Numbers Related to Bernoulli-Goss Numbers

Mohamed Ould Douh Benough*

Département de Mathématique-Informatique, Université des Sciences, de Technologie et de Médecine, Nouakchott, Mauritanie *Corresponding author: mdouh@univ-nkc.mr

Abstract In this paper, we generalize a Goss result appeared in ([5], page 325, line 19, for i=1), and give a characterization of some numbers of Bernoulli-Goss [5] by introducing the special numbers M(d).

Keywords: Bernoulli-Goss, Carlitz Module, congruence, irreducible polynomials.

Cite This Article: Mohamed Ould Douh Benough, "Numbers Related to Bernoulli-Goss Numbers." *Turkish Journal of Analysis and Number Theory*, vol. 2, no. 1 (2014): 13-18. doi: 10.12691/tjant-2-1-4.

1. Introduction

Let \mathbb{F}_q be a finite field of $q=p^n$ elements, $q\geq 3$, p is the characteristic of \mathbb{F}_q , n>1 . Let

$$B(n) = \sum_{\mathbf{a} \in \mathbb{F}_q[T], \mathbf{a} \text{ monic}} a^n$$

denotes the n-th Bernoulli-Goss number [5] which is a special value of the zeta function of Goss and is in $\mathbb{F}_q[T]$. In the following we give a characterization of monic irreducible polynomials dividing $B(q^d-2)$ by introducing the numbers M(d), for d=1,2,3.

2. Definitions and Notations

In this section, we introduce some definitions and notation that will be used throughout the paper .

- \mathbb{F}_q is a finite field of q elements, q is a power of a prime p, $q \ge 3$;
- $A = \mathbb{F}_q[T]$, $k = \mathbb{F}_q(T)$, $k_{\infty} = \mathbb{F}_q(\frac{1}{T})$;
- $A^+ = \{monic (in T) \in A\};$
- Let $P \in A$, we say that p is prime if $P \in A^+$ and p is irreducible:
- $v_P(.)$ is the P adic valuation where p is a prime;
- $\forall i \geq 1, [i] = T^{q^i} T;$
- $L_0 = 1$, and $\forall i \ge 1$, $L_i = [i] \cdot [i-1] \cdot ... [1]$;
- $D_0 = 1$, and $\forall i \ge 1$, $D_i = [i] \cdot [i-1]^q \cdot ... [1]^{q^{i-1}}$.

3. Carlitz Module

Let ρ be the Carlitz module which is a morphism of \mathbb{F}_q -algebras from $\mathbb{F}_q[T]$ into the \mathbb{F}_q - endomorphisms of the additive group given by $\rho_T(X) = T.X + X^q$, for

$$a = a_n T^n + a_{n-1} T^{n-1} + \ldots + a_0 \in A$$
,

$$\rho_{a}\left(X\right) = \sum_{i=0}^{i=n} \mathbf{a}_{i} \rho_{T^{i}}\left(X\right) = \sum_{i=0}^{i=n} \begin{bmatrix} \mathbf{a} \\ \mathbf{i} \end{bmatrix} X^{q^{i}}, \begin{bmatrix} \mathbf{a} \\ \mathbf{i} \end{bmatrix} \in \mathbf{A},$$

and

for
$$\alpha \in \mathbb{F}_q$$
, $\rho_{\alpha}(X) = \alpha . X$

3.1.1. Lemma ([5], Proposition 3.3.10)

Let
$$a \in A, n \in \mathbb{N}$$
, then $\begin{bmatrix} a \\ i+1 \end{bmatrix} = \frac{\begin{bmatrix} a \\ i \end{bmatrix}^q - \begin{bmatrix} a \\ i \end{bmatrix}}{[i+1]}$

Where
$$[j] = T^{q^j} - T$$
 for $j \ge 1$

3.1.2. Lemma

Let $a \in A - \{0\}$ of degree n, then

1).
$$\deg[_{i}^{a}] = q^{i}(n-i)$$
 if $0 \le i \le n$

$$2). \begin{bmatrix} a \\ i \end{bmatrix} = 0 \text{ if } i \ge n+1$$

Proof

The proof is very easy and can be done with the following

Hints:

- 1). By induction on i
- 2). This is obvious.

