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Abstract

In this paper, we generalize a Goss result appeared in ([5], page 325, line 19, for i=1 ), and give a

characterization of some numbers of Bernoulli-Goss [5] by introducing the special numbers M(d).
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1. Introduction

Let I, be a finite field of q= p" elements, >3 , p
is the characteristic of Fy,n>1. Let

B(n)= > a"

aeIFq[T],a monic

denotes the n-th Bernoulli-Goss number [5] which is a

special value of the zeta function of Goss and is in Fy[T] .

In the following we give a characterization of monic
irreducible  polynomials  dividing B(qOI -2) by
introducing the numbers M (d), for d =1,2,3 .

2. Definitions and Notations

In this section, we introduce some definitions and
notation that will be used throughout the paper .

o Fyis a finite field of g elements , g is a power of a
prime p, q>3;

o A=Fy[T]  k=Fy(T), szqu(%);
o A" ={monic(inT)eA};

elet Pe A, we say that pis prime if Pe A" and p
is irreducible;
e vp(.) is the P —adic valuation where p isa prime ;

. vizl,[i]qui -T;
e Lg=Land Vi>1L; =[i].[i-1]...[1];

e Dy =1, and Vi >1,D; =[i].[i~1]° e

3. Carlitz Module

Let p be the Carlitz module which is a morphism of
IFy -algebras from F,[T] into the F,- endomorphisms of

the additive group given by pr (X)=T.X + X9, for

a=a, T "+a,T" 1+ . 135 €A,

pa(X)= X 5B ()= T x e

1
and
for @ ey, py (X) =X

3.1.1. Lemma ([5], Proposition 3.3.10)

i+ [i+1]

Where [j]:TqJ -T for j>1
3.1.2. Lemma

Leta € A—{0} of degree n, then

1). deg[?]=q'(n—i) if 0<i<n

2. M:Oif i>n+1

i

Proof

The proof is very easy and can be done with the
following

Hints:

1). By induction on i
2). This is obvious. a

3.1.3. Lemma
Let P be a prime of degree d and let n>1, then

n
Vpl:P :|:n—|:£:|,if 0<k<n
k d
Proof

The proof can be done by induction on k. a
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4. A remarkable Congruence

4.1.1. Definition
Let jeN,ieZ, we set
Lsj(i)= > @
acAtdedT a=]
Eo(X)=X and for j>1,

2 Ei(X)= ]I

acA,degT a<j

(X -a)

We have : E; (Tj): D;. and using Carlitz's theorem
([5], Theorem 3.1.5),

= ; D; |
- J
Ej(X)=2 ()" ————X1
=0 Dy (L)

Now, we present our first theorem which generalizes a
result of Goss appeared in [5], page 325, line 19 for i=1.
4.1.2. Theorem

Let 1<i<q, then

(9}
Proof
We have
Ej(X+T))=E;(x)+Dj=  [I (X+a)

aeA+,degT a=j

On the other hand, we have :

diXEj(X+Tj)=(—1)jIE—jj

So the logarithmic derivative of E; (X +T j) is:

D

S raea t D M

i Bj(X+T7) acA’ degt a=j
Thus
1 =1_szll2(_l)na—nxn
X +a a; A ajy
a

Therefore:

Y -

+a

aeA+,degT a=j
_ (_1)n X n Z a—(n+1)
n=0 acA’ degt a=j
=2 n0(-1)" XS (~(n+1))

On the other hand, we have :

o

-1 (_1)(m+(m+1)1)
=y L XM mod(X?)
m=0 (Lj)

By identification, we obtain:
(_1)(m+(m+1) )
m+1
(L)

(_1)(m+1)j
(Lj >m+1

g\
Therefore : S (—i):&
|
Lj
This terminates the proof. d

(-1)"sj(~(m+1))=

=Sj(~(m+1))=

4.1.3. Definition
We define the i-th Bernoulli-Goss numbers as follows:
B(0)=1
and
B(i)=Y_Sj(i)e Aif i = 0mod(q-1)
>0

B(i)=D j=1iS;(i)e Aif i=0mod(q-1),i>1,

4.1.4. Theorem ([11], Theorem10)

Let be a prime of degree d,
0<i<d-1 and 1<c<q-2, then

1 C.j qi
B(qd _1_qu)5£(12¢] mod(P) a

=0

Proof
We have
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q% -1-cq' =—cq' = 0mod(q-1).

