
 

CHALLENGE JOURNAL OF STRUCTURAL MECHANICS 1 (3) (2015) 140–144 
 

 

 

 
* Corresponding author. Tel.: +90-322-3386784 ; Fax: +90-322-3386702 ; E-mail address: hcagatay@cu.edu.tr (İ. H. Çağatay) 
  

 

Minimum weight design of prestressed concrete beams  

by a modified grid search technique 

İsmail Hakkı Çağatay * 

Department of Civil Engineering, Çukurova University, 01330 Adana, Turkey 

 

A B S T R A C T 

In this study, a computer program, which employs modified grid search optimization 

technique, has been developed for the minimum weight of prestressed concrete 

beams under flexure. Optimum values of prestressing force, eccentricity and cross-

sectional dimensions are determined subject to constraints on the design variables 

and stresses. The developed computer program offers a rapid practical and interactive 

method for realizing optimum design of beams of general I-shaped cross-section with 

eight geometrical design variables. The computer program can assist a designer in 

producing efficient designs rapidly and easily. Two examples, one of which is available 

in the literature and the other is modified form of it, have been solved for minimum 

cross-sectional area designs and the results were found to be in good agreement. 
 

 

A R T I C L E   I N F O 

Article history:  

Received 8 May 2015 

Accepted 23 June 2015 
 

Keywords: 

Optimum 

Prestressed concrete 

Flexure 

Minimum weight design 

Grid search 
 

1. Introduction 

Optimization is generally defined as the best condi-
tion. For prestressed concrete, the best condition can be 
defined as to find the minimum cross-section, minimum 
prestressing or minimum cost of a beam. Several analyt-
ical studies of optimum design of prestressed beams 
have been reported in the literature (Morris, 1978; Tay-
lor, 1987; Cohn and MacRae, 1983; Jones, 1984; Saouma 
and Murad, 1984; Birkeland, 1974; Fereig, 1994; Wang, 
1970; Kirsh, 1972). In these studies, linear programming 
methods and non-linear programming procedures such 
as gradient methods have been used as optimization 
techniques. However, the grid search optimization 
method, which is simple and effective for programming, 
has not been used for the optimization of prestressed 
concrete beams before. 

In the present study, a modified grid search optimiza-
tion method (Çağatay, 1996) has been applied to the pre-
stressed concrete beam. The advantages of the method 
can be defined as: with no restriction on the number and 
type of constraints on the design variables and stresses.  

The proposed method is applied to an example prob-
lem available in the literature and the results are in good 
agreement. 

 
A computer program has been developed employing the 

modified grid search optimization method, which can assist 
a designer in producing efficient designs rapidly and easily. 

2. Problem Formulation 

In general, most papers on prestressed concrete beam 
design and optimization deal with idealized I beam sec-
tion with six dimensions (Morris, 1978; Taylor, 1987; 
Cohn and MacRae, 1983; Jones, 1984) due to simplicity. 
But, here, the method has been formulated for a general 
I shaped cross-section with eight geometrical design var-
iables denoted by X1 through X8 as shown in Fig. 1. The 
variables X7 and X8 are calculated as a function of m, 
which is the slope of the top and bottom flanges of the 
cross-section, as shown in Fig. 1. 

If the m value is chosen to be zero, the cross-section of 
the beam turns into an idealized I-beam. Also, additional 
design variables X9 and X10 are considered, which repre-
sent the eccentricity and the prestressing force, respec-
tively. In the figure, Yt and Yb are the distances of the top 
and bottom fibers of the cross-section from the center of 
gravity of concrete section (c.g.c.), and h denotes the to-
tal depth of the cross-section.  
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Fig. 1. Cross-section of general I-shaped PC beam. 

The objective function to be minimized is denoted by   
𝑓(𝑋) and the constraint functions by 𝑔𝑖(𝑋). The optimi-
zation problem can thus be defined as:   

Minimize 𝑓(𝑋) = 𝐴𝑝 (1) 

Subject to 𝑔𝑖(𝑋 ≤ 0) , ≥ 0 , (𝑖 = 1, 2, … , 𝑘) (2) 

where Ap is the cross-sectional area of prestressed con-
crete beam and k denotes the number of constraints. The 
aims of the objective function are to minimize both the 
cross-sectional area of prestressed concrete and find the 
minimum prestressing force corresponding to maximum 
eccentricity. To obtain the minimum prestressing force 
corresponding to maximum eccentricity, Magnel’s 
graphical method has been used (Magnel, 1948). 