3.1.3. Lemma

Let P be a prime of degree d and let $n \ge 1$, then

$$v_P \begin{bmatrix} P^n \\ k \end{bmatrix} = n - \begin{bmatrix} k \\ d \end{bmatrix}, if \quad 0 \le k \le n$$

Proof

The proof can be done by induction on k.

4. A remarkable Congruence

4.1.1. Definition

Let $j \in \mathbb{N}, i \in \mathbb{Z}$, we set

1.
$$S_j(i) = \sum_{a \in A^+, \deg_T a = j} a^i$$

$$E_0(X) = X$$
 and for $j \ge 1$,

$$E_0(X) = X \text{ and for } j \ge 1,$$

$$2. \qquad E_j(X) = \prod_{a \in A, \deg_T a < j} (X - a)$$

We have : $E_j(T^j) = D_j$, and using Carlitz's theorem ([5], Theorem 3.1.5),

$$E_{j}(X) = \sum_{l=0}^{l=j} (-1)^{j-l} \frac{D_{j}}{D_{l}(L_{i-l})^{q^{l}}} X^{q^{l}}$$

Now, we present our first theorem which generalizes a result of Goss appeared in [5], page 325, line 19 for i=1.

4.1.2. Theorem

Let $1 \le i \le q$, then

$$\forall j \geq 0, S_j\left(-i\right) = \frac{(-1)^{ij}}{\left(L_j\right)^i}$$

Proof

We have

$$E_{j}\left(X+T^{j}\right)=E_{j}\left(X\right)+D_{j}=\prod_{a\in A^{+},\deg_{T}a=j}(X+a)$$

On the other hand, we have:

$$\frac{d}{dX}E_j\left(X+T^j\right) = (-1)^j \frac{D_j}{L_i}$$

So the logarithmic derivative of $E_j(X+T^j)$ is:

$$(-1)^{j} \frac{D_{j}}{L_{j}} \frac{1}{E_{j}(X+T^{j})} = \sum_{a \in A^{+}, \deg_{T} a = j} \frac{1}{X+a}$$

Thus

$$\frac{1}{X+a} = \frac{1}{a} \cdot \frac{1}{1+\frac{X}{a}} = \frac{1}{a} \cdot \sum_{n \ge 0} (-1)^n a^{-n} X^n$$

Therefore:

$$\sum_{a \in A^{+}, \deg_{T} a = j} \frac{1}{X + a} =$$

$$= \sum_{n \ge 0} (-1)^{n} X^{n} \sum_{a \in A^{+}, \deg_{T} a = j} a^{-(n+1)}$$

$$= \sum_{n \ge 0} (-1)^{n} X^{n} S_{j}(-(n+1))$$

On the other hand, we have:

$$\frac{1}{E_{j}(X) + D_{j}} = \frac{1}{D_{j}} \cdot \frac{1}{1 + \frac{E_{j}(X)}{D_{j}}}$$

$$= \frac{1}{D_{j}} \cdot \sum_{m \ge 0} (-1)^{m} \left(\frac{E_{j}(X)}{D_{j}}\right)^{m}$$

$$= \frac{1}{D_{j}} \cdot \sum_{m \ge 0} (-1)^{m} \cdot D_{j}^{-m} (E_{j}(X))^{m}$$

Since

$$\frac{E_j(X)}{D_j} = \sum_{m=0}^{j} (-1)^{j-m} \frac{1}{D_m(L_{j-m})^{q^m}} \cdot X^{q^m}$$

$$\equiv \frac{(-1)^j}{L_i} \cdot X \operatorname{mod}(X^q)$$

We deduce that

$$\begin{split} \frac{{{{(- 1)}^j}{D_j}}}{{{L_j}}}.\frac{1}{{{E_j}\left(X \right) + {D_j}}}\\ & = \sum\limits_{m = 0}^{q - 1} {\frac{{{{(- 1)}^{\left({m + \left({m + 1} \right)j} \right)}}}{{{{({L_i})}^{m + 1}}}}.{X^m}\operatorname{mod}({X^q})} \end{split}$$

By identification, we obtain:

$$(-1)^{m} S_{j} (-(m+1)) = \frac{(-1)^{(m+(m+1)j)}}{(L_{j})^{m+1}}$$

$$\Rightarrow S_{j} (-(m+1)) = \frac{(-1)^{(m+1)j}}{(L_{j})^{m+1}}$$

Therefore:
$$S_j(-i) = \frac{(-1)^{ij}}{L_i^i}$$

This terminates the proof.

