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1. Introduction 
The work of interval arithmetic was originally 

introduced by Dwyer [3] in 1951. The development of 
interval arithmetic as a formal system and evidence of its 
value as a computational device was provided by Moore 
[15] and Moore and Yang [16]. Furthermore, Moore and 
others [3]; [4]; [10] and [17] have developed applications 
to differential equations. Chiao in [2] introduced sequence 
of interval numbers and defined usual convergence of 
sequences of interval numbers. Şengönül and Eryilmaz in 
[20] introduced and studied bounded and convergent 
sequence spaces of interval numbers. Recently Esi studied 
strongly λ-and strongly almost λ-convergent sequences 
spaces of the interval numbers in [5], respectively. Also, 
Esi studied some new type sequence space of the interval 
numbers in [6,7] and lacunary sequence spaces for interval 
numbers in [8]. In Hazarika [11] introduced the notion of 
λ-ideal convergent interval valued di¤erence classes 
defined by Musielak-Orlicz function. 

Kizmaz [12] introduced the notion of di¤erence 
sequence spaces as follows: 

 ( ) ( ) ( ){ }:k kX x x x X∆ = = ∆ ∈  

for ,X l∞=  c  and 0.c  Later on, the notion was 
generalized by Et and Çolak [9] as follows: 

 ( ) ( ) ( ){ }:n n
k kX x x x X∆ = = ∆ ∈  

for ,X l∞=  c  and 0 ,c  where 

( ) ( )1 1
1 ,n n n n

k k kx x x x− −
+∆ = ∆ = ∆ −∆  0x x∆ =  and also 

this generalized difference notion has the following 
binomial representation: 

 ( )
0

1 .
n

in
k k i

i

n
x x for all k

i +
=

 
∆ = − ∈ 

 
∑   

Recall in [18], [13] that an Orlicz function M is 
continuous, convex, non-decreasing function define for 

0x >  such that ( )0 0M =  and ( ) 0M x >  for 0x >  and 

( ) 0M x →  as .x →∞  If convexity of Orlicz function is 

replaced by ( ) ( ) ( )M x y M x M y+ ≤ +  then this function 
is called the modulus function and characterized by 
Ruckle [19]. An Orlicz function M  is said to satisfy 

2 condition−∆  for all values u , if there exists 0K >  such 
that ( ) ( )2 , 0.M u KM u u≤ ≥  Subsequently, the notion of 
Orlicz function was used to defined sequence spaces by 
Altin et. al., [1], Tripathy and Mahanta [21], Tripathy et. 
al., [22], Tripathy and Sarma [23] and many others. 

2. Preliminaries 
A set consisting of a closed interval of real numbers x  

such that a x b≤ ≤  is called an interval number. A real 
interval can also be considered as a set. Thus we can 
investigate some properties of interval numbers, for 
instance arithmetic properties or analysis properties. We 
denote the set of all real valued closed intervals by IR.  
Any elements of IR  is called closed interval and denoted 
by .x  That is { }: .x x a x b= ∈ ≤ ≤ An interval number 
x  is a closed subset of real numbers (see [2]). Let lx  and 

rx  be first and last points of the interval number ,x  

respectively. For 1 1, ,l rx x x =    2 2,l ry x x I = ∈  R,  we 

have 

 1 2 1 2, ,l l r rx y x x x x= ⇔ = =  
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 { }1 2 1 2: ,l l r rx y x x x x x x+ = ∈ + ≤ ≤ +  

and if 0α ≥ , then 

 { }1 1: l rx x x x xα α α= ∈ ≤ ≤  

and if 0α < , then 

 { }1 1: ,r lx x x x xα α α= ∈ ≤ ≤  

{ }
{ }
1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

:
min , , , , .

max , , , ,
l l l r r l r r

l l l r r l r r

x
x y x x x x x x x x x

x x x x x x x x

 ∈
 

⋅ = ⋅ ⋅ ⋅ ⋅ ≤ 
 ≤ ⋅ ⋅ ⋅ ⋅ 



 

The set of all interval numbers IR  is a complete metric 
space under the mertic d  defined by 

 ( ) { }1 2 1 2, max ,l l r rd x y x x x x= − −  [15]. 