The following constraints were considered for the op-
timization problem: flexural stresses, prestressing force 
and eccentricity, cross-sectional dimensions and ulti-
mate moment. 

2.1. Flexural stresses 

 There are two stages of loading to be considered. The 
first stage is at the transfer of prestressing force to the 
beam. For computing the flexural stresses at the top and 
bottom of the beam, following equations can be written:  

𝑓𝑡𝑡 =
𝑃

𝐴
−

𝑃 𝑒 𝑌𝑡

𝐼
+ 𝑓𝑡𝑑 , (3) 

𝑓𝑡𝑡 =
𝑃

𝐴
−

𝑃 𝑒 𝑌𝑏

𝐼
− 𝑓𝑏𝑑 , (4) 

where tt and tb are the flexural stresses at the top and 
bottom of the beam and P and e are the prestressing 
force and the eccentricity, respectively. I and A denote 
the gross second moment of area and the gross area of 
the cross-section, respectively. td and bd are the flexural 
stresses at the top and bottom of the beam due to the 
dead load. 
 The second stage is at the service condition when the 
beam carries live loads in addition to its own weight. The 
following equations can be written:  

𝑓𝑠𝑡 =
𝑃 𝛼

𝐴
−

𝑃 𝛼 𝑒 𝑌𝑡

𝐼
+ 𝑓𝑡𝑑 + 𝑓𝑡𝑙  , (5) 

𝑓𝑠𝑏 =
𝑃𝛼

𝐴
+

𝑃 𝛼 𝑒 𝑌𝑏

𝐼
− 𝑓𝑏𝑑 + 𝑓𝑏𝑙 , (6) 

where st and sb are the flexural stresses at the top and 
bottom of the beam, respectively; α is the loss factor; tl 
and bl are the stresses due to the live load at the top and 
bottom fibers, respectively. 
 The stresses computed by Eqs. (3-6) should not ex-
ceed the allowable stresses, which are specified in design 
codes. Rearranging Eqs. (3-6), and considering the al-
lowable stresses, the following inequalities are obtained:   

(−
1

𝐴
+

𝑒 𝑌𝑡

𝐼
)

1

(𝑓𝐼𝑇+𝑓𝑡𝑑)
≤

1

𝑃
 , (7) 

(
1

𝐴
+

𝑒 𝑌𝑏

𝐼
)

1

(𝑓𝐼𝐶+𝑓𝑏𝑑)
≤

1

𝑃
 , (8) 

(
1

𝐴
−

𝑒 𝑌𝑡

𝐼
)

𝛼

(𝑓𝐹𝐶−𝑓𝑡𝑑−𝑓𝑡𝑙)
≤

1

𝑃
 , (9) 

(
1

𝐴
+

𝑒 𝑌𝑏

𝐼
)

𝛼

(−𝑓𝐹𝑇+𝑓𝑏𝑑+𝑓𝑏𝑙)
≥

1

𝑃
 , (10) 

where fIT and fIC are the allowable tensile and compres-
sive stresses in the concrete at transfer condition and fFC 
and fFT are the allowable compressive and tensile stresses 
in the concrete at service condition, respectively. 

2.2. Prestressing force and eccentricity 

For the selection of prestressing force and eccen-
tricity, Magnel’s graphical technique (Magnel, 1948) has 
been used and the following inequalities are obtained:  

𝐸3 ≥ 𝐸1  , (11) 

𝐸4 ≥ 𝐸2  , (12) 

in which  

𝐸1 =
1

(𝑓𝐼𝑇+𝑓𝑡𝑑)
 , (13) 

𝐸2 =
1

(𝑓𝐼𝐶+𝑓𝑏𝑑)
 , (14) 

𝐸3 =
𝛼

(−𝑓𝐹𝐶+𝑓𝑡𝑑+𝑓𝑡𝑙)
 , (15) 

𝐸4 =
𝛼

(−𝑓𝐹𝑇+𝑓𝑏𝑑+𝑓𝑏𝑙)
 . (16) 

If Eqs. (11-12) are satisfied, and then the cross-sec-
tional area is adequate under the given loading condi-
tion. It is assumed that for maximum efficiency, the ec-
centricity takes its largest allowable value at mid-span 
(with minimum cover). Therefore,  

𝑒 ≤ 𝑌𝑏 − 𝑒𝑐𝑜𝑣𝑒𝑟  , (17) 

in which ecover is the required concrete cover. 
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2.3. Cross-sectional dimensions 

Aspect ratios of the web and flanges cannot exceed a 
prescribed limiting value without any conditions con-
cerning slenderness. This limit is presently taken as 8.0.  