4.1.3. Definition

We define the i-th Bernoulli-Goss numbers as follows: B(0) = 1

and

$$B(i) = \sum_{j \ge 0} S_j(i) \in A, if \ i \ne 0 \bmod (q-1)$$

$$B(i) = \sum_{i \ge 1} jS_i(i) \in A, if \ i \equiv 0 \mod(q-1), i \ge 1,$$

4.1.4. Theorem ([11], Theorem10)

Let be a prime of degree d,

$$0 \le i \le d-1$$
 and $1 \le c \le q-2$, then

$$B\left(q^{d}-1-cq^{i}\right) \equiv \left(\sum_{j=0}^{d-1} \frac{\left(-1\right)^{c,j}}{L_{j}^{c}}\right)^{q^{i}} \operatorname{mod}(P) \qquad \Box$$

Proof

We have

$$q^{d} - 1 - cq^{i} \equiv -cq^{i} \not\equiv 0 \operatorname{mod}(q - 1).$$

Therefore

$$B\!\left(q^{d}-1\!-\!cq^{i}\right)\!=\!\sum{}_{m\geq0}S_{m}\!\left(q^{d}-1\!-\!cq^{i}\right)$$

For $i \in \mathbb{N}, i = a_0 + a_1 q + \ldots + a_n q^n, a_i \in \left\{0,\ldots,q-1\right\}$, we denote $l(i) = a_0 + a_1 + \ldots + a_n$.

According to Sheats ([9]), we have if l(i) < j(q-1), therefore $S_i(i) = 0$, thus

for
$$j \ge d, S_j(q^d - 1 - cq^i) = 0$$
.

Hence, it follows that:

$$B(q^{d}-1-cq^{i}) = \sum_{j=0}^{d-1} S_{j}(q^{d}-1-cq^{i})$$
$$\equiv \sum_{l=0}^{d-1} S_{j}(-cq^{i}) \operatorname{mod}(P)$$

So according to Theorem 4.1.2, we have:

$$B(q^{d}-1-cq^{i}) \equiv \sum_{j=0}^{d-1} S_{j}(-cq^{i})$$

$$\equiv \left(\sum_{j=0}^{d-1} S_{j}(-c)\right)^{q^{i}} \operatorname{mod}(P)$$

$$\equiv \left(\sum_{j=0}^{d-1} \frac{(-1)^{c \cdot j}}{(L_{i})^{c}}\right)^{q^{i}} \operatorname{mod}(P)$$

This terminates the proof.

4.1.5. Lemma

Let P be a premier of degree d, then

$$\frac{\begin{bmatrix} P \\ k \end{bmatrix}}{P} \equiv \frac{(-1)^k}{L_k} \operatorname{mod}(P), for 0 \le k \le d - 1$$

Proof

This can be shown by a combination of an induction on k, and lemma 3.1

Now, we present the following remarkable congruence:

4.1.6. Theorem([11],Theorem 11)

Let P be a premier of degree d, then

$$\rho_{p-1}(1) \equiv 0 \bmod (P^2) \Leftrightarrow B(q^d-2) \equiv 0 \bmod P \qquad \Box$$

Proof

We have

$$\rho_{P-1}\left(1\right) = \sum_{k=0}^{d-1} \begin{bmatrix} P \\ k \end{bmatrix} = P \times \left(\sum_{k=0}^{d-1} \frac{\begin{bmatrix} P \\ k \end{bmatrix}}{P}\right)$$

$$\equiv P \times \left(\sum_{k=0}^{d-1} \frac{\left(-1\right)^k}{L_k} \right) \mod \left(P\right)$$
$$\equiv P \times B\left(q^d - 2\right) \mod \left(P\right)$$