In the special case [ ],x a a=  and [ ], ,y b b=  we obtain 
usual metric of .  

Let us define transformation :f →   by 

( ) ( ).kk f k x x→ = =  Then ( )kx x=  is called sequence 

of interval numbers and kx  is called thk  term of the 
interval numbers sequence ( ).kx x=  The set of all 
sequences of the interval numbers denoted by w  cf. [2]. 

A sequence ( )kx x=  of interval numbers is said to be 
convergent to the interval number 0x  if for each 0ε >  
there exists a positive integer 0k  such that ( )0,kd x x ε<  
for all 0k k≥  and we denote it by 0lim .k kx x=  

Thus, 0 0lim limk k k kl l
x x x x= ⇔ =  and 0limk kr r

x x=  [2]. 

A sequence space E  is said to be solid (or normal) if 
( )k kx x Eα α= ∈  whenever ( )kx x E= ∈  for all 

sequences ( )kα α=  of scalars with 1kα ≤  for all .k ∈  

A sequence space E  is said to be symmetric if 

( )kx x E= ∈  implies ( )( )kx Eπ ∈  where π  is a 

permutation of .  
A sequence space E  is said to be monotone if E  

contains the canonical pre-images of all its step spaces. 
Let ( )1 2K k k= < < < ⊂   and E  be a sequence 

space. A K-step set of E  is a class of sequences 

( ) ( ){ }: .E
K k knx E x Eλ = ∈ ∈  A canonical pre-image of a 

sequence ( ) E
k Knx λ∈  is a sequence ( )ky y E= ∈  defined 

as follows: 

 
, ;

0, .
k

k
x if k K

y
otherwise

∈
= 


 

A canonical pre-image of a step set E
Kλ  is a set of 

canonical pre-images of all elements in E
Kλ , i.e. ( )ky y=  

is in canonical pre-image E
Kλ  if and only ( )ky y=  is 

canonical pre-image of some ( ) .E
k Kx x λ= ∉  

A sequence space E  is said to be sequence algebra if 
( )k kx y x y E⊗ = ⊗ ∈  whenever ( ) ,kx x=  ( ) .ky y E= ∈  

A sequence space E  is said to be convergence free if 
( )ky y E= ∈  whenever ( )kx x E= ∈  and 0ky =  

whenever 0kx = , where [ ]0 0,0=  is the zero element. 

Remark 2.1. A sequence space E  is solid implies E  is 
monotone. 

3. Main Results 
In this paper we introduce and examine some 

generalized difference sequences of interval numbers 
using the Orlicz functions. 

Definition 3.1. Let ( )kx x=  be a sequence of interval 
numbers and M  be an Orlicz function. We define the 
following sequence spaces: 

 ( ) ( )
( )0

0

,
: lim 0,

, ,

0

n
k

kn k

d x x
x x M

c M r

for some r and x I

→∞

  ∆  = =  ∆ =   
  

 > ∈ R

 

 ( ) ( )
( )

0

,0
: lim 0,

, ,

0

n
k

kn k

d x
x x M

c M r

for some r

→∞

  ∆  = =  ∆ =   
  

 > 

 

 ( ) ( )
( ),0

: sup ,
, ,

0

n
k

kn
k

d x
x x M

M r

for some r

∞

  ∆  = < ∞  ∆ =   
  

 > 

l  

where 

 ( )
0

1 .
n

in
k k i

i

n
x x

i +
=

 
∆ = −  

 
∑  

Throughout the paper, X  will denote any one of the 
notation 0,c c  and .∞l  

Theorem 3.1. ( ),n M∞ ∆l  and ( ),nc M∆  are 

complete metric spaces with the metric 

 

( ) ( )

( )
1

, ,

,
inf 0 : sup 1 .

n

k k
k

n n
k k

k

x y d x y

d x y
r M

r

ρ
=

=

  ∆ ∆  + > ≤      

∑
 

Proof. Let ( )s
kx  be any Cauchy sequence in 

( ),n M∞ ∆l  where ( ) ( )1 1, , ,s s s s s
k kx x x x x= =    

( ),n M∞∈ ∆l  for each .s∈  Then for given 0.ε >  For a 

fixed 0 0X >  and choose 0a >  such that 0 1.
2

aX
M   ≥ 
 

 

Then there exists 0n ∈  such that 
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( ) ( )
( )

1

0

0

, ,

,
inf 0 : sup 1 ,

, .

n
s t s t

k k
k

n s n t
k k

k

x x d x x

d x x
r M

r aX

for s t n

ρ

ε

=
=

  ∆ ∆  + > ≤ <      
≥

∑

(3.1) 

Hence 

 
( )

( )

0
1

0

, , , .

