

Following inequalities are well known in the literature
as Hermite-Hadamard inequality and Simpson inequality
respectively:

Theorem 1. Let f:1 c R — R be a convex function
defined on the interval | of real numbers and a,bel
with a <b . The following double inequality holds

f(a;bJ<L}f(x)dx<_f @+ f(0)
2 ) b-aj - 2 '

Theorem 2. Let f:[a,b]>R be a four times

continuously differentiable mapping on (a,b) and

“f(“)uw: sup)‘f(4)(x)‘<oo. Then the following

xe(a,b

inequality holds:

g{f(a)+f(b)+2f[a+bﬂ_ L Tf(x)dx
3 2 2 b_aa

SLHH‘”“ (b-a)".
2880 0

In recent years, many athors have studied errors
estimations for Hermite-Hadamard, Ostrowski and
Simpson inequalities; for refinements, counterparts,
generalization see [2,9,10].

The following definitions are well known in the
literature.

Definition 1 ([7,8]). A function f:1 < (0,00) >R is
said to be GA-convex (geometric-arithmatically convex) if

fOyEY) <tf (x) +(1-t) F(y)
forall x,yel and te[0,1].

Definition 2 ([7,8]). A function f :1 < (0,00) — (0,0)

is said to be GG-convex (called in [13] geometrically
convex function) if

F Oyt < £t (y)EY

forall x,yel and te[0,1].

In [3], Iscan gave definition of quasi-geometrically
convexity as follows:

Definition 3. A function f: 1 g(O,oo)—>R is said to
be quasi-geometrically convex on | if

F(x'y ) <sup{ £ 00, ()}

forany x,y el and te[0,1].

Clearly, any GA-convex and geometrically convex
functions are quasi-geometrically convex functions.
Furthermore, there exist quasi-geometrically convex
functions which are neither GA-convex nor GG-convex
[3].

For some recent results concerning Hermite-Hadamard
type inequalities for GA-convex, GG-convex, quasi-
geometrically convex functions we refer interestes reader
to [1,3,4,5,6,11,12,14].

The goal of this article is to establish some new general
integral inequalities of Hermite-Hadamard and Simpson
type for quasi-geometrically convex functions by using a
new integral identity.
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2. Main Results

Let f:lc (0,oo)—>]R be a differentiable function on

1°, the interior of | , throughout this section we will take

L (A mab)=(A-p)f(/ab)+uf(a)

L1y,
In(b/a)? u

a

+(1-2) f(b)—

where a,bel with a<b and A, ueR.

In order to prove our main results we need the
following identity.

Lemma 1. Let f:I g(O,oo)—)R be a differentiable
function on 1° such that f’'e L[a,b], where a,be | with
a<hb. Thenforall 1,1 eR we have:

1/2
It (A, ma,b)= |n(b/a){j (t—u)al’tbtf’(al’tbt)dt
0
. (1
+| (t—/l)a“b‘f'(a“bt)dt}
1/2

Proof. By integration by parts and changing the
variable, we can state

In(b/ a)lljz(t —u)a ot f '(a“bt )dt
1/2 ’

= [ (t-pdf (al‘tb‘)

’ 1/2

[ f(a“b‘)dt

= (t—p)f (al—‘bt )‘ZZ -
0

Jab
_(1 1 f(u
"(E_“Jf(@)wf(a)_m(b/a){ bay

and similarly we get

In(b/a)_l[ (t—2)a bt f ’(al‘tbt)dt

1/2
1
= [ (t-2)df (a“b‘)
1/2
1 1
=(t-A)f(a™ ") - [ f(a""b")dt
o, ] o)

_ 1 (I ()

_(1_4)f(b)—(5—/1Jf(\/%)—In(b/a)J{_b —du.

Adding the resulting identities we obtain the desired
result.

Theorem 3 Let f:1 <(0,0) >R be a differentiable
function on 1° such that f'eL[a,b], where a,bel”®

with a<b . If | f'|% is quasi-geometrically convex on
[a,b] for some fixed q>1 and 0< 4 <1/2<A<1, then
the following inequality holds

1

If(l,y,a,b)sIn(b/a)(sup{|f'(a)|q,|f'(b)|q}ja (

{CM(wCy (u,,a,0) + C5YI(ACY* (4,q,,b)

2)

where
1
C =2 H s (3)
1(u) = u > '3
34 5
C,(A) =22 -4
(1) =22 -3
C3(,Ll,q,a,b)
S ib/ )[(1—2y)(ab)q/2+4ya<l‘”)qL(aq”,bq”)
qin(b/a

