
Chhillar N. et al., J. Harmoniz. Res. Eng., 2013, 1(2), 65-72

www.johronline.com 65 | P a g e

For Correspondence:
nikitachhillarATyahoo.com
Received on: September 2013
Accepted after revision: October 2013
Downloaded from: www.johronline.com

• -

Introduction:
Parallel computing is a form of computation in
which many calculations are carried out
simultaneously, operating on the principle that
large problems can often be divided into
smaller ones, which are then solved
concurrently ("in parallel"). There are several
different forms of parallel computing: bit-
level, instruction level, data, and task
parallelism. Parallelism has been employed

for many years, mainly in high-performance
computing, but interest in it has grown lately
due to the physical constraints preventing
frequency scaling. As power consumption
(and consequently heat generation) by
computers has become a concern in recent
years, parallel computing has become the
dominant paradigm in computer architecture,
mainly in the form of multicore processors.

Abstract:
Parallel Computing is very wide-ranging and large topic. It basically means use of multiple
processors or computers working together on a common task. Parallel computing is the
simultaneous use of multiple compute resources to solve a computational problem. This paper
consists of a conversation on parallel computing - what it is and where it's used, followed by a
discussion on concepts connected with parallel computing. The subject dependencies, Flynn’s
taxonomy are then explored. These topics are followed by types of parallelism hardware
parallelism and software parallelism.

Keywords: Parallel computing, computation, parallelism.

FUNCTIONING EFFICIENTLY USING PARALLEL COMPUTING

Nikita Chhillar, Nisha Yadav, Neha Jaiswal

 Department of Computer Science and Engineering,
Dronacharya College of Engineering, Khentawas,

Farukhnagar, Gurgaon, India

Journal Of Harmonized Research (JOHR)

Original Research Article

 Journal Of Harmonized Research in Engineering
 1(2), 2013, 65-72

ISSN 2347 – 7393

Chhillar N. et al., J. Harmoniz. Res. Eng., 2013, 1(2), 65-72

www.johronline.com 66 | P a g e

The maximum possible speed-up of a program
as a result of parallelization is known as
Amdahl's law.
• Gustafson’s Law:
•Effect of multiple processors on run time of a
problem with a fixed amount of parallel work
per processor.

• Amdahl’s law:
•All parallel programs contain: parallel
sections & serial sections
•Serial sections limit the parallel effectiveness
•Amdahl’s Law states this formally
–Effect of multiple processors on speed up

Uses for Parallel Computing:
Science and Engineering:
Historically, parallel computing has been
considered to be "the high end of
computing", and has been used to model
difficult problems in many areas of science
and engineering:

For eg: Atmosphere, Earth, Environment
,Physics, condensed matter, high pressure,
photonics, Biotechnology, Genetic ,
Chemistry, Molecular Sciences ,Geology,
Seismology , Engineering, Circuit Design,
Microelectronics ,Defense, Weapons,
Computer Science, Mathematics.

Industrial and Commercial:
Today, commercial applications provide an
equal or greater driving force in the
development of faster computers. These

applications require the processing of large
amounts of data in sophisticated ways.
For example: Databases, data mining , Oil
exploration , web based business, Medical
imaging and diagnosis, Pharmaceutical design

Chhillar N. et al., J. Harmoniz. Res. Eng., 2013, 1(2), 65-72

www.johronline.com 67 | P a g e

,Financial and economic modeling
Management, Advanced graphics and virtual
reality, particularly in the entertainment
industry, multi-media technologies
Collaborative work environments
Flynn's taxonomy:
Flynn classified programs and computers by
whether they were operating using a single set
or multiple sets of instructions, and whether or
not those instructions were using a single set
or multiple sets of data.
The single-instruction-single-data (SISD)
classification is equivalent to an entirely

sequential program. The single-instruction-
multiple-data (SIMD) classification is
analogous to doing the same operation
repeatedly over a large data set. This is
commonly done in signal processing
applications. Multiple-instruction-single-data
(MISD) is a rarely used classification. While
computer architectures to deal with this were
devised (such as systolic arrays), few
applications that fit this class materialized.
Multiple-instruction-multiple-data (MIMD)
programs are by far the most common type of
parallel programs.

Flynn's taxonomy

S I S D
Single Instruction Stream

Single Data Stream

S I M D
Single Instruction Stream
Multiple Data Stream

M I S D
Multiple Instruction Stream

Single Data Stream

M I M D
Multiple Instruction Stream

Multiple Data Stream

� Single Instruction, Single Data (SISD):

• A serial (non-parallel) computer
• Single Instruction: Only one instruction

stream is being acted on by the CPU during
any one clock cycle

• Single Data: Only one data stream is being
used as input during any one clock cycle

• Examples: older generation mainframe,
minicomputer and workstations; most
modern day PCs.