, , , .

n
s t
k k

k

s t
k k

d x x for s t n

d x x for s t n
n

ε

ε
=

< ≥

⇒ < ≥

∑
 

Then ( )s
kx  is a Cauchy sequence in IR  and so ( )s

kx  

is a convergent sequence in IR.  Let lim .t
t k kx x→∞ =  

Again from (3.1) 

 

( )

( )
( )

( )

0

0

0

0

,
sup 1 , .

,
1

2,

, , .

, , , .
2

n s n t
k k

k

n s n t
k k

s t

n s n t
k k

d x x
M for s t n

r

d x x aM
M M

x x

for s t n and k

d x x for s t n

ρ

ε

 ∆ ∆  ≤ ≥  
 

 ∆ ∆    ≤ ≤      
 

≥ ∈

∆ ∆ < ≥

N

 

Hence ( )n s
kx∆  is a Cauchy sequence in IR  for all 

k ∈  and so ( )n s
kx∆  is a convergent sequence in IR  

for all .k ∈  Let lim n t
t k kx x→∞ ∆ =  for all .k ∈  

For 1,k =  we have 

 ( )1 1 1
0

lim lim 1 .
n

in t t
i

t t i

n
x x x

i +
→∞ →∞ =

 
∆ = − = 

 
∑  

Similarly we have 

 ( )
0

lim lim 1

1,2, , .

n
in t t

k k i k
t t i

n
x x x

i

for all k n

+
→∞ →∞ =

 
∆ = − = 

 
=

∑


 

Thus 1lim t
t kx→∞ +  exists. Let 1 1lim = .t

t k kx x→∞ + +  
Proceeding in this way inductively we conclude that 
lim =t

t k kx x→∞  for all .k ∈  Using continuity of M , we 
have 

 

( )

( )
0

0

,
inf 0 : sup 1 , .

,
sup 1 .

n s n
k k

k

n s n
k k

k

d x x
r M for s n

r

d x x
M for s n

r

ε
∆ ∆

> ≤ < ≥

 ∆ ∆  ≤ ≥  
 

         

 

Thus for all 0 ,s n≥  we obtain that 

 ( ) ( )
1

,
, inf 0 : sup 1 2 .

n s n
n k ks

k k
kk

d x x
d x x r M

r
ε

=

∆ ∆
+ > ≤ <

           
∑  

That is 

 ( ), 2 , . ., .s sx x i e x x as sρ ε< → →∞  

Then the inequality 

 ( ) ( ) ( ) 0, 0 , , 0 ,s sx x x x for s nρ ρ ρ≤ + ≥  

implies that ( ), .nx M∞∈ ∆l  This completes the proof. 

Theorem 3.2. The classes of interval numbers of 

sequences ( )0 ,nc M∆  and ( ),nc M∆  are nowhere dense 

subsets of ( ), .n M∞ ∆l  

Proof. From Theorem 3.1. we have ( )0c ∆  and 

( )0 ,nc M∆  are closed subsets of the complete metric 

space ( ), .n M∞ ∆l  Also ( )0 ,nc M∆  and ( ),nc M∆  are 

proper subsets which follows from the following example. 
Example 3.1. Let 1n =  and ( ) .M x x=  Consider the 

interval sequence ( )kx x=  defined as follows: 

 
[ ]0,1 ;

11 , 1k

for k even
x

for k odd
k


=    − + −     

 

and 

 

11,2 ;
1

12 , 1 .
k

for k even
k

x
for k odd

k

  +  + ∆ = 
   − + −     

 