Since for i = 0, c = 1, we have by Theorem 4.1.4 $B(q^d - 1 - 1.q^0) = B(q^d - 2)$, and

$$B(q^{d}-2) \equiv \left(\sum_{j=0}^{d-1} \frac{(-1)^{j}}{L_{j}}\right)^{q^{0}} \equiv \left(\sum_{j=0}^{d-1} \frac{(-1)^{j}}{L_{j}}\right) \operatorname{mod}(P)$$

$$\Rightarrow \rho_{P-1}(1) \equiv 0 \operatorname{mod}(P^{2}) \Leftrightarrow B(q^{d}-2) \equiv 0 \operatorname{mod}(P)$$

5. The Numbers M(d)

We note that:

$$\sum_{k=0}^{d-1} \frac{\left(-1\right)^k}{L_k} = \frac{1}{L_{d-1}} \cdot \sum_{k=0}^{d-1} \frac{L_{d-1} \left(-1\right)^k}{L_k}$$

5.1. Definition

For $d \ge 1$, we set

$$M(d) = \sum_{k=0}^{d-1} \frac{(-1)^k L_{d-1}}{L_k}, M(1) = 1$$

$$M(d) \in A^+$$
 and $\deg_T M(d) = \frac{q^d - q}{q - 1}$

According to theorem 4.1.6 if P is a prime of degree d, then

$$\rho_{P-1}(1) \equiv 0 \mod(P^2) \Leftrightarrow M(d) \equiv 0 \mod(P)$$

$$\Leftrightarrow B(q^d - 2) \equiv 0 \mod(P)$$

5.2. The Number M(2)

5.2.1. Lemma

M(2) is the product of $\frac{q}{p}$ distinct monic irreducible polynomials (prime) of A of degree p.

These polynomials are the divisors of the (q^2-2) - th Bernoulli-Goss number $B(q^2-2)$.

Proof

We have:
$$\frac{d}{dT}(T^q - T - 1) = -1$$

Let F(T) be a irreductible of degree d such that F(T) divides $T^q - T - 1, d \ge 1$

Let $\alpha \in \overline{\mathbb{F}}_q$, $F(\alpha) = 0$, $\mathbb{F}_{q^d} = \mathbb{F}_q(\alpha)$, d is the smallest integer $k \ge 1$ such that $\alpha^{q^k} = \alpha$

$$\alpha^{q} = \alpha + 1 \neq \alpha$$

$$\alpha^{q^{2}} = (\alpha + 1)^{q} = \alpha^{q} + 1 = \alpha + 2 \neq \alpha$$

$$\vdots$$

$$\alpha^{q^{p-1}} = (\alpha + 1)^{q} = \alpha + p - 1 \neq \alpha$$

$$\alpha^{q^{p}} = \alpha$$

$$\Rightarrow d = p.$$

Because

$$\alpha^{q^p} = \alpha \Rightarrow \alpha \text{ be a root of } T^{q^p} - T$$

This proves that : P divides
$$T^{q^p} - T$$

 $\Rightarrow \deg_T P = 1$ or $\deg_T P = p$
But $\alpha \notin \mathbb{F}_q \Rightarrow \deg_T P = p$.

The previous lemma answers the question: What are the primes of degree 2 dividing the $q^2 - 2$ - th Bernoulli-Goss number $B(q^2 - 2)$?.

i. e

$$\rho_P(1) \equiv 1 \mod (P^2) \Leftrightarrow M(2) \equiv 0 \mod (P)$$
$$\Leftrightarrow B(q^2 - 2) \equiv 0 \mod (P)$$

Conclusion

- If p = 2, there is exactly $\frac{q}{2}$ primes of degree 2 satisfying the equation
- If p ≠ 2, there is no prime of degree 2 satisfying the equation.