- _aq/ZL(aq’z,bQ’Z)—zyaQ] 0<u<1/2,
L[bqlz_l_(aqlz,bqlz)]yzo
2qiIn(b/a)
C4(4,9,8,b) =

1
2qiIn(b/a)

14234 L(aqi o ) _ aqlzL(aq/z /2 )}

|2(1-2)b7 - 22-1)(ab)** 2L (a%,b7)

and L(ab) is logarithmic
L(a,b)=(b—a)/(Inb-Ina).

mean defined by

Proof. Since |f|! is quasi-geometrically convex on
[a,b], forall te[0,1]

‘ f ’(al‘tbt )‘q < sup{| f ’(a)|q |t ’(b)|q}.

Hence, using Lemma 1 and power mean inequality we
get

I+ (4, 1,8,b)<In(b/a)

1t B -ty q q
) [1/2 J q 1]‘2|t y|(a )

It — udt
i[ 0 sup{|f’(a)|q ,|f’(b)|q}dt

]

JI: 1 fe- A (a )’ ‘
1/25up{| f ’(a)|q |t ’(b)|q}dt

1
+[j|t—/1|dt

12

< In(b/a)(sup{| f '(a)|q | f (b)|q}j;

1 1

1-= =
x [1j2|t—y|dt] ! fﬁt ~ (2t dtjq
0 0
L

] '”"‘“T;U -

12 1/2



44 Turkish Journal of Analysis and Number Theory

where
1/2 P 1
—uldt=C .-
Ilt p|dt = Cy () = u? g
3.5
|t—Adt =Cy(2) = 2% -
17|.2 2 8
1/2

_[|t ,u|( “b‘) dt = C4(,q,a,b),

j t-2)(a% " )q dt = C4(4.q.a,b),
v2
which completes the proof.
Corollary 1 Under the assumptions of Theorem 3 with
A= u=1/2, the inequality (2) reduced to the following
inequality

f@+fp) 1 ?f(u)Glu

| 2 In(b/a); u
1
1-1/ f q
s(lj i In(b/a)| s | " {c3(1/2,q,a,b)
° |f (b)°
1
1-1 f! q' q
s(%) qIn(b/a) sup | (a)|q
|£(b)

x{c;’q (0,9,a,b)+CY%(1,q,a, b)} +c¥i/2,q.a, b)}.

Corollary 2 Under the assumptions of Theorem 3 with
u=0 and A=1 the inequality (2) reduced to the
following inequality

1 f(u)
‘f(\/%) In(b/a)I u ‘
s(%) |n(b/a)(sup{|f'(a)|“,|f'(b)|“})a
x{CJ"(0,q,a,b) + C;(1,0,a,b)}.

Corollary 3 Under the assumptions of Theorem 3 with
u=1/6 and A =5/6, the inequality (2) reduced to the
following inequality

l[f(aﬂ f®,
3 2

Zf(@} 1}y, ‘

In(b/a) u
5 L |f’(a)|ql q
s(ij In(b/a)| sup q
|7(0)

Cy%(1/6,q,a,b)
X
+CY9(5/6,9,a,b)

Theorem 4 Let f: | =(0,0) > R be a differentiable

function on 1° such that f'elL[a,b],

where a,bel®

with a<b . If | f'|% is quasi-geometrically convex on

[a,b] for some fixed q>1and 0< u<1/2<A<1, then
the following inequality holds.
1

I (Ao pab)< In(b/a)(sup{|f’(a)|q ,|f'(b)|“})a W
x{C¥? (p, 1)C7 (a,a.b) + CF P (p, A1CY % (0,2, b)
where
Colpa) =g o G|
Ce(p,/l)— L [(/1 2)p+1+(1 /1)p+1}
C,(q.a,b)== aquL(aq’Z,bq/Z),
Cs(@.ab) = L(a%,b?)-C;(q.ab)

and l+i =1.
P q
Proof. Since | f'|9 is quasi-geometrically convex on
[a,b] and using Lemma 1 and Holder inequality, we get

I+ (4, m,a,b)<In(b/a)

1 1
12 o2 "(a)¥ q
[eafisratre
0 0 |f’(b)|q
1 = 1 q é
f’ ,
+ J'|t—ﬂp|'°dtJp _[(al‘tbt)q sup | (a)|q dt
12 12 | £(b)

< |n(b/a)(sup{| f ’(a)|q |t ’(b)|q}JE
) [1:|)_Z|t_lu|p dt]p [1;[ ( 1 tbt) ]