Therefore
B( d_q- cq) > m=0Sm (qd—l—cqi)

For ieN,i=ap+a,q+...+a,q",a; €{0,...,q-1} , we
denote I(i)=ag+a; +...+ay.
According to Sheats ([9]), we have if I(i) < j(q-1),

therefore sj(i)=o, thus
for jzd,Sj(qd —1—cqi):

Hence, it follows that:

(q -1- cq) dz_:l (qd —1—cqi)
Ef ( )mod(P)

So according to Theorem 4.1.2, we have :

oo ~1-ed')= ZS( )

d-1 g
=| 2.5j(=¢)| mod(P)
j=0
q
d-1 1 c
= > (-1 —| mod(P)
i0 (L
This terminates the proof. d
4.1.5. Lemma
Let P be a premier of degree d, then
i
k
LD d(p), foro <k <d -1 m|
P Ly
Proof
This can be shown by a combination of an induction on
k, and lemma 3.1 d

Now, we present the following remarkable congruence:

4.1.6. Theorem([11], Theorem 11)
Let P be a premier of degree d, then

ppa@=0mod (P?) & B(q -2)=0mod P O

[ Jmod(P)

( ) mod (P)

Since fori =0,c =1, we have by Theorem 4.1.4
B(qd —1—1.q0) = B(qd —2) , and

]

= pp_1(1)=0moad (P?} < B(q” ~2) = Omod(P)

5. The Numbers M(d)
We note that :

d_l(—l)k_ 1 g, (-0
ko ko b

5.1. Definition

Ford >1, we set

d [—
M(d)e A" and degTM(d):% m]
q J—
According to theorem 4.1.6 if P is a prime of degree d,
then

pp-1(1)=0mod(P?) & M (d) =0 mod(P)

= B(qd - 2) =0mod(P)

5.2. The Number M(2)

5.2.1. Lemma

M(2) is the product of a distinct monic irreducible
p

polynomials (prime) of A of degree p.
These polynomials are the divisors of the (q2 —2) - th

Bernoulli-Goss number B(q2 —2). d
Proof
d
We have: —(T9-T-1)=-1
dT T )
Let F(T) be a irreductible of degree d such that
F(T)dividesT9-T -1,d >1

Let aeI"Fq,F(a)zo,Iqu =F,

q(a),d is the smallest

k
integer k >1 suchthat % =«



16 Turkish Journal of Analysis and Number Theory

al=a+lza

2
a¥ =(@+)¥=aY+1=a+2#a

=)
a9’ =(a+)¥=a+p-lza

p
Olq =
=d=p.
Because
qP qP
a’ =a=abearootof T" -T

This proves that : P divides TaP 7

=degr P=1or degr P=p

But o ¢ F; = degr P =p. d

The previous lemma answers the question: What are the
primes of degree 2 dividing the q2 —2- th Bernoulli-Goss

number B(q2—2)?.
i.e
pp (1) =1mod(P? ] < M (2) =0 mod (P)
& B(q? -2)=0mod (P)
Conclusion
o If p=2, there is exactly g primes of degree 2

satisfying the equation
o If p =2, there is no prime of degree 2 satisfying the
equation.

5.3. Number M(3)

Let P be a prime of degree 3 which divides M(3), P is a
divisor of the q3 —2 -th Bernoulli-Goss number

ofe -2
M (3)=[2]M (2)+(-2)"
:[qu —Tj(Tq—T —1)+1
Let aeI‘Fq,P(a)zo,Fq3 =Py («), and

M(3)(a)=0= (% -a)(a-a-1)+1=0
Let: f=a%—-a, we have :

B4 p=(a"-a) + (@ -a)

2 2
=0tq —C(q +(Zq —a:aq — .

There is two possible cases:
Caselif fe F, , then

Fy

polynomial (T% —T — 8), with g e IF;. We have

(B)=Fy = p9=p therefore a is a root of the

af =a+ﬂ:(aq)q =(a+p)! =

all +,B:a+,8+,8:a+2ﬁ:>aq2 =a+2p
Then
o =(a+2p)' =a+2p=a+p+2p
o =a=38=0=p=3

Moreover :
(ﬁq +,B)(/:’—1)+1:2,B(/3—1)+1:/32—,B—l=0
if

A=1+4=5¢ (F,)?

< q=3,s=0mod(2).
Since

5 (Fy)?, 5¢ (F3)?