5.3. Number M(3)

Let P be a prime of degree 3 which divides M(3), P is a divisor of the q^3-2 -th Bernoulli-Goss number $B(q^3-2)$

$$M(3) = [2]M(2) + (-1)^{2}$$
$$= (T^{q^{2}} - T)(T^{q} - T - 1) + 1$$

Let $\alpha \in \overline{\mathbb{F}}_q$, $P(\alpha) = 0$, $\mathbb{F}_{q^3} = \mathbb{F}_q(\alpha)$, and

$$M(3)(\alpha) = 0 \Rightarrow (\alpha^{q^2} - \alpha)(\alpha^q - \alpha - 1) + 1 = 0$$

Let: $\beta = \alpha^q - \alpha$, we have :

$$\beta^{q} + \beta = (\alpha^{q} - \alpha)^{q} + (\alpha^{q} - \alpha)$$
$$= \alpha^{q^{2}} - \alpha^{q} + \alpha^{q} - \alpha = \alpha^{q^{2}} - \alpha.$$

There is two possible cases:

Case 1 if $\beta \in \mathbb{F}_q^*$, then

 $\mathbb{F}_q(\beta) = \mathbb{F}_q \Rightarrow \beta^q = \beta$ therefore α is a root of the polynomial $(T^q - T - \beta)$, with $\beta \in \mathbb{F}_q^*$. We have

$$\alpha^{q} = \alpha + \beta \Rightarrow (\alpha^{q})^{q} = (\alpha + \beta)^{q} =$$

$$\alpha^{q} + \beta = \alpha + \beta + \beta = \alpha + 2\beta \Rightarrow \alpha^{q^{2}} = \alpha + 2\beta$$

Then

$$\alpha^{q^3} = (\alpha + 2\beta)^q = \alpha^q + 2\beta = \alpha + \beta + 2\beta$$
$$\alpha^{q^3} = \alpha \Rightarrow 3\beta = 0 \Rightarrow p = 3$$

Moreover:

$$(\beta^q + \beta)(\beta - 1) + 1 = 2\beta(\beta - 1) + 1 \Rightarrow \beta^2 - \beta - 1 = 0$$

if

$$\Delta = 1 + 4 = 5 \in (\mathbb{F}_q^*)^2$$

$$\Leftrightarrow q = 3^s, s \equiv 0 \mod(2).$$

Since

$$5\in(\operatorname{\mathbb{F}}_q^*)^2,5\notin(\operatorname{\mathbb{F}}_3^*)^2$$

Let F an irreducible of degree d which divides $(T^q - T - \beta) \Rightarrow F$ is of degree 3, because if δ is a root of F, then

$$\delta^{q} - \delta - \beta = 0 \Rightarrow \delta^{q^{2}} = (\delta + \beta)^{q} = \delta^{q} + \beta = \delta + 2\beta$$
$$\Rightarrow \delta^{q^{3}} = \delta + 3\beta = \delta \Rightarrow \delta^{q^{3}} = \delta$$
$$\Rightarrow \delta \text{ is a root of } T^{q^{3}} - T$$

This proves that: F divide $T^{q^3} - T$ $\Rightarrow \deg_T F = 1 \text{ or } \deg_T F = 3$

But
$$\delta \notin \mathbb{F}_q \Rightarrow \deg_T F = 3$$
.

Therefore there is $\frac{q}{3}$ irreducible polynomial of degree 3 which divides $\left(T^q - T - \beta\right)$ and if F divide $\left(T^q - T - \beta\right) \Rightarrow F$ divide M(3).

Conclusion:

For $q = p^s$, $s \equiv 0 \mod(2)$,

there is : $2.(\frac{q}{3})$ irreducible polynomials of degree 3 dividing M(3)

Indeed, in this case, $5 \in (\mathbb{F}_q^*)^2$ and therefore the equation

$$X^2 - X - 1 = 0 (1)$$

has two solutions in \mathbb{F}_q , β_1 , β_2

For each β_i , i = 1, 2, there is $\frac{q}{3}$ irreducible polynomials of degree 3 which divide $\left(T^q - T - \beta_i\right)$, and thus divide (M)3.

Thus, if P is an irreducible of degree d which divides $(T^q - T - \beta)$, α is a root of P, then $P(\alpha) = 0$.

Therefore

$$\alpha^q - \alpha - \beta_i = 0 \Rightarrow \alpha^q - \alpha = \beta_i$$

But:

$$M(3)(\alpha) = (\alpha^{q^2} - \alpha)(\alpha^q - \alpha - 1) + 1$$

$$= (\beta_i^q + \beta_i)(\beta_i - 1) + 1, i = 1, 2$$

$$= 2\beta_i(\beta_i - 1) + 1 = 2\beta_i^2 - 2\beta_i + 1$$

$$= \beta_i^2 - \beta_i - 1 = 0$$

Since $\beta_i^q = \beta_i$, p = 3, β_i is a root of (1).