Further constraints have also been introduced for the 
cross-sectional dimensions as follows:  

(𝑋𝑖)𝑚𝑖𝑛 ≤ 𝑋𝑖 ≤ (𝑋𝑖)𝑚𝑎𝑥    (𝑖 = 1, 2, … , 𝑛) , (18) 

where n is the number of variables.  

2.4. Ultimate moment 

Ultimate moment design is based on the solution of 
the equations of equilibrium, using the equivalent rec-
tangular stress block shown in Fig. 2. An equivalent rec-
tangular stress block is used with ease and without loss 

of accuracy to calculate the compressive force and hence 
the flexural moment strength of the section.  

Design requirement should meet the following condi-
tion:  

𝜙𝑀𝑛 ≥ 𝑀𝑢 , (19) 

where Mu is the applied factored moment at a section; ϕ 
is the strength reduction factor which is taken to be as 
0.9. 

 

3. Optimization Procedure 

The algorithm described below was developed by 
Çağatay (1996) and is a modification of the one given by 
Walsh (1975). This modified algorithm, which follows, is 
going to be used in this study.

 

 

Fig. 2. Assumed stress distribution in the cross-section of the beam at ultimate limit state.

The algorithm described below was developed by 
Çağatay (1996) and is a modification of the one given by 
Walsh (1975). This modified algorithm, which follows, is 
going to be used in this study. 
1. Start with the solution region defined by Eq. (18), in 
which 𝑋𝑖(𝑖 = 1,2, … , 𝑛), are the design variables, (Xi)min 
and (Xi)max are the minimum and maximum values of the 
corresponding variables, respectively. Take three values 
for each variable in the region, two of them at the ends 
and the third at the midpoint. Make a search for the op-
timum among all possible combinations of computation 
points, which satisfies the constraints. 
2. Reduce the solution region to half the width of the pre-
vious one. Take the range for each variable to be equal to 
half the range of the previous step, with two additional 
computation points on the two sides of the previous op-
timizing computation point while making sure to remain 
within the initial solution range. 
3. Repeat step 2 until the variable set is obtained with the 
desired accuracy. For the accuracy criterion, different 
options can be used; a fixed percentage accuracy for each 
variable or a percentage accuracy in the least squares 

sense, etc. In the present study, fixed percentage accu-
racy criterion has been employed. That is to say, compu-
tation is continued until  

𝜀𝑖 =
(𝑋𝑖)𝐾+1−(𝑋𝑖)𝐾

(𝑋𝑖)𝐾
 , (20) 

𝜀𝑖 ≤ (𝜀𝑖)𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦   (𝑖 = 1, 2, … , 𝑛) , (21) 

where 𝜀𝑖 and (𝜀𝑖)𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 are the limits of the respective 
variables.  

 

4. Numerical Examples 

4.1. Example 1 

Design a simply supported beam of 16460 mm span 
subjected to an applied load of 23.34 kN/m. Assume the 
unit weight of concrete is 24 kN/m3, allowable stresses 
for compression are at transfer 16.55 MPa, at service 
15.51 MPa, those for tension are at transfer –1.31 MPa, 
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at service -2.93 MPa and loss factor is 0.85, 𝑓𝑐
′=34 MPa, 

fpu=1862 MPa, and 𝑒𝑐𝑜𝑣𝑒𝑟=50 mm. For this problem, also 
assume that, because of clearance requirements, the 
overall depth of the beam, h, cannot exceed 914.4 mm. 

This example was discussed first by Khachaturian and 
Gurfinkel (1969), and later by Taylor and Amirebrahimi 
(1987). The solutions and the comparison of the results 
are presented in Tables 1-2 and Table 3, respectively. 

