The Hyper-Geometric Daehee Numbers and Polynomials

Jin-Woo Park¹, Seog-Hoon Rim¹, Jongkyum Kwon^{2,*}

¹Department of Mathematics Education, Kyungpook National University, Taegu, Republic of Korea ²Department of Mathematics, Kyungpook National University, Taegu, Republic of Korea *Corresponding author: mathkjk26@hanmail.net

Abstract We consider the hyper-geometric Daehee numbers and polynomials and investigate some properties of those numbers and polynomials.

Keywords: Daehee numbers, Hyper-geometric Daehee numbers and polynomials

Cite This Article: Jin-Woo Park, Seog-Hoon Rim, and Jongkyum Kwon, "The Hyper-Geometric Daehee Numbers and Polynomials." *Turkish Journal of Analysis and Number Theory* 1, no. 1 (2013): 59-62. doi: 10.12691/tjant-1-1-12.

1. Introduction

As is known, the Daehee polynomials are defined by the generating function to be

$$\left(\frac{\log(1+t)}{t}\right)(1+t)^{x} = \sum_{n=0}^{\infty} D_{n}\left(x\right)\frac{t^{n}}{n!},\tag{1.1}$$

(see [5,6,7,9,10,11,12]).

In the special case, $x = 0, D_n = D_n(0)$ are called the Daehee numbers.

Let $\mathbb{Z}_p, \mathbb{Q}_p$ and \mathbb{C}_p denote the rings of p-adic integers, the fields of p-adic numbers and the completion of algebraic closure of \mathbb{Q}_p . The p-adic norm $|\cdot|_p$ is normalized by $|p|_p = \frac{1}{p}$. Let (\mathbb{Z}_p) be the space of uniformly differentiable functions on \mathbb{Z}_p . For $f \in UD(\mathbb{Z}_p)$, the p-adic invariant integral on \mathbb{Z}_p is defined by

$$I(f) = \int_{\mathbb{Z}_p} f(x) d\mu_0(x) = \lim_{n \to \infty} \frac{1}{p^n} \sum_{x=0}^{p^n - 1} f(x), \quad (1.2)$$

(see [7,8]).

Let f_1 be the translation of f with $f_1(x) = f(x+1)$. Then, by (1.2), we get

$$I(f_1) = I(f) + f'(0), \text{ where } f'(0) = \frac{df(x)}{dx}|_{x=0}. (1.3)$$

As is known, the Stirling number of the first kind is defined by

$$(x)_n = x(x-1)\cdots(x-n+1) = \sum_{l=0}^n S_1(n,l)x^l,$$
 (1.4)

and the Stirling number of the second kind is given by the generating function to be

$$(e^t - 1)^m = m! \sum_{l=m}^{\infty} S_2(l, m) \frac{t^l}{l!},$$
 (1.5)

(see [2,3,4]).

For $\alpha \in \mathbb{N}$, the Bernoulli polynomials of order α are defined by the generating function to be

$$\left(\frac{t}{e^t - 1}\right)^{\alpha} e^{xt} = \sum_{n = 0}^{\infty} B_n^{(\alpha)}(x) \frac{t^n}{n!},\tag{1.6}$$

(see [1,2,9]).

When x = 0, $B_n^{(\alpha)} = B_n^{(\alpha)}(0)$ are called the Bernoulli numbers of order α .

A hyper-geometric series $\sum_{k} c_{K}$ is a series for which $c_{0} = 1$ and the ratio of consecutive terms is a rational function of the summation index k, i.e., one for which

$$\frac{c_{k+1}}{c_k} = \frac{P(k)}{Q(k)},$$

with P(k) and Q(k) polynomials. In this case, c_k is called a hyper-geometric term. The functions generated by hyper-geometric series are called generalized hypergeometric functions. If the polynomials are completely factored, the ratio of successive terms can be written

$$\frac{c_{k+1}}{c_k} = \frac{P(k)}{Q(k)} = \frac{(k+a_1)(k+a_2)\cdots(k+a_p)}{(k+b_1)(k+b_2)\cdots(k+b_p)(k+1)} (1.7)$$

(see [13]),

where the factor of k+1 in the denominator is present for historical reasons of notation, and the resulting generalized hyper-geometric function is written

$$_{p}F_{q}\begin{bmatrix} a_{1} & a_{2} & \cdots & a_{p} \\ b_{1} & b_{2} & \cdots & b_{q} \end{bmatrix} = \sum_{k=0}^{n} c_{k} x^{k}$$
 (1.8)

(see [13]).