� Single Instruction, Multiple Data
(SIMD):

• A type of parallel computer
• Single Instruction: All processing units

execute the same instruction at any given
clock cycle

• Multiple Data: Each processing unit can
operate on a different data element and
Vector Pipelines

Examples:
o Processor Arrays: Connection Machine

CM-2, MasPar MP-1 & MP-2, ILLIAC IV
o Vector Pipelines: IBM 9000, Cray X-MP,

Y-MP & C90, Fujitsu VP, NEC SX-2,
Hitachi S820, ETA10

� Multiple Instruction, Single Data
(MISD):

• A type of parallel computer
• Multiple Instructions: Each processing

unit operates on the data independently via
separate instruction streams.

• Single Data: A single data stream is fed
into multiple processing units.

� Multiple Instructions, Multiple Data
(MIMD):

• A type of parallel computer
• Multiple Instruction: Every processor

may be executing a different instruction
stream

• Multiple Data: Every processor may be
working with a different data stream
Examples: most current supercomputers,
networked parallel computer clusters and
"grids", multi-processor SMP computers,
multi-core PCs.

Types of parallelism:
� Bit-level parallelism:
From the advent of very-large-scale
integration (VLSI) computer-chip fabrication
technology in the 1970s until about 1986,
speed-up in computer architecture was driven

Chhillar N. et al., J. Harmoniz. Res. Eng., 2013, 1(2), 65-72

www.johronline.com 68 | P a g e

by doubling computer word size—the amount
of information the processor can manipulate
per cycle. Increasing the word size reduces the
number of instructions the processor must
execute to perform an operation on variables
whose sizes are greater than the length of the
word. For example, where an 8-bit processor
must add two 16-bit integers, the processor
must first add the 8 lower-order bits from each
integer using the standard addition instruction,
then add the 8 higher-order bits using an add-
with-carry instruction and the carry bit from
the lower order addition; thus, an 8-bit
processor requires two instructions to
complete a single operation, where a 16-bit
processor would be able to complete the
operation with a single instruction.

� Instruction-level parallelism:
A canonical five-stage pipeline in a RISC
machine (IF = Instruction Fetch, ID =
Instruction Decode, EX = Execute, MEM =
Memory access, WB = Register write back)
A computer program, is in essence, a stream
of instructions executed by a processor. These
instructions can be re-ordered and combined
into groups which are then executed in parallel
without changing the result of the program.
This is known as instruction-level parallelism.
Advances in instruction-level parallelism
dominated computer architecture from the
mid-1980s until the mid-1990s.
Modern processors have multi-stage
instruction pipelines. Each stage in the
pipeline corresponds to a different action the
processor performs on that instruction in that
stage; a processor with an N-stage pipeline
can have up to N different instructions at
different stages of completion. The canonical
example of a pipelined processor is a RISC
processor, with five stages: instruction fetch,
decode, execute, memory access, and write
back. The Pentium 4 processor had a 35-stage
pipeline.

A five-stage pipelined superscalar processor,
capable of issuing two instructions per cycle.
It can have two instructions in each stage of
the pipeline, for a total of up to 10 instructions
(shown in green) being simultaneously
executed.
Hardware:
Memory and communication:
Main memory in a parallel computer is either
shared memory (shared between all processing
elements in a single address space), or
distributed memory (in which each processing
element has its own local address space).
Distributed memory refers to the fact that the
memory is logically distributed, but often
implies that it is physically distributed as well.
Distributed shared memory and memory
virtualization combine the two approaches,
where the processing element has its own
local memory and access to the memory on
non-local processors. Accesses to local
memory are typically faster than accesses to
non-local memory.

A logical view of a Non-Uniform Memory
Access (NUMA) architecture. Processors in
one directory can access that directory's
memory with less latency than they can access
memory in the other directory's memory.
Computer systems make use of caches—
small, fast memories located close to the
processor which store temporary copies of
memory values (nearby in both the physical