Table 1. Variables, initial values and results for Example 1. 

Variables 
Minimum 

Values 
(mm) 

Maximum 
Values 
(mm) 

Initial  
Values 
(mm) 

Optimum 
Results 
(mm) 

X1 101.6 750.0 425.8 587.9 

X2 101.6 750.0 425.8 506.8 

X3 101.6 400.0 250.8 101.6 

X4 101.6 400.0 250.8 101.6 

X5 50.0 150.0 100.0 124.6 

X6 400.0 900.0 650.0 681.2 

Table 2. Optimum results, the stresses at transfer and 
service for Example 1. 

St
ag

e 

Location 
Stress  
(MPa) 

Allowable 
Stress 
(MPa) 

P 

(kN) 

E 

(mm) 

Cross-sec-
tional area 

(mm2) 

T
ra

n
sf

er
 

Top -1.31 -1.31 

1424.0 409.7 192103.0 

Bottom 16.16 16.55 

Se
rv

ic
e Top 15.51 15.51 

Bottom -2.93 -2.93 

Table 3. Comparison of the results. 

 
P 

(kN) 
E 

(mm) 
A 

(mm2) 

Khachaturian and 
Gurfinkel 

1650 360.6 219999 

Taylor and 
Amirebrahimi 

1673 370.8 205160 

This study 1424 409.7 192103 

 

As seen from Table 3, the program gives the minimum 
cross-sectional area and the minimum prestressing 
force. The cross-sectional area is found 14% less than 
the solution of Khachaturian and Gurfinkel (1969), and 
6% less than the solution given by Taylor and 
Amirebrahimi (1987). The overall depth of the beam is 
found to be 907.4 mm, which had to be less than 914.4 
mm. But, Taylor and Amirebrahimi (1987) obtained this 
value as exceeded the aforementioned constraint. 

In the present study, the prestressing force is found to 
be 15% less than the solution of Khachaturian and 
Gurfinkel (1969), and 17% less than the solution given 
by Taylor and Amirebrahimi (1987). 

4.2. Example 2 

This example has the same span and loading as Example 
1, but the cross-section has a general I shape as seen in Fig. 2. 

To obtain optimum solution, m is chosen in the range 
from 0 to 1.5. The optimum values are obtained when 
m=0.5. The cross-sectional area with eight dimensions is 
found to be 209158 mm2, which is 8% more than the so-
lution of idealized section considered in Example 1. The 
prestressing force is 1530 kN which is also 7% more 
than the value obtained for the idealized cross-section. 

Table 4. Optimum results for Example 2. 

X1 
(mm) 

X2 
(mm) 

X3 
(mm) 

X4 
(mm) 

X5 
(mm) 

X6 
(mm) 

X7 
(mm) 

X8 
(mm) 

P 
(kN) 

e 
(mm) 

Cross-
sectional 

area 
(mm2) 

5
0

6
.8

 

4
0

5
.5

 

1
0

1
.6

 

1
0

1
.6

 

1
4

3
.1

 

6
6

4
.6

 

1
0

3
.3

 

7
5

.9
 

1
5

3
0

 

4
0

1
 

2
0

9
1

5
8

 

 

5. Conclusions 

A computer program that is capable of finding the 
minimum weight of a prestressed concrete beam satisfy-
ing the given constraints including flexural stresses, 
cover requirement, the aspect ratios for top and bottom 
flanges and web part of a beam and ultimate moment, 
based on modified grid search optimization technique, is 
developed and evaluated. The computer program offers 
a rapid, practical, and interactive method for realizing 
optimum design of beams of general I sections. 

The program finds the optimum solution in a few iter-
ations. Thus, a considerable saving is obtained in compu-
tational work. The program has also graphical output, 
which indicates Magnel diagram with feasible region, 
which helps in determining the prestressing force and 
the eccentricity values.  

Two examples, one of which is available in the litera-
ture and the other is modified form of it, have been 
solved for minimum cross-sectional area designs and the 
results were found to be in good agreement. 

The idealized I beam section with six dimensions 
gives about 10% smaller value compared with general I-
shaped beam section with eight dimensions. In the case 
of general I section, taking 0.5 for the slope, m, yields the 
minimum cross-sectional area. 
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