If p=2 and q=1, the function becomes a traditional hyper-geometric function ${}_2F_1(a,b;c;x)$. Many sums can be written as generalized hyper-geometric functions by inspections of the ratios of consecutive terms in the generating hyper-geometric series.

We introduce the hyper-geometric Daehee numbers and polynomials. From our definition, we can derive some interesting properties related to the hyper-geometric Daehee numbers and polynomials.

2. The Hyper-Geometric Daehee Numbers and Polynomials

First, we consider the following integral representation associated with falling factorial sequences:

$$\int_{\mathbb{Z}_p} (x)_n d\mu_0(x), \text{ where } n \in \mathbb{Z}_+ = \mathbb{N} \cup \{0\}.$$
 (2.1)

By (2.1), we get

$$\sum_{n=0}^{\infty} \int_{\mathbb{Z}_p} (x)_n d\mu_0(x) \frac{t^n}{n!}$$

$$= \int_{\mathbb{Z}_p} \sum_{n=0}^{\infty} {x \choose n} t^n d\mu_0(x)$$

$$= \int_{\mathbb{Z}_p} (1+t)^x d\mu_0(x),$$
(2.2)

(see [6]), where $t \in \mathbb{C}_p$ with $|t|_p < p^{-\frac{1}{p-1}}$.

For $t \in \mathbb{C}_p$ with $\left| t \right|_p < p^{-\frac{1}{p-1}}$, let us take

 $f(x) = (1+t)^x$. Then, from (1.3), we have

$$\int_{\mathbb{Z}_p} (1+t)^x d\mu_0(x) = \frac{\log(1+t)}{t}.$$
 (2.3)

By (1.1) and (2.3), we see that

$$\sum_{n=0}^{\infty} D_n \frac{t^n}{n!} = \frac{\log(1+t)}{t}$$

$$= \int_{\mathbb{Z}_p} (1+t)^x d\mu_0(x) \qquad (2.4)$$

$$= \sum_{n=0}^{\infty} \int_{\mathbb{Z}_p} (x)_n d\mu_0(x) \frac{t^n}{n!}.$$

(see [6]).

Therefore, by (2.4), we obtain the following Lemma. **Lemma 1.** For $n \ge 0$, we have

inia 1. For $n \geq 0$, we have

$$\int_{\mathbb{Z}_p} (x)_n d\mu_0(x) = D_n.$$

For $n \in \mathbb{Z}$, it is known that

$$\left(\frac{t}{\log(1+t)}\right)^{n} (1+t)^{x-1} = \sum_{k=0}^{\infty} B_k^{(k-n+1)} (x) \frac{t^k}{k!}, \quad (2.5)$$

(see [4,5,6]).

Thus, by (2.5), we get

$$D_k = \int_{\mathbb{Z}_p} (x)_k d\mu_0(x) = B_k^{(k+2)}(1), (k \ge 0), \quad (2.6)$$

where $B_k^{(n)}(x)$ are the Bernoulli polynomials of order n.

In the special case, x = 0, $B_k^{(n)} = B_k^{(n)}(0)$ are called the n-th Bernoulli numbers of order n.

From (2.4), we note that

$$(1+t)^{x} \int_{\mathbb{Z}_{p}} (1+t)^{y} d\mu_{0}(y) = \left(\frac{\log(1+t)}{t}\right) (1+t)^{x}$$

$$= \sum_{n=0}^{\infty} D_{n}(x) \frac{t^{n}}{n!}.$$
(2.7)

(see [6]).

Thus, by (2.7), we get

$$\int_{\mathbb{Z}_{p}} (x+y)_{n} d\mu_{0}(y) = D_{n}(x), (n \ge 0), \qquad (2.8)$$

and, from (2.5), we have

$$D_n(x) = B_n^{(n+2)}(x+1). (2.9)$$

(see [6]).

Therefore, by (2.8) and (2.9), we obtain the following Lemma.