} [t— 2P dtf){ } (a-b! )q dtf ,

1/2 1/2

+

here it is seen by simple computation that
12

J'|t ,u|p dt |:,Up+l+( ,U)p+1:|
p+1
1
t— p t=—— _Ayptl 1- p+1
1/j2| AP d p+l[(ﬂ. P -2) }
1/2

ﬁL(aqlzlbq/Z)

[ (atp) =
0
and .1f (al’tbt )q dt = L(aq,bq)—

12
—L(ao"2 bq/z).
1/2
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Hence, the proof is completed. . . Proof. Since | f'|9 is quasi-geometrically convex on

Corollary 4 Under the assumptions of Theorem 4 with . . . .
A= u=1/2, the inequality (4) reduced to the following  L&P] and using Lemma 1 and Holder inequality, we get
I+ (4, u.a,b)<In(b/a)

inequality
[f@)+f) 1 j’-f(u)du‘ 1 1
- 12 172 £(a)" q
2 n(b/a)! ) [Hal_tbt)pdt]p “t_mqsup: (a)||q’ "
1 0 0 f'(b)
< In(b/a)(sup{| () |1 '(b)|q})q
1
1 )" c¥4(q,a,b)+CY%q, a,b) f(atpr\P of . @] e
x 07D { 7 (q,a,0)+Cg"(g,a, } + lljz(a b) dt 1/j2|t—/1| sup (o) dt

Corollary 5 Under the assumptions of Theorem 4 with
u=0 and A=1 the inequality (4) reduced to the 1
following inequality. <In(b/ a)(sup{| t'(a) |f ’(b)|q}Jq
b
q

1 ) 2 e .
f(@) —j—du‘ []‘(al—tbt)pdth[i“t_y dth

“In(b/a)! u

1

< In(b/a)(sup{| f '(a)|q | f '(b)|q})a

1/p

Corollary 6 Under the assumptions of Theorem 4 with <l erea)® e pyel)a
u=1/6 and A =5/6, the inequality (4) reduced to the = n(b/a)(sup{| (a)| | (b)| })

following inequality

1 1
+[ } (apt)" dt] i ( } [t—2[f dth ,
12 12
1

(7P (p.ab)CY (@ 1)+ C5 P (p,ab)CE (0, 1)}

b
E[MJF 2f (@)} — mdu‘ Hence, the proof is completed.
In(b/a)7 u Corollary 7 Under the assumptions of Theorem 5 with

3 2
A= pu=1/2, the inequality (5) reduced to the following

inequality

f@+fp) 1 ?f(u)Olu
2 In(b/a)? u

L M(Sup“ t(a) |t '(b)|q}j6

a

1
Theorem 5 Let f: | <(0,0) >R be a differentiable < |n(b/a)(sup{|f’(a)|q ,|f,(b)|q}jq

function on 1° such that f'eL[a,b], where a,bel’ 1/q
. . . . 1 1p Up
with a<b . If | f'|9 is quasi-geometrically convex on x| ———| 1C77(p,a,b)+Cg " (p,a,b);.
| £'[* is quasi-g y [2q+1(q+1J { 7 8 }

1eop VP
x| ——> | IcY9aq,ab)+Cy%a,ab)!.
[6P+1(p+1)J { 7 8 }

[a,b] for some fixed g>1 and 0< £ <1/2<A<1, then
the following inequality holds Corollary 8 Under the assumptions of Theorem 5 with
#=0 and A=1 the inequality (5) reduced to the
' (4,m2,b) following inequality
1
f(a)"] |° 1t
<In(b/a)| sup | ( )|q (5) f(\/%)_m(b/a),l. u du
1(6) a 1
x{C? (p.a,b)CE (g, )+ C§ P (p,a,b)CY (0, 1)} < In(b/a)(sup{| t'(a) |f '(b)|“}jq
where Cg,Cq,C;,Cq are defined as in Theorem 4 and 1 U
| —— {c%”’(p,a,b)+c§’P(p,a,b)}.
l+£:1_ 2C|+1(q+1)

P q



46

Turkish Journal of Analysis and Number Theory

Corollary 9 Under the assumptions of Theorem 5 with
u=1/6 and 1 =5/6, the inequality (5) reduced to the

following inequality

1[ f(a)+ f (b) 1 %t
5[ 2 +2f(“ab)}_ln(b/a)a e
1
In(b/ , , q
S@(SUP{“ (a)|q,|f (b)|q}jq
100 )

x e —
69 (q+1)

{c%’P(p,a,b)+c;’P(p,a,b)}.
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