This proves that : P diivides M(3)

Case 2 if
$$\beta \notin \mathbb{F}_q^*$$
, then $\mathbb{F}_q(\beta) = \mathbb{F}_q(\alpha) = \mathbb{F}_{q^3}$

$$(\beta^{q} + \beta)(\beta - 1) + 1 = 0$$

$$\Rightarrow (\alpha^{q^{2}} - \alpha)(\alpha^{q} - \alpha - 1) + 1 = 0$$

Therefore:

$$\beta^{q} + \beta = -\frac{1}{\beta - 1} \Rightarrow \beta^{q} + \beta - 2\beta = -\frac{1}{\beta - 1} - 2\beta$$
$$\Rightarrow \beta^{q} - \beta = -\frac{1}{\beta - 1} - 2\beta$$
$$\Rightarrow Tr_{\mathbb{F}_{q}} \left(-\frac{1}{\beta - 1} - 2\beta \right) = 0$$

We set
$$\gamma = -\frac{1}{\beta - 1} - 2\beta$$

$$Tr_{\mathbb{F}_q^3}/(\gamma) = 0 \Rightarrow Tr_{\mathbb{F}_q^3}/(-\frac{1}{\beta - 1}) = 0$$

Since $Tr_{\mathbb{F}_q} / (\beta) = 0, \beta = \alpha^q - \alpha$ and Tr is linear,

then

$$Tr_{\mathbb{F}_q^3} (\beta) = 0 \Rightarrow Tr_{\mathbb{F}_q^3} \left(-\frac{1}{\alpha^q - \alpha - 1} \right) = 0$$

Because: $\alpha^q - \alpha \notin \mathbb{F}_q$.

So we have:

$$M(3) \equiv 0 \mod(P) \Rightarrow Tr_{\mathbb{F}_q} \sqrt[3]{\left(-\frac{1}{\alpha^q - \alpha - 1}\right)} = 0$$

From :
$$\mathbb{F}_q(\beta) = \mathbb{F}_q(\alpha) = \mathbb{F}_q^3$$

Let $Q(T) = Irr(\beta, \mathbb{F}_q, T), Q(T)$, has degree 3

and
$$Q(T) = T^3 + aT + b$$
, because

$$Tr_{\mathbb{F}_q^3}/(\beta) = 0 \Rightarrow Q(\beta) = \beta^3 + a.\beta + b = 0$$

Now we are looking for , $Irr \bigg(\frac{-1}{\beta-1}, \mathbb{F}_q, T \bigg) ?$

We look for F(T) of degree 3 such that

$$F\left(\frac{-1}{\beta-1},\right)=0,$$

We have:

$$\beta = \frac{1}{\frac{1}{\beta - 1}} + 1$$

And then

$$\left(\frac{1}{\frac{1}{\beta-1}+1}\right)^3 + a\left(\frac{1}{\frac{1}{\beta-1}}+1\right) + b = 0$$

We set

$$F_1(T) = (\frac{1}{T} + 1)^3 + a(\frac{1}{T} + 1) + b \Rightarrow F_1(\frac{1}{\beta - 1}) = 0$$

and we want to get $F \in \mathbb{F}_q[T]$

we have

$$F_1(T) = \frac{(T+1)^3}{T^3} + a\frac{T+1}{T} + b$$

$$\Rightarrow F_1(T) = \frac{(T+1)^3 + a(T+1)T^2 + bT^3}{T^3}$$

$$\Rightarrow F_1(T) = \frac{F(T)}{T^3} \Rightarrow F\left(\frac{1}{\beta - 1}\right) = 0$$

So we set

$$F(T) = T^{3}F_{1}(T) = T^{3}\left(\frac{(T+1)^{3}}{T^{3}} + a\frac{T+1}{T} + b\right)$$

$$= (T+1)^{3} + a(T+1)T^{2} + bT^{3}$$

$$\Rightarrow F(T) = (1+a+b)T^{3} + (3+a)T^{2} + 3T + 1$$

$$Tr\left(\frac{1}{\beta-1}\right) = 0 \Rightarrow 3+a = 0 \Rightarrow a = -3$$

Therefore the polynomial is as follows

$$Q(T) = T^3 - 3T + b$$

Thus Q(T) is an irreducible of degree 3 with constant term $b\neq 2$, because we have $\frac{1}{\beta-1}\in \mathbb{F}_q$ in the other case.

