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Abstract 

The paper aims to suggest algorithms for Extended Galois Field generation and 

calculation. The algorithm analysis shows that the proposed algorithm for finding 

primitive polynomial is faster than traditional polynomial search and when table 

operations in GF(p
m
) are used the algorithms are faster than traditional polynomial 

addition and subtraction. 
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1 Introduction 
 

The broadcasting channels, especially the wireless, are not ideal due to the 

presence of outside influences like noise, interference or echo effects, which 

superpose with the useful signal and lead to the occurrence of errors. It is needed 

to assure low error level in the channel (for example in the DVB, it is necessary to 

achieve BER in the order of 10
-10

 − 10
-12

 with data transmission speed of 30 Mb/s). 

A channel with that low error level is called a quasi-error-free channel. In order to 

achieve this low error level some prevention measures need to be taken. By them 

the reception side will be provided with a detecting and correcting mechanism for 

as many errors as possible. This can be achieved by error-correcting coding by 

introducing a recalculated piece of redundant information. One of the most 

commonly used codes in error correction codes are Reed-Solomon (RS) [11] and 

Bose-Chaudhuri-Hocquenghem (BCH) [3]. One of their key features is that they 

allow correction of the multiple-burst bit-errors in the transmission channel.  
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Since RS and BCH codes are linear, i.e. they are vector fields that exist only 

if the size of the alphabet q is a prime p or a degree of a prime number p
m
, it is 

needed to synthesize accelerated algorithms for generation and operations in the 

Galois Field GF(p) and its extension GF(p
m
) in order to generate the codes. 

The algorithms for constructing an Extended Galois Field GF(p
m
) include as 

their first step the task of finding a primitive polynomial of degree m over GF(p). 

Typically, this task is quite laborious and is solved by the consistent check of all 

the polynomials p(x)  GF(p)[x] of degree m. The volume of calculations to solve 

the problem is growing tremendously with the increasing of the prime p and the 

degree m. 

Considering the problems above the main purpose of this article is synthesis 

of algorithms for accelerated generation and work in Extended Galois Field 

GF(p
m
). The paper is organized as follows. First a brief introduction to the issue is 

made. Then an algorithm for generating an Extended Galois field GF(q = p
m
) is 

proposed and tables for accelerated implementation of the operations for addition 

and subtraction in the generated finite extension are synthesized. Finally, an 

assessment of the performance of proposed algorithms compared to the traditional 

is made. 
 

2 Methods and Algorithms 
 

2.1 Algorithm Synthesis for Accelerated Generating of Extended Galois Field 

GF(p
m

) 

The task for building an extension of the Extended Galois Field GF(p
m
) is closely 

linked to the task of finding a primitive polynomial over GF(p). Typically, this 

task is quite laborious and is solved by the consequent testing of all the 

polynomials p(x)  GF(p)[x] of degree m [4], [5], [6], [8], [9]. Large numbers of 

mathematicians and coding theoreticians have worked on this issue [1], [6], [7], 

but still no one has established an algorithm to exclude completely the search 

among polynomials. Some mathematical proofs were made to facilitate the 

resolution of the problem and reduce the number of required searches. 

For example if r = (p
m
 – 1)/(p – 1) the necessary and sufficient conditions for 

p(x) to be primitive polynomial in GF(p) [10] are: 

1. ((1)
m + 1

a0)
(p  1)/q

  1 for every prime multiplier q of p – 1; 

2. x
r
 mod p(x) = (1)

m + 1
a0; 

3. x
r/q

 mod p(x) has degree more than 0 for every prime multiplier q of r, 1 < q < r. 

In this synthesized algorithm for accelerated generating of Extended Galois 

Field another approach is used: 

First, the value a0 is found such that satisfies the shown above first necessary 

and sufficient condition of Knuth [10]. Since when generating the Extended 

Galois Field GF(p
m
) it is needed to generate the Galois Field GF(p) in advance, 

the decomposition of the even number p1 into prime multipliers has already been 

fulfilled.
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Figure 1. Algorithm for finding the first irreducible polynomial in GF(p) 
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Second, a random search among the other coefficients (am – 1, …, a1) is done. 

This implementation lowers the volume of the search p times. If the search is 

done for all the possible coefficient combinations, all irreducible polynomials over 

Galois Field GF(p) will be found. In order to generate the field it is sufficient to 

find only a single polynomial. Therefore the search is suspended when the first 

primitive polynomial is found, and this accelerates the generation of the extension 

even more. The other irreducible polynomials are obtained after generating the 

field. A simplified block diagram of the algorithm for finding a primitive 

polynomial in the GF(p) is presented in Fig. 1. 

For the final generation of Extended Galois Field it is necessary to find a 

primitive element  [2], [4], [6] originating the field. To speed up the generation 

process, it is first checked whether x is a primitive element for the previously 

found irreducible polynomial (the polynomial x is a primitive element in about 60% 

of the fields GF(p
m
)). Only when x is not a primitive element another primitive 

element is sought. Summarizing the foregoing, the proposed algorithm for 

generating the Extended Galois Field contains four basic steps shown in Fig. 2: 

 

1. Finding an irreducible polynomial p(x)  GF(p)[x] in the Galois Field 

GF(p), such that p(x)   0, x = 1, …, p−1. 

2. Check, whether x is a primitive element  for the irreducible polynomial 

found in step 1 )(mod11 xpx
mp 

. If true, go to step 4. 