Lemma 2. For $n \ge 0$, we have

$$D_n(x) = \int_{\mathbb{Z}_p} (x + y)_n d\mu_0(y),$$

and

$$D_n(x) = B_n^{(n+2)}(x+1).$$

By Lemma 1, we easily see that

$$D_n = \sum_{l=0}^{n} S_1(n,l) B_l, \qquad (2.10)$$

(see [6]), where B_l are the ordinary Bernoulli numbers. From Lemma 2, we have

$$D_n(x) = \int_{\mathbb{Z}_p} (x+y)_n d\mu_0(y)$$

$$= \sum_{l=0}^n S_1(n,l) B_l(x),$$
(2.11)

(see [6]), where $B_l(x)$ are the Bernoulli polynomials defined by generating function to be

$$\frac{t}{e^t - 1}e^{xt} = \sum_{n=0}^{\infty} B_n(x) \frac{t^n}{n!}.$$

Therefore, by (2.10) and (2.11), we obtain the following corollary.

Corollary 3. For $n \ge 0$, we have

$$D_n(x) = \sum_{l=0}^n S_1(n,l) B_l(x).$$

In (2.4), we have

$$\frac{t}{e^{t}-1} = \sum_{n=0}^{\infty} D_{n} \frac{1}{n!} (e^{t}-1)^{n}$$

$$= \sum_{n=0}^{\infty} D_{n} \frac{1}{n!} n! \sum_{m=n}^{\infty} S_{2}(m,n) \frac{t^{m}}{m!}$$

$$= \sum_{m=0}^{\infty} \left(\sum_{n=0}^{m} D_{n} S_{2}(m,n) \right) \frac{t^{m}}{m!}$$
(2.12)

and

$$\frac{t}{e^t - 1} = \sum_{m=0}^{\infty} B_m \frac{t^m}{m!}.$$
 (2.13)

(see [6]).

Therefore, by (2.12) and (2.13), we obtain the following Lemma.

Lemma 4. For $n \ge 0$, we have

$$B_m = \sum_{n=0}^m D_n S_2(m, n).$$

In particular,

$$\int_{\mathbb{Z}_p} x^m d\mu_0(x) = \sum_{n=0}^m D_n S_2(m,n).$$

Remark. For $m \ge 0$, by (2.11), we have

$$\int_{\mathbb{Z}_p} (x+y)^m d\mu_0(y) = \sum_{n=0}^m D_n(x) S_2(m,n).$$

(see [6]).

Now, we define the hyper-geometric Daehee polynomials

$$F\begin{pmatrix} a & b \\ c & c \end{pmatrix} = \sum_{n=0}^{\infty} \frac{\begin{pmatrix} -a \\ n \end{pmatrix} \begin{pmatrix} -b \\ n \end{pmatrix}}{\begin{pmatrix} -c \\ n \end{pmatrix}} (-x)^n, \qquad (2.14)$$

where
$$\binom{x}{n} = \frac{x(x+1)\cdots(x+n-1)}{n!}$$

For example, we have

$$F\begin{pmatrix} 1 & 1 \\ & 2 \end{vmatrix} x = \sum_{n=0}^{\infty} \frac{\begin{pmatrix} -1 \\ n \end{pmatrix} \begin{pmatrix} -1 \\ n \end{pmatrix}}{\begin{pmatrix} -2 \\ n \end{pmatrix}} (-x)^n$$

$$= \frac{1}{x} \sum_{n=0}^{\infty} \frac{(-1)^n}{n+1} x^{n+1}$$

$$= \frac{1}{x} \log(1+x)$$

$$= \sum_{n=0}^{\infty} D_n \frac{x^n}{n!}.$$
(2.15)

Thus the hyper-geometric Daehee number are defined by

$$2F \binom{1}{N+1} - t = \sum_{n=0}^{\infty} D_{N,n} \frac{t^n}{n!}.$$
 (2.16)

Note that $D_{1,N} = D_n$ is the Daehee number.

$$F\begin{pmatrix} 1 & N \\ N+1 \end{pmatrix} - x = \sum_{n=0}^{\infty} \frac{(1)_{\infty} (N)_n}{(N+1)_n} \frac{(-x)^n}{n!}, \quad (2.17)$$

where $(a)_n = a(n+1)\cdots(a_n-1)$.

