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1. Introduction

As is known, the Daehee polynomials are defined by
the generating function to be

('Og(tﬂ](ut)x = i Dy (X)tn_n!'

(see [5,6,7,9,10,11,12]).
In the special case, x=0,D, = D, (0) are called the

Daehee numbers.
Let Zp,(@p and (Cp

integers, the fields of p-adic numbers and the completion
of algebraic closure of Q,. The p-adic norm ||p is

normalized by |p|p :}/p. Let (Z

uniformly  differentiable

(1.1)

denote the rings of p-adic

p) be the space of

functions on Z For

p-
erD(Zp), the p-adic invariant integral on Z, is

defined by

L(f)=[ f(x)d _||m— f(x), (1.2)
(=1, 000 = fm z
(see [7,8]).
Let f; be the translation of f with f (x)= f(x+1).

Then, by (1.2), we get

I(f)=1(f)+f'(0),where f'(0)=

As is known, the Stirling number of the first kind is
defined by

(X),, = X(x=1)--+(x— n+1:i x', (1.4)

and the Stirling number of the second kind is given by the
generating function to be

0

(¢ —l)m =m'D.S, ("m)tl_ll’

I=m

(1.5)

(see [2,3,4]) .
For o €N, the Bernoulli polynomials of order o are
defined by the generating function to be

t a . 0 o tn
[et _1} e = Z Bl(1 )(X)_’
(see [1,2,9]).

When x=0,B(*) :B,({")(O) are called the Bernoulli

numbers of order a.
A hyper-geometric series chK is a series for which

(1.6)

Cp =1 and the ratio of consecutive terms is a rational
function of the summation index k, i.e., one for which

Gu1 _ P(K)
c  Q(k)

with P(k) and Q(k) polynomials. In this case, ¢ is

called a hyper-geometric term. The functions generated by
hyper-geometric series are called generalized hyper-
geometric functions. If the polynomials are completely
factored, the ratio of successive terms can be written

G P(K) (k+a1)(k+a2)-~-(k+ap)
& Q(K)  (k+by)(k+by)-(k+bp)(k+1)
(see [13]),
where the factor of k +1 in the denominator is present

for historical reasons of notation, and the resulting
generalized hyper-geometric function is written

a a a
pFq . P x|=> cx*
by by by k=0

1.7

(1.8

(see [13]).
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If p=2 and gq=1, the function becomes a traditional
hyper-geometric function 2F1(a,b;c;x). Many sums can

be written as generalized hyper-geometric functions by
inspections of the ratios of consecutive terms in the
generating hyper-geometric series.

We introduce the hyper-geometric Daehee numbers and
polynomials. From our definition, we can derive some
interesting properties related to the hyper-geometric
Daehee numbers and polynomials.

2. The Hyper-Geometric  Daehee

Numbers and Polynomials

First, we consider the following integral representation
associated with falling factorial sequences :

ij(x)ndyo(x), whereneZ, =Nu{0}. (2.1)

By (2.1), we get

(2.2)

(see [6]), where te C, with |t|p <p PL.
1
For teC, with

f(x)=(1+1)"

|t|Io <p PL let us take
. Then, from (1.3), we have

log(1+t)

ij(1+t)Xdyo(x): t (2.3)
By (1.1) and (2.3), we see that
g t" log(l+t)
%D”E_ t
= [, (@+t)duo (%) (2.4)
p
0 tn
= Zo_"zp (X)n dﬂo (X)m

(see [6]).
Therefore, by (2.4), we obtain the following Lemma.
Lemma 1. For n>0, we have

J,. (s ()= O,

For neZ, itis known that

n 0 k

t (k- n+1 t
- B -
[Iog(1+t)j ké) k!

(see [4,5,6]).
Thus, by (2.5), we get

(2.5)

D=, ()0 (x) =87 1).(c>0), 26

where B&n) (x) are the Bernoulli polynomials of order n.

In the special case, x =0, Blgn) = Bl((n) (0) are called the

n-th Bernoulli numbers of order n.
From (2.4), we note that

(Lt [, () dug(y
p

. (2.7
= 2. Dn(x
n=0
(see [6]).
Thus, by (2.7), we get
_[Zp(x+y)nd,uo(y):Dn(x),(nzo), 2.8
and, from (2.5), we have
Dy (¥) = B2 (x+1). (2.9)

(see [6]).

Therefore, by (2.8) and (2.9), we obtain the following
Lemma.
Lemma 2. For n >0, we have

Dy (4)= [, (6 ¥), 10 ()

and

(n+2)

Dy (x) =By 7 (x+1).

By Lemma 1, we easily see that

n
Z n|B|,

(see [6]), where B are the ordinary Bernoulli numbers.
From Lemma 2, we have

Dn(x>=JZp(x+y)ndﬂo<y>

(2.10)

n (2.11)
=Y S1(n,1)B(x
1=0

(see [6]), where B(x) are the Bernoulli polynomials
defined by generating function to be

ZB

Therefore, by (2.10) and (2.11), we obtain the following
corollary.
Corollary 3. For n>0, we have

n
Z n|B|

e—l

In (2.4), we have
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el-1 i !
0 0 tm
=2 Dyp—nty Sy(mn)— (212
n=0 m=n
0 m tm
= > > DyS;y(m,n) —
m=0\n=0 m:
and
[°¢] m
LA o WL (2.13)
e' -1 mo M
(see [6]).

Therefore, by (2.12) and (2.13), we obtain the following
Lemma.
Lemma 4. For n >0, we have

m = i Dy Sz (m,n).

n=0
In particular,

Izp x"ds (x

ZDSZ m,n).

n=0
Remark. For m >0, by (2.11), we have

.[Zp(x+y d g (y ZD )Sz (m,n).
(see [6]).
Now, we define the hyper-geometric Daehee
polynomials
0 )
b 0
F(a | ]:z¥(- P @1
c o —C
n
where (x): x(x+1)---(x+n—1).
n n!
For example, we have
)
11 >
-5
n
w (_1\N
:lz( 1) X"+l (2.15)
Xnop N+l
—llo (1+x)
= ” g
< X
=> D,—.
Za " ni

Thus the hyper-geometric Daehee number are defined by

1 N
ZF( N+1|—t] nZ;SDNn

(2.16)

Note that Dy =

F(l N+1| j gol) N)”(:!)n, (2.17)

(N+
where (a) =a(n+1)---(a, -1).

D, is the Daehee number.

iDl,N (=)
& NIN(N+1)-+(N +n-1)(—x)"
_nzzé) (N+1)---(N+n)n!
Nt & (N+n-1)t
(N-1)1= (N+n)! (=)

NI & 1 n
:(N—l)!g)(N +n)(_x) '

Therefore, by (2.18), we obtain the following theorem.
Theorem 5. For n>0, we have

I:)1,N_N _\n
T

In (2.17), we have

(2.18)

s

X 1 N

= (_1)’\“1&'\]{'09 (1+x)- Nz_ll(_l)nil x”}

Therefore, by (2.19), we obtain the following theorem.
Theorem 6. For n>0, we have

e LN
N N+1

=log(1+x)—
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