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1. Introduction 
As is known, the Daehee polynomials are defined by 

the generating function to be 
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(see [5,6,7,9,10,11,12]). 
In the special case, ( )0, 0n nx D D= =  are called the 

Daehee numbers. 
Let ,p p   and p  denote the rings of p-adic 

integers, the fields of p-adic numbers and the completion 
of algebraic closure of .p  The p-adic norm . p  is 

normalized by 1 .pp p=  Let ( )p  be the space of 

uniformly differentiable functions on .p  For 

( ) ,pf UD∈   the p-adic invariant integral on p  is 

defined by 
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(see [7,8]). 
Let 1f  be the translation of f  with ( ) ( )1 1 .f x f x= +  

Then, by (1.2), we get 
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As is known, the Stirling number of the first kind is 
defined by 
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and the Stirling number of the second kind is given by the 
generating function to be 
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(see [2,3,4]) . 
For ,α ∈  the Bernoulli polynomials of order α  are 

defined by the generating function to be 
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(see [1,2,9]). 

When ( ) ( ) ( )0, 0n nx B Bα α= =  are called the Bernoulli 
numbers of order .α  

A hyper-geometric series Kk c∑  is a series for which 

0 1c =  and the ratio of consecutive terms is a rational 
function of the summation index ,k  i.e., one for which 
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with ( )P k  and ( )Q k  polynomials. In this case, kc  is 
called a hyper-geometric term. The functions generated by 
hyper-geometric series are called generalized hyper-
geometric functions. If the polynomials are completely 
factored, the ratio of successive terms can be written 
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(see [13]), 
where the factor of 1k +  in the denominator is present 

for historical reasons of notation, and the resulting 
generalized hyper-geometric function is written 
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(see [13]). 



60 Turkish Journal of Analysis and Number Theory  

If 2p =  and 1,q =  the function becomes a traditional 
hyper-geometric function ( )2 1 , ; ; .F a b c x  Many sums can 
be written as generalized hyper-geometric functions by 
inspections of the ratios of consecutive terms in the 
generating hyper-geometric series. 

We introduce the hyper-geometric Daehee numbers and 
polynomials. From our definition, we can derive some 
interesting properties related to the hyper-geometric 
Daehee numbers and polynomials. 

2. The Hyper-Geometric Daehee 
Numbers and Polynomials 

First, we consider the following integral representation 
associated with falling factorial sequences : 
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By (2.1), we get 
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(see [6]), where pt∈  with 
1

1.p
pt p

−
−<  

For pt∈  with 
1

1 ,p
pt p

−
−<  let us take 

( ) ( )1 .xf x t= +  Then, from (1.3), we have 

 ( ) ( ) ( )
0

log 1
1 .x

p

t
t d x

t
µ

+
+ =∫



 (2.3) 

By (1.1) and (2.3), we see that 
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(see [6]). 
Therefore, by (2.4), we obtain the following Lemma. 

Lemma 1. For 0,n ≥  we have 
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For ,n∈  it is known that 
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(see [4,5,6]). 
Thus, by (2.5), we get 
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where ( ) ( )n
kB x  are the Bernoulli polynomials of order .n  

In the special case, ( ) ( ) ( )0, 0n n
k kx B B= =  are called the 

n-th Bernoulli numbers of order .n  
From (2.4), we note that 
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(see [6]). 
Thus, by (2.7), we get 
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and, from (2.5), we have 
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(see [6]). 
Therefore, by (2.8) and (2.9), we obtain the following 

Lemma. 
Lemma 2. For 0,n ≥  we have 
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and 
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By Lemma 1, we easily see that 
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(see [6]), where lB  are the ordinary Bernoulli numbers. 
From Lemma 2, we have 
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(see [6]), where ( )lB x  are the Bernoulli polynomials 
defined by generating function to be 
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Therefore, by (2.10) and (2.11), we obtain the following 
corollary. 
Corollary 3. For 0,n ≥  we have 
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and 
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(see [6]). 
Therefore, by (2.12) and (2.13), we obtain the following 

Lemma. 
Lemma 4. For 0,n ≥  we have 
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Remark. For 0,m ≥  by (2.11), we have 

 ( ) ( ) ( ) ( )0 2
0

, .
m

m
n

p n
x y d y D x S m nµ

=
+ = ∑∫



  

(see [6]). 

Now, we define the hyper-geometric Daehee 
polynomials 
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For example, we have 
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Thus the hyper-geometric Daehee number are defined by 
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Note that 1,N nD D=  is the Daehee number. 
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where ( ) ( ) ( )1 1 .nna a n a= + −  
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Therefore, by (2.18), we obtain the following theorem. 
Theorem 5. For 0,n ≥  we have 
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Therefore, by (2.19), we obtain the following theorem. 
Theorem 6. For 0,n ≥  we have 
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