Chhillar N. et al., J. Harmoniz. Res. Eng., 2013, 1(2), 65-72

www.johronline.com 69 | P a g e

and logical sense). Parallel computer systems
have difficulties with caches that may store
the same value in more than one location, with
the possibility of incorrect program execution.
These computers require a cache coherency
system, which keeps track of cached values
and strategically purges them, thus ensuring
correct program execution. Bus snooping is
one of the most common methods for keeping
track of which values are being accessed (and
thus should be purged). Designing large, high-
performance cache coherence systems is a
very difficult problem in computer
architecture. As a result, shared-memory
computer architectures do not scale as well as
distributed memory systems do.
Processor–processor and processor–memory
communication can be implemented in
hardware in several ways, including via shared
(either multiported or multiplexed) memory, a
crossbar switch, a shared bus or an

interconnect network of a myriad of
topologies including star, ring, tree,
hypercube, fat hypercube (a hypercube with
more than one processor at a node), or n-
dimensional mesh.
1) Classes of parallel computers:
Parallel computers can be roughly classified
according to the level at which the hardware
supports parallelism. This classification is
broadly analogous to the distance between
basic computing nodes. These are not
mutually exclusive; for example, clusters of
symmetric multiprocessors are relatively
common.
� Distributed computing:
A distributed computer (also known as a
distributed memory multiprocessor) is a
distributed memory computer system in which
the processing elements are connected by a
network. Distributed computers are highly
scalable.

Chhillar N. et al., J. Harmoniz. Res. Eng., 2013, 1(2), 65-72

www.johronline.com 70 | P a g e

� Cluster computing:

A cluster is a group of loosely coupled
computers that work together closely, so that
in some respects they can be regarded as a
single computer. Clusters are composed of
multiple standalone machines connected by a
network. While machines in a cluster do not
have to be symmetric, load balancing is more
difficult if they are not. The most common
type of cluster is the Beowulf cluster, which is
a cluster implemented on multiple identical
commercial off-the-shelf computers connected
with a TCP/IP Ethernet local area network.
Massive parallel processing:
A massively parallel processor (MPP) is a
single computer with many networked
processors. MPPs have many of the same
characteristics as clusters, but MPPs have
specialized interconnect networks (whereas
clusters use commodity hardware for
networking). MPPs also tend to be larger than
clusters, typically having "far more" than
100 processors. In a MPP, "each CPU
contains its own memory and copy of the
operating system and application. Each
subsystem communicates with the others via a
high-speed interconnect."

� Grid computing:
Distributed computing is the most distributed
form of parallel computing. It makes use of
computers communicating over the Internet to
work on a given problem. Because of the low
bandwidth and extremely high latency
available on the Internet, distributed
computing typically deals only with
embarrassingly parallel problems. Many
distributed computing applications have been
created, of which SETI@home and
Folding@home are the best-known examples.
Most grid computing applications use
middleware, software that sits between the
operating system and the application to
manage network resources and standardize the
software interface. The most common
distributed computing middleware is the
Berkeley Open Infrastructure for Network
Computing (BOINC). Often, distributed
computing software makes use of "spare
cycles", performing computations at times
when a computer is idling.

Specialized parallel computers:
Within parallel computing, there are
specialized parallel devices that remain niche
areas of interest. While not domain-specific,
they tend to be applicable to only a few
classes of parallel problems.
� Reconfigurable computing with field-

programmable gate arrays:
Reconfigurable computing is the use of a
field-programmable gate array (FPGA) as a
co-processor to a general-purpose computer.
An FPGA is, in essence, a computer chip that
can rewire itself for a given task.FPGAs can
be programmed with hardware description
languages such as VHDL or Verilog.
However, programming in these languages
can be tedious. Several vendors have created

Chhillar N. et al., J. Harmoniz. Res. Eng., 2013, 1(2), 65-72

www.johronline.com 71 | P a g e

C to HDL languages that attempt to emulate
the syntax and/or semantics of the C
programming language
� General-purpose computing on graphics

processing units (GPGPU):
General-purpose computing on graphics
processing units (GPGPU) is a fairly recent
trend in computer engineering research. GPUs
are co-processors that have been heavily
optimized for computer graphics processing.
Computer graphics processing is a field
dominated by data parallel operations—
particularly linear algebra matrix operations.
� Application-specific integrated circuits:
Several application-specific integrated circuit
(ASIC) approaches have been devised for
dealing with parallel applications. As a result,
for a given application, an ASIC tends to
outperform a general-purpose computer. This
process requires a mask, which can be
extremely expensive. (The smaller the
transistors required for the chip, the more
expensive the mask will be.) Meanwhile,
performance increases in general-purpose
computing over time tend to wipe out these
gains in only one or two chip generations.
High initial cost and the tendency to be
overtaken have rendered ASICs unfeasible for
most parallel computing applications.
� Vector processors:
A vector processor is a CPU or computer
system that can execute the same instruction
on large sets of data. "Vector processors have
high-level operations that work on linear
arrays of numbers or vectors. An example
vector operation is A = B × C, where A, B, and
C are each 64-element vectors of 64-bit
floating-point numbers." They are closely
related to Flynn's SIMD classification.
Software:
� Parallel programming languages:
Concurrent programming languages, libraries,
APIs, and parallel programming models have
been created for programming parallel
computers. These can generally be divided
into classes based on the assumptions they
make about the underlying memory
architecture—shared memory, distributed
memory, or shared distributed memory.
Shared memory programming languages