Thus ( ) ( ) ( )0, ,n n
kx c M c M∈ ∆ ⊃ ∆  but ( ) ( ), .n

kx M∞∈ ∆l  

Hence the result. 
Theorem 3.3. ( ) ( )1, ,n nX M X M−∆ ⊂ ∆  for 

0, ,X c c ∞= l  and the inclusions are strict. 
Proof. We give the proof for the inequality 

( ) ( )1, ,n nc M c M−∆ ⊂ ∆  only. The rest of the results 

follows similar way. Let ( ) ( )1, .n
kx x c M−= ∈ ∆  Then for 

some 0,r >  we have 

 
( )1

0
0

,
lim 0

n
k

k

d x x
M for some x I

r

− ∆  = ∈  
 

R.  (3.2) 

Since 

 1 1
1 .n n n

k k kx x x x x− −
+∆ = ∆ −∆ + −  
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Then from the equation (3.2) and the continuity of M , the 
result follows from the following relation 

 

( )

( ) ( )

0

1 1
0 1 0

,

, ,1 1 .
2 2

n
k

n n
k k

d x x
M

r

d x x d x x
M M

r r

− −
+

 ∆ 
  
 
   ∆ ∆   ≤ +      
   

 

This shows that ( ) ( ), .n
kx c M∈ ∆  

To show that the inclusions are strict, consider the 
following examples. 

Example 3.2. Let ( )M x x=  and 1.n =  Consider the 

sequence of interval numbers ( )kx x=  defined by 

 11,1kx for all k
k

 = + ∈  
  

i.e. 1kx →  as k →∞  and 0kx∆ →  as .k →∞  Thus 

( ) 0 ,kx x c= ∉  but ( ) ( )0 .kx x c= ∈ ∆  Hence the inclusion 
is strict. 

Example 3.3. Let ( )M x x=  and 1.n =  Consider the 

sequence of interval numbers ( )kx x=  defined by 

 [ ], 1 .kx k k for all k= + ∈  

Then 1.kx∆ = −  Thus ( ) ( ).n
kx x c= = ∆  Hence the 

inclusion is strict. 
Theorem 3.4. Let 1M  and 2M  be two Orlicz functions. 

Then 
(i) ( ) ( )2 1 2, ,n nX M X M M∆ ⊂ ∆ ⋅  

(ii) ( ) ( ) ( )1 2 1 2

0

, , , ,

, ,

n n nX M X M X M M

for X c c ∞

∆ ∩ ∆ ⊂ ∆ +

= l
 

Proof. (i) We prove the result for X c=  and the rest of 
the cases will follow similarly. Let 

( ) ( )2, .n
kx x c M= = ∆  Then for 0r >  we have 

 
( )0

2 0
,

lim 0
n

k

k

d x x
M for some x I

r

 ∆  = ∈  
 

R.  (3.3) 

Let 0 1ε< <  and δ  with 0 1δ< <  such that ( )1M t ε<  
for 0 t δ< < . We write 

 

( )

( )

0
1 2

0
2 2

,
,

,
.

n
k

n
k

d x x
D k M

r

d x x
D k M

r

δ

δ

  ∆  = ∈ ≤      
  ∆  = ∈ >      

N :

N :

 

Then for 

 
( )0

2
,n

kd x x
M

r
δ

 ∆  >  
 

 

we have 

 

( ) ( )

( )

0 0 1
2 2

0 1
2

, ,

,
1

n n
k k

n
k

d x x d x x
M M

r r

d x x
M

r

δ

δ

−

−

   ∆ ∆   <      
   
  ∆  < +       

 

where 2k D∈  and a    denotes the integer part of .a  
Given 0ε >  by the definition of Orlicz function M  for 

( )0
2

,n
kd x x

M
r

δ
 ∆  >  
 

 we have 

 

( )

( )
( )

( )
( )

0
1 2

0 1
2 1

0 1
1 2

,

,
1 1

,
2 1

n
k

n
k

n
k

d x x
M M

r

d x x
M M

r

d x x
M M

r

δ

δ ε

−

−

  ∆  
      

   ∆   ≤ +         
  ∆  ≤ <      

 

for 2k D∈  and 1 ,k n≥ ∈  using (3.3). 
Again for 

 
( )0

2
,n

kd x x
M

r
δ

 ∆  ≤  
 

 

we have 

 
( )0

1 2
,

,
n

kd x x
M M

r
ε

  ∆   <      

 

for 1k D∈  and 2 ,k n≥ ∈  using (3.3). 
Thus for { }1 2max ,k n n>  we have 

 
( )0 1

1 2
,

.
n

kd x x
M M

r
δ ε−

  ∆   <      

 