Let F an irreducible of degree d which divides
(T9=T - p)=F is of degree 3, because if § is a root
of F, then

2
39-6-p=0=6% =(6+p)1=6%+p=06+2p
3 3
=06% =5+38=6=06% =6
3
=sisarootof T9 —-T

3
This proves that: F divide T9 —-T
= degt F=1ordegr F =3
Buts ¢ Iy = degr F =3. a

Therefore there is q irreducible polynomial of degree

3 which divides (Tq—T—ﬂ) and if F divide

(T9-T-5)=F divide M (3).
Conclusion:
For g = p°,s=0mod(2),

there is : 2.(%) irreducible polynomials of degree 3

dividing M(3)
Indeed, in this case, 56(]F;)2 and therefore the
equation
X2-X-1=0 (1)
has two solutions in Ty, £, 5>
q

For each fi=12, there is 3 irreducible polynomials

of degree 3 which divide (Tq -T —ﬂi), and thus divide

(M)3.
Thus, if P is an irreducible of degree d which

divides(Tq—T—ﬁ), a isarootof P, then P(a)=0.
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Therefore
a'-a-f=0=a-a=p
But:
M (3)(a) = (@ ~a)(at-a-1)+1
:(ﬁiq +,Bi)(ﬂi ~1)+1,i=1,2
=25, (B —1)+1=282 -2, +1
= -5 —-1=0

Since B = £, p =3,/ isaroot of (1).
This proves that : P diivides M (3)
Case 2if B¢ F,, then Fy (B)= Fy (a)= Fq3

(8Y+8)(B-1)+1=0
:>(aq2 —aJ(aq —a—1)+1:0
Therefore:

A, 5__ Y a5 051
plepm = B p2p =2

= =2

1
T - =
= rFqV( 51 Zﬁj 0
Ky

1
Weset y=—=——-2
I 5 s

1
TrFqV (}/) =0= Tr]Fq7 (—ﬂj =0
Fq fq

Since Trp , /(8)=0,f=a%~a and Tr is linear,
e

then

1
Trﬂr ﬂ =0:>TI’IF (——j:o
¢ (#) o a%-a-1
Fq Fq

Because: a9 -a ¢ Fy.
So we have:

1
M (3)=0mod(P) =T = -0
(3)=0mod(P) = nqu( aq—a—lj
Fq
From : Fy (8) =Fy (@) :]Fq3
Let Q(T)=1Irr(B,Fy,T), Q(T), has degree 3
and Q(T):T3+aT +Db, because

Trﬂrqy(ﬂ)=0:>Q(ﬁ)=ﬂ3+aﬁ+b=0
Fq

Now we are looking for , Irr _—1,Fq,T ?
p-1

We look for F(T) of degree 3 such that

(ar

We have :
p= i +1
p-1
And then
( ! )3 +a( 1 +1)+b=0
1 1
74_1 -
p-1 p-1
We set

F(T)= (%+1)3+a(%+1j+b:> Fl(ﬁjzo

and we want to get F € F [T |

we have
3
Fl(T)_(TT+31) +a$+b
D +a(T+1)T2+bT3
:>F1(T)=(T+) +a( ;—) +b
T
F(T) 1
FR(T)=—2=F|— =0
So we set
3
T+1
F(T):T3F1(T):T3{(T;3)+a$+b]
=T+ +a(T+1)T2 +bT3

= F(T):(1+a+b)T3+(3+a)T2+3T +1

Tr(ilj=0:>3+a=0:a=—3

Therefore the polynomial is as follows
Q(T)=T3-3T+b
Thus Q(T) is an irreducible of degree 3 with constant

1 .
term b # 2, because we have 1 e Fq in the other case.

a
Before concluding we will answer the following
question: for >3 is there infinitely many primes

P e Fy[T] such that :

pp_1(1) = 0 mod (P?) (2)
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5.3.1. Proposition
Let d>1, there is at least one prime P e[y[T] of
degree d such that
pp_1(1) = 0 mod (P?)
Proof
We can assume d >2.
d

d
9g-9_4¢

d M(d)= —_

egr M (d) q-1 <q—1

According to ([7], Proposition 5.5) , we have :
d
q’ —q! <dNg(d) <q*

where Nq(d) is the number of irreducible polynomials
of degree d e Fy[T], I is the smallest prime factor of d
Therefore

d d
dNg(@) > d’ -2 > q° - (a2 -

If we had
M (d)E 0mod (I1p premier,degt P=d P)

we would have :

N

(q-2)q% <q| g2 -1

which is impossible if d >2.
On the other hand:

d
d q 7
Ng(@)> 4" - @2 -

Therefore

d d
AN, (d) - degy M(d) > 929 __9_(qz _y)

q- q-1

Thus, there is at least

d
(9-2)q° _9 g2y
qg-1 9q-1
prime of degree d which satisfy
pp_1(1) = 0 mod (P?)

Conclusion
In this paper , we showed that there are infinitely many
primes P e Ify[T] such that

pp_1(1) = 0 mod (P?) m]
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