Before concluding we will answer the following question: for $q \ge 3$ is there infinitely many primes $P \in \mathbb{F}_q[T]$ such that :

$$\rho_{P-1}(1) \not\equiv 0 \bmod (P^2) \tag{2}$$

5.3.1. Proposition

Let $\,d \geq 1\,,$ there is at least one prime $\,P \in \mathbb{F}_q[T]\,$ of degree d such that

$$\rho_{P-1}(1) \not\equiv 0 \bmod (P^2)$$

Proof

We can assume $d \ge 2$.

$$\deg_T M(d) = \frac{q^d - q}{q - 1} < \frac{q^d}{q - 1}$$

According to ([7], Proposition 5.5), we have:

$$q^d - q^{\frac{d}{l}} < dN_a(d) < q^d$$

where $N_q(d)$ is the number of irreducible polynomials of degree $d\in\mathbb{F}_q[T]$, l is the smallest prime factor of d Therefore

$$dN_q(d) > q^d - q^{\frac{d}{2}} > q^d - \frac{q}{q-1}(q^{\frac{d}{2}} - 1)$$

If we had

$$M(d) \equiv 0 \mod (\prod_{P \ premier, \deg_T P = d} P)$$

we would have:

$$\deg_T M(d) \ge q^d - \frac{q}{q-1} \left(q^{\frac{d}{2}} - 1 \right)$$

$$\Rightarrow \frac{q^d}{q-1} > q^d - \frac{q}{q-1} \left(q^{\frac{d}{2}} - 1 \right)$$

i.e

$$(q-2)q^d < q \left(\frac{d}{q^2} - 1 \right)$$

which is impossible if $d \ge 2$. On the other hand:

$$dN_q(d) > q^d - \frac{q}{q-1}(q^{\frac{d}{2}} - 1)$$

Therefore

$$dN_q(d) - \deg_T M(d) > \frac{(q-2)q^d}{q-1} - \frac{q}{q-1}(q^{\frac{d}{2}} - 1)$$

Thus, there is at least

$$\frac{(q-2)q^d}{q-1} - \frac{q}{q-1}(q^{\frac{d}{2}} - 1)$$

prime of degree d which satisfy

$$\rho_{P-1}(1) \not\equiv 0 \bmod (P^2)$$

Conclusion

In this paper , we showed that there are infinitely many primes $\,P\in\mathbb{F}_{\alpha}[T]\,$ such that

$$\rho_{P-1}(1) \not\equiv 0 \bmod (P^2)$$

References

- G. Anderson. Log-Algebraicity of Twisted A-Harmonic Series and Special Values of L-series in Characteristic p, J.Number Theory 60(1996), 165-209.
- [2] B. Anglès and L. Taelman. On a Problem à la Kummer-Vandiver for function fields, to appear in J.Number Theory (2012).
- [3] L. Carlitz. An analogue of the Bernoulli polynomials .Duke Math. J.,8:405-412, 1941.
- [4] Ernst-Ulrich Gekeler. On power sums of polynomials over finite fields, J.Number Theory 30(1988), 11-26.
- [5] D. Goss. Basic Structures of Function Field Arithmetic, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol.35, Springer, Berlin, 1996.
- [6] Ireland K, Rosen M I. A classical introduction to modern number theory. New York: Springer, 1982.
- [7] M. Mignotte. Algébre Concrete, Cours et exercices.
- [8] M. Rosen. Number theory in function fields. Springer-Verlag, New York, 2002.
- [9] J. T. Sheats. On the Riemann hypothesis for the Goss Zeta function for F_q[T], J Number Theory 71(1); (1998), 121-157.
- [10] D. Thakur. Zeta measure associated to, $\mathbb{F}_q[T]$ J.Number Theory 35(1990), 1-17.
- [11] Mohamed Ould Douh Benough. Corps de Fonctions Cyclotomiques, Thèse Doctorat de l'Université de Caen, France (2012).