$$\sum_{n=0}^{\infty} D_{1,N} \frac{\left(-x\right)^n}{n!}$$

$$= \sum_{n=0}^{\infty} \frac{n! N \left(N+1\right) \cdots \left(N+n-1\right) \left(-x\right)^n}{\left(N+1\right) \cdots \left(N+n\right) n!}$$

$$= \frac{N!}{\left(N-1\right)!} \sum_{n=0}^{\infty} \frac{\left(N+n-1\right)!}{\left(N+n\right)!} \left(-x\right)^n$$

$$= \frac{N!}{\left(N-1\right)!} \sum_{n=0}^{\infty} \frac{1}{\left(N+n\right)} \left(-x\right)^n.$$
(2.18)

Therefore, by (2.18), we obtain the following theorem. **Theorem 5.** For $n \ge 0$, we have

$$\frac{D_{1,N}}{n!} = \frac{N}{N+n} (-1)^n$$
.

In (2.17), we have

$$N(-1)^{N-1} \sum_{n=N}^{\infty} \frac{(-1)^{n-1}}{n} x^{n-N}$$

$$= \frac{(-1)^{N-1} N}{x^N} \sum_{n=N}^{\infty} \frac{(-1)^{n-1}}{n} x^n$$

$$= \frac{(-1)^{N-1} N}{x^N} \left\{ \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} x^n - \sum_{n=1}^{N-1} \frac{(-1)^{n-1}}{n} x^n \right\}^{(2.19)}$$

$$= (-1)^{N-1} \frac{N}{x^N} \left\{ \log(1+x) - \sum_{n=1}^{N-1} \frac{(-1)^{n-1}}{n} x^n \right\}$$

Therefore, by (2.19), we obtain the following theorem. **Theorem 6.** For $n \ge 0$, we have

$$(-1)^{N-1} \frac{x^N}{N} F \begin{pmatrix} 1 & N \\ N+1 \end{pmatrix} - x$$

$$= \log(1+x) - \sum_{n=1}^{N-1} \frac{(-1)^{n-1}}{n} x^n.$$

References

- S. Araci, M. Acikgoz, A note on the Frobenius-Euler numbers and polynomials associated with Bernstein polynomials, Adv. Stud. Contemp. Math. 22 (2012), no. 3, 399-406.
- [2] A. Bayad, Special values of Lerch zeta function and their Fourier expansions, Adv. Stud. Contemp. Math. 21 (2011), no. 1, 1-4.
- [3] L. Carlitz, A note on Bernoulli and Euler polynomials of the second kind, Scripta Math. 25 (1961), 323-330.
- [4] L. Comtet, Advanced Combinatorics, Reidel, Dordrecht, 1974.
- [5] H. W. Gould, Explicit formulas for Bernoulli numbers, Amer. Math. Monthly 79(1972), 44-51.
- [6] D. S. Kim, T. Kim, Daehee Numbers and Polynomials, Applied Mathematical Sciences, Vol. 7, 2013, no. 120, 5969-5976

- [7] T. Kim, D. S. Kim, T. Mansour, S. H. Rim, M. Schork, *Umbral calculus and Sheffer sequence of polynomials*, J. Math. Phys. 54, 083504 (2013): http://dx.doi.org/10.1063/1.4817853 (15 pages).
- [8] T. Kim, An invariant p-adic integral associated with Daehee numbers, Integral Transforms Spec. Funct. 13 (2002), no. 1, 65-69.
- [9] V. Kurt, Some relation between the Bernstein polynomials and second kind Bernoulli polynomials, Adv. Stud. Contemp. Math. 23 (2013), no. 1, 43-48.
- [10] H. Ozden, I. N. Cangul, Y. Simsek, Remarks on q-Bernoulli numbers associated with Daehee numbers, Adv. Stud. Contemp. Math. 18 (2009), no. 1, 41-48.
- [11] Y. Simsek, S-H. Rim, L. -C. Jang, D.-J. Kang, J.-J. Seo, A note q-Daehee sums, Proceedings of the 16th International Conference of the Jangjeon Mathematical Society, 159-166, Jangjeon Math. Soc., Hapcheon, 2005.
- [12] Y. Simsek, Special functions related to Dedekind-type DC-sums and their applications, Russ. J. Math. Phys. 17 (2010), no. 4, 495-508.
- [13] Koepf. W, Hypergeometric Summation. An Algorithmic Approach to Summation and Special Function Identities, Braunschweig, Germany, Vieweg, 1998.