Hence ( ) ( )1 2, .n
kx x c M M= = ∆ ⋅  Thus  

 ( ) ( )2 1 2, , .n nc M c M M∆ ⊂ ∆ ⋅  

(ii) It will follows from the following inequality 
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( )
( )

( ) ( )

0
1 2

0 0
1 2

,

, ,
.

n
k

n n
k k

d x x
M M

r

d x x d x A
M M

r r

 ∆ +   
 

   ∆ ∆   ≤ +      
   

 

The proof of the following result is also routine work. 
Theorem 3.5. Let 1M  and 2M  be two Orlicz functions 

satisfying 2 .condition−∆  If 
( )2lim 1,t

M t
t

β →∞= ≥  then 

( ) ( )1 1 2, , ,n nX M X M M∆ = ∆ ⋅  where 0, .X c c ∞= l  

Theorem 3.6. The classes of sequences of interval 

numbers ( ),nc M∆  and ( ),n M∞ ∆l  are not sequence 

algebra in general. 
Proof. The result follows from the following example. 
Example 3.4. Let 1n =  and ( ) .M x x=  Consider the 

two sequences of interval numbers ( ) ( )= =k kx x y y，  
defined by 
 [ ] [ ]= 1, 1 , 1, .k kx k k y k k− + = −  

Therefore for all ,k ∈  we have 

 1, 1.k kx y∆ = − ∆ = −  

Thus ( ) ( ) ( ) ( ), = , , .n n
k kx x y y c M M∞= ∈ ∆ ⊂ ∆l  

Now, we have 

 

( )

( ) ( ) ( )( )

( )

2 21 , 1 , 1 2

1 , ,

k kx y

k k k k k k

k k

∆ ⊗

   = − + − + +    
= − +  

 

i.e. ( ) ( , )( ( , ))n n
k kx y M c M∞⊗ ∉ ∆ ⊃ ∆l  This completes 

the proof. 
Theorem 3.7. The classes of interval numbers of 

sequences ( ) ( )0, , ,n nc M c M∆ ∆  and ( ),n M∞ ∆l  are not 

convergence free. 
Proof. Let 1n =  and ( ) .M x x=  Consider the interval 

sequence ( )kx x=  defined as follows: 

 
[ ] 20 0,0 , , ;

10,k

for k i i
x

otherwise
k

 = = ∈
=   
   



 

and 

 

2

2

1 ,0 , , ;
1
10, , 1, .

k

for k i i
k

x
for k i i i

k

 − = ∈ + ∆ = 
  = > ∈   





 

Hence 0kx∆ →  as .k →∞  Thus 

( ) ( ) ( ) ( )0 , , , .n n n
kx x c M c M M∞= ∈ ∆ ⊂ ∆ ⊂ ∆l  Let 

( )ky y=  defined as follows: 

 [ ]
[ ]

20 0,0 , , ;
0,k

for k i iy
k otherwise

 = = ∈= 


  

and 

 

( )
[ ]

( )

2

2

1 ,0 , , ;

0, , , 1, ;

1 , , .
k

k for k i i

y k for k i i i

k k otherwise

 − + = ∈  
∆ = = > ∈

− +  



  

Thus ( ) ( ) ( ) ( )( )0, , , .n n n
ky y M c M c M∞= ∉ ∆ ⊃ ∆ ⊃ ∆l  

Therefore the classes of interval numbers 

( ) ( )0, , ,n nc M c M∆ ∆  and ( ),n M∞ ∆l  are not 

convergence free. 
Theorem 3.8. The classes of interval numbers 

( ) ( )0, , ,n nc M c M∆ ∆  and ( ),n M∞ ∆l  are neither 

monotone nor solid. 
Proof. Let 1n =  and ( ) .M x x=  Consider the interval 

sequence ( )kx x=  defined by: 

 11,1kx for all k
k

 = + ∈  
  

and 

 
( )