communicate by manipulating shared memory
variables. Distributed memory uses message
passing. POSIX Threads and OpenMP are two
of most widely used shared memory APIs,
whereas Message Passing Interface (MPI) is
the most widely used message-passing system
API. HMPP (Hybrid Multicore Parallel
Programming) directives an Open Standard
denoted Open HMPP. The Open HMPP
directive-based programming model offers
syntax to efficiently offload computations on
hardware accelerators and to optimize data
movement to/from the hardware memory.
Open HMPP directives describe remote
procedure call (RPC) on an accelerator device
(e.g. GPU) or more generally a set of cores.

� Automatic parallelization:
Automatic parallelization of a sequential
program by a compiler is the holy grail of
parallel computing. Despite decades of work
by compiler researchers, automatic
parallelization has had only limited success
Mainstream parallel programming languages
remain either explicitly parallel or (at best)
partially implicit, in which a programmer
gives the compiler directives for
parallelization. A few fully implicit parallel
programming languages exist—SISAL,
Parallel Haskell, System C (for FPGAs),
Mitrion-C, VHDL, and Verilog.
� Application check pointing:
As a computer system grows in complexity,
the mean time between failures usually
decreases. Application check pointing is a
technique whereby the computer system takes
a "snapshot" of the application — a record of
all current resource allocations and variable
states, akin to a core dump; this information
can be used to restore the program if the
computer should fail. Application check
pointing means that the program has to restart
from only its last checkpoint rather than the
beginning. While check pointing provides
benefits in a variety of situations, it is
especially useful in highly parallel systems
with a large number of processors used in high
performance computing.
Conclusion:
Parallel computer programs are more difficult
to write than sequential ones, because

Chhillar N. et al., J. Harmoniz. Res. Eng., 2013, 1(2), 65-72

www.johronline.com 72 | P a g e

concurrency introduces several new classes of
potential software bugs, of which race
conditions are the most common.
Communication and synchronization between
the different subtasks are typically some of the
greatest obstacles to getting good parallel
program performance. Save time and/or
money: throwing more resources at a task will
shorten it’s time to completion, with potential
cost savings. Parallel clusters can be built
from cheap, commodity components. Provide
concurrency: A single compute resource can
only do one thing at a time. Multiple
computing resources can be doing many
things simultaneously
References:
1. Bernstein, A. J. (1 October 1966).

"Analysis of Programs for Parallel
Processing". IEEE Transactions on
Electronic Computers. EC-15 (5): 757–
763. Doi:10.1109/PGEC.1966.264565.

2. Gottlieb, Allan; Almasi, George S. (1989).
Highly parallel computing. Redwood City,
Calif.: Benjamin/Cummings. ISBN 0-
8053-0177-1.

3. S.V. Adve et al. (November 2008).
"Parallel Computing Research at Illinois:
The UPCRC Agenda" (PDF).

4. Asanovic, Krste et al. (December 18,
2006). "The Landscape of Parallel

Computing Research: A View from
Berkeley" (PDF).

5. Hennessy, John L.; Patterson, David A.,
Larus, James R. (1999). Computer
organization and design: the
hardware/software interface (2. ed., 3rd
print. ed.). San Francisco: Kaufmann.
ISBN 1-55860-428-6

6. Jump up to: a b Barney, Blaise.
"Introduction to Parallel Computing".
Lawrence Livermore National Laboratory.
Retrieved 2007-11-09

7. Singh, David Culler ; J.P. (1997). Parallel
computer architecture ([Nachdr.] ed.). San
Francisco: Morgan Kaufmann Publ. p. 15.
ISBN 1-55860-343-3.

8. Patterson and Hennessy Gustafson, John
L. (May 1988). "Reevaluating Amdahl's
law". Communications of the ACM 31 (5):
532–533. doi:10.1145/42411.42415

9. Encyclopedia of Parallel Computing,
Volume 4 by David Padua 2011 ISBN
0387097651

10. Asanovic, Krste, et al. (December 18,
2006). The Landscape of Parallel
Computing Research: A View from
Berkeley (PDF)

11. Anthes, Gry (November 19, 2001). "The
Power of Parallelism". Computerworld.
Retrieved 2008-01-08.

.