3. Search for a primitive element   x. 

4. Calculation of the powers of the primitive element . 

Figure 2. Basic steps of the algorithm for generating  

an Extended Galois Field GF(p
m
) 

2.2 Algorithm synthesis for operations in the Extended Galois Field GF(p
m

) 
The main operations that are carried out in Extended Galois Field GF(p

m
) are 

addition, subtraction, multiplication and division. Having the degrees of the 

primitive element  that were obtained by step 4 of the algorithm shown on Fig. 2 

one can easily perform multiplication and division operations [2], [4], [6]. Instead 

of the traditional way to perform addition and subtraction operations in which 

conversion between power and polynomial representation, conducting the 

operations and again the opposite conversion is performed, creation of tables for 

accelerated addition is proposed. For their generation the conventional algorithm 

[2], [4], [6], [8] is used. In general, the tables have the size with q
2
 elements, but 

since they are symmetrical against the main diagonal only 

(1)    q + (q  1) + … + 1 = q.(q + 1)/2 

values from the table are stored. Example for a table for accelerated addition in 

GF(2
3
) is Table 1. 

For fast execution of the subtraction operation additional q in count elements 

(a) are stored for conducting simple addition. Such table is not necessary for 

GF(2
m
) as (а) = a. 
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Table 1. Addition in GF(8 = 2
3
) 

+ 0 1 2 3 4 5 6 7 

0 0 1 2 3 4 5 6 7 

1 1 0 4 7 2 6 5 3 

2 2 3 0 5 1 3 7 6 

3 3 7 5 0 6 2 4 1 

4 4 2 1 6 0 7 3 5 

5 5 6 3 2 7 0 1 4 

6 6 5 7 4 3 1 0 2 

7 7 3 6 1 5 4 2 0 

For applications that require even greater speed, such as the transmission of 

video in real time, similar tables for accelerated execution of the operation 

multiplication and division can be created. 

 

3 Results and Discussion 
 

To perform the functions for generation and operations in finite Extended Galois 

Field GF(p
m
) a class ExtendedGaloisField was created, which inherits the basic 

class GaloisField, and has the following additional features: Base Galois Field – 

Base, Power, primitive polynomial ModuloPoly, degrees of the primitive element 

AlphaPowers. 

A screenshot of the program implemented in Visual Studio programming 

environment using the language C# is shown on Fig. 3. Example for results for 

generation of the field GF(3
2
) are presented in Table 2. 

 
Figure 3. Screenshot of the program Extended Galois Field GF(p

m
) 

Performance evaluation of the suggested algorithm for GF(p
m
) generation is 

done by a comparison between the number of the operations for testing, 
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multiplication and addition in Galois Field GF(p) when conducting the traditional 

and the accelerated search algorithms. The results of the comparative evaluation 

are presented in Table 3. 

The following conclusion can be made from the analysis of the results. The 

suggested implementation lowers the volume of the random search, as well as the 

count of the multiplication and addition operations in GF(p) p times, i.e. the 

proposed algorithm is p times faster than the traditional. 

 

Table 2. Galois Field GF(3
2
) with Primitive Polynomial а

2
 + а + 2 

Representation  

by powers of  

the primitive  

element  

Representation  

by ternary 

polynomials 

Cyclotomics 
Cyclotomic 

polynomials 

Primitive 

element 

0 00 = 0    


0
 10 = 1 {0} 2 + x  


1
 01 = a {1, 3} 2 + x + x

2
  


2
 12 = 1 + 2a {2, 6} 1 + x

2
 1 +   


3
 22 = 2 + 2a {1, 3} 2 + x + x

2
  


4
 20 = 2 {4} 1 + x  


5
 02 = 2a {5, 7} 2 + 2x + x

2
  


6
 21 = 2 + a {2, 6} 1 + x

2
 1 +  


7
 11 = 1 + a {5, 7} 2 + 2x + x

2
  

 

Table 3. Operations count for generation of Extended Galois Field GF(p
m
) 

Field 

GF(p
m

) 
Method Checks 

Multiplications  

in GF(p) 

Additions  

in GF(p) 

GF(2
3
) 

traditional 8 8.3 = 24 8.3 = 24 

accelerated 4 4.3 = 12 4.3 = 12 

GF(2
4
) 

traditional 16 16.4 = 64 16.4 = 64 

accelerated 8 8.4 = 32 8.4 = 32 

GF(3
3
) 

traditional 27 27.3.2 = 162 27.3.2 = 162 

accelerated 9 9.3.2 = 54 9.3.2 = 54 

GF(3
4
) 

traditional 81 81.4.2 = 648 81.4.2 = 648 

accelerated 27 27.4.2 = 216 27.4.2 = 216 

GF(5
2
) 

traditional 25 25.2.4 = 200 25.2.4 = 200 

accelerated 5 5.2.4 = 40 5.2.4 = 40 

GF(5
3
) 

traditional 125 125.3.4 = 1500 125.3.4 = 1500 

accelerated 25 25.3.4 = 300 25.3.4 = 300 
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4 Conclusion 
 

The proposed algorithms for generation and operations in the Extended Galois 

Field GF(p
m
) are with higher performance than the traditional ones. They can be 

successfully implemented to ensure a low error level in communication channels 

when linear error correcting codes such as BCH or RS are generated. They can be 

used for generation of long pseudo-random sequences for encryption of the 

information transmitted in communication channels. 
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