10,
1kx for all k

k k
 

∆ = ∈ 
+  

  

i.e. 0kx∆ →  as .k →∞  Thus 

( ) ( ) ( )0 , , .n n
kx x c M c M= ∈ ∆ ⊂ ∆  

Let { }: 2 1,J k k i i= ∈ = − ∈ N  be a subset of   and 

let ( )( )0 ,n
J

c M∆  be the canonical pre-image of the J-

step set ( )0 ,n
J

c M∆  of ( )0 , ,nc M∆  defined as follows: 

( ) ( )( )0 ,n
k J

y y c M= ∈ ∆  is the canonical pre-image of 

( ) ( )0 ,n
kx x c M= ∈ ∆  implies 

 
;

0
k

k
x for k J

y
for k J

∈
=  ∉

 

Now 

 
11,1 ;

0
k

for k J
y k

for k J

 + ∈ =  
 ∉

 

and 

 
11,1 ;

11 , 1
1

k

for k J
k

y
for k J

k

  + ∈   ∆ = 
   − + − ∉   +  

 

Thus ( ) ( ) ( )( )0, , .n n
ky y c M c M= ∉ ∆ ⊃ ∆  Therefore 

the classes of interval numbers ( ),nc M∆  and 
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( )0 ,nc M∆ are not monotone. By the Remark 2.1, these 

spaces are not solid. 
Now let’s define the sequence ( )kx x=  by 

 [ ]1, 1kx k k for all k= − + ∈  

and 1kx∆ = − , thus ( ) ( ), .n
kx x M∞= ∈ ∆l  

Let { }: 2 1,J k k i i= ∈ = − ∈   be a subset of   and 

let ( ),n
J

M∞ ∆l  be the canonical pre-image of the J-step 

set ( ),n
J

M∞ ∆l  of ( ), ,n M∞ ∆l  defined as follows: 

( ) ( ),n
k J

y y M∞= ∈ ∆l  is the canonical pre-image of 

( ) ( ),n
kx x M∞= ∈ ∆l  implies 

 
, ;

0 .
k

k
x for k J

y
for k J

∈
=  ∉

 

Now 

 [ ]1, 1 ;
0k

k k for k J
y

for k J
 − + ∈

= 
∉

 

and 

 [ ]
( ) ( )

1, 1 ;
2 , 1 .k

k k for k J
y

k k for k J
 − + ∈∆ =  − + − + ∉  

 

Therefore ( ) ( ),n
ky y M∞= ∉ ∆l  and ( ),n M∞ ∆l  is 

not monotone. By the Remark 2.1, this space is not solid. 
Theorem 3.9. The classes of interval numbers 

( ) ( )0, , ,n nc M c M∆ ∆  and ( ),n M∞ ∆l  are not 

symmetric. 
Proof. The result follows from the following example. 
Example 3.5. Let 1n =  and ( ) .M x x=  Consider the 

interval sequence ( )kx x=  defined by 

 1,
2kx k k for all k = + ∈  

  

and 1.kx∆ = −  

Thus ( ) ( ), .n
kx x M∞= ∈ ∆l  Let the sequence of 

interval numbers ( )ky y=  be a rearrangement of the 

sequence of interval numbers ( )kx x=  defined as follows: 

 ( ) 1 2 4 3 9 5 16

6 25 7 36 8 49

, , , , , , ,
, , , , , ,k

x x x x x x x
y y

x x x x x x
 

= =  
 

 

i.e. 

 

( ) ( )

21
2

2

, ;

,

1 1 .

k

k km

x for all k odd

y x for all k even and

m satifies m m k m m

+ 
 
 

 + 
 



∆ = 


 − < ≤ +

 

Then for all k  odd and ;m∈  satisfying 

( ) ( )11 1 ,
2

km m m m+
− < ≤ +  we have 

2 22 1 2 1,
2 2 2 2 2 2k
k k k ky m m

 + +       ∆ =  + − − + − +        
         

 

From the last two equation, it is clear that ( )kB∆  is 

unbounded, thus ( ) ( ), .n
ky y M∞= ∉ ∆l  Therefore the 

class ( ),n M∞ ∆l  is not symmetric. 
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