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Abstract – The article provides the method of formation of 

the sum code with minimum total number of undetectable er-
rors. The code, suggested by authors, has the same number of 
check bits, as a classic Berger code, but also has a better detec-
tion ability, particularly within the area of low multiplicity 
errors in data vectors. New sum code allows to develop concur-
rent error detection (CED) systems of logic units of automation 
and computer devices with low equipment redundancy and a 
high percentage of error detection in controlled blocks. 
 

I. INTRODUCTION 
 

um codes are often used for data transmission and pro-
cessing systems, as well as for design of reliable sys-
tems of automation and computer devices [1-9]. One of 
the examples of application of sum codes is a concur-

rent error detection (CED) system of arithmetical-logical 
units, that make a part of any modern systems of automation 
control [10-14]. 

The CED system structure is presented in Fig. 1. There, 
the initial arithmetical-logical unit F(x), that realizes the 
system of operational Boolean functions                           
f1(x), f2(x), …, fm(x), is equipped with the special control 
equipment. The control equipment includes the reference 
logic block G(x), calculating the values of test functions 
g1(x), g2(x), …, gk(x), and the self-checking checker, that 
registers the conformance of the values of operational and 
test functions at any given time. This conformance is estab-
lished at the CED system design stage and usually deter-
mined according to the rules of formation of preselected 
sum code. So the block F(x) outputs are matched with the 
data vector of length m, and the block G(x) outputs – with 
the check vector of length k. Those significant parameters of 
the CED system as detection ability and equipment redun-
dancy are substantially depend on the rules of code for-
mation, and the latter, in its turn, effects the power con-
sumption, processing speed, testability and other character-
istics of built discrete system [15,16]. 

The structure, shown in Fig. 1, in practice is built under 
condition of 100% detection of single faults [1,17]. By the 
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reason of separate implementation of the blocks F(x), G(x) 
and checker at any given time the fault can occur only in 
one element of CED system. The reference logic block 
faults distort the values of test functions, that is registered by 
the checker. The checker, as the watchdog in CED system, 
is built as a self-checking device and thus detects its own 
faults at leas in one input set [1]. The CED system task is to 
provide the detection of single faults in block F(x), when the 
internal configuration of links between logic elements with-
in it can result in occurrence of distortions of different mul-
tiplicities in the values of output vector. Therefore, it is pos-
sible to consider the characteristics of sum code based on 
error detection in data vectors, studying by this the features 
of the CED system itself. 

Different sum codes have different characteristics of er-
ror detection in data vectors and allow to build systems with 
various technical specifications. This paper is dedicated to 
the study of sum codes, that have minimum total number of 
undetectable errors in data vectors, as well as decreased 
number of double undetectable errors in comparison with 
classic sum codes. 

II. ANALYSIS OF BERGER CODES AND SUM CODES WITH 
WEIGHTED TRANSITIONS PROPERTIES FOR ERROR DETECTION 

IN DATA VECTORS 
Classic sum code, or Berger code [18], is built based on 

the following principle: data vector weight r (the sum of one 
data bits), and then the obtained value is presented in binary 
form and recorded into the bits of the check vector. The 
number of check bits in Berger code is calculated using the 
formula: ( ) 1log2 += mk  (notation  ...  is an integer, up-
ward to the calculating value). Hereafter referred the Berger 
code to as S(m,k)-code. 

In S(m,k)-code the same check vector corresponds to all 
data vectors with the same weight. For this value r is r

mC  of 
data vectors. With increasing of r the number of data vec-
tors, corresponding to the same check vector, increases with 
its maximum at 

2
m  for the even m and at 

2
1−m  for the odd 

m, and then grows away. Such distribution of data vectors 
between the check vectors results in the fact, that S(m,k)-
code does not detect significantly large amount of errors in 
data vectors. For example, S(5,3)-code does not detect 220 
errors in data vectors, that forms 22.18% of all possible er-
rors in data vectors (i.e. this code does not detect slightly 
less than one fourth of errors in data vectors). With low val-
ue of detection ability all S(m,k)-codes also have low effi-
ciency of low multiplicities error detection – these codes do 
not detect 50% of double errors, 37.5% of quadruple errors, 
31.25% six-fold errors, etc. [19]. 
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Fig. 1. CED system structure 

 
So the problem of increasing the detection abiliity arises, 

which includes the detection ability within the area of low 
multiplicity errors, on condition of keeping the number of 
check bits in the code. Practically speaking, for example, in 
CED systems the solution of this problem will allow to de-
tect the bigger number of single faults of controlled logic 
unit without increasing the equipment redundancy. 

In [20] the term of an optimum separable code by the 
criterion of minimum number of undetectable errors for the 
specified values of m and k was introduced. The optimum 
code has a uniform distribution of all m2  data vectors 
among k2  check vectors and does not detect  

( ),122min
, −= −kmm
kmN   (1) 

errors in data vectors. For instance, the optimum code, 
where m=5 and k=3, has ( ) 96332122 355min

3,5 =⋅=−= −N  
undetectable errors, i.e. 2.29 times less than  S(5,3)-code. 
The same paper suggests the method for improving the 
S(m,k)-codes characteristics for error detection in data vec-
tors without sacrificing the number of check bits. This 
method is based on transformation of each Berger code 
word in its check part using the specific algorithm. This 
algorithm implicates the determination of the vector weight 
to the modulus ( )  11log22 −+= mM  and using the correction 
factor, equals to modulo two sum of values of some data 
vector bits. Modified Berger codes, at an average, detect 
twice as many errors in data vectors as classic S(m,k)-codes, 
however, they are not the optimum codes. In [21-23] there is 
a suggestion of the line of modified Berger codes, that are 
obtained by establishing the modulus for data vector weight 
determination, selected from the set 

( ) { }21log22;...;4;2 −+∈ mM . These codes have decreased num-
ber of check bits in comparison with Berger codes. Modu-
lar-modified Berger codes with its m and k values are also 
not an optimum (excluding the code, where M=2, that has 2 
check bits). 

Optimum sum code with the same number of check bits 
as Berger code, can be built by alteration of the algorithm of 
formation of the sum code with weighted transitions             
[24-26]: 

Algorithm 1. Check vectors obtaining for sum code with 
weighted transitions: 

1. Data vector bits are considered, that have the adjacent 
positions. 

2. Each transition from the bit to the bit it is assigned the 
weight ratio from the positive integers (1, 2, …, m–1), start-
ing from the lower order bit. 

3. The sum of so called active transitions (transition be-
tween the bit is called active, if the modulo two sum of the 
values of adjacent bits equals 1) is calculated.  

4. Obtained value is presented in binary form and rec-
orded in check vector. 

Let us set the sum code with weighted transitions as 
WT(m,k)-code.  

WT(m,k)-code detects bigger number of errors in data 
vectors, than S(m,k)-code, and however it has the increased 
number of check bits. This number is equals 

( )




 −

=
2

1log2
mmk . The increased number of check bits 

in WT(m,k)-code in comparison with S(m,k)-code results in 
increase of complexity of control equipment in CED system 
(see Fig. 1). Besides, the check bits of WT(m,k)-code are 
used ineffectively – WT(m,k)-codes are not optimum codes 
[27]. Optimum code are obtained by using the following 
algorithm of formation. 

Algorithm 2. Check vectors obtaining for modified sum 
code with weighted transitions: 

1. The steps 1 – 3 of Algorithm 1 are carried out. 
2. The modulus  ( ) 1log22 += mM  value is established (this 

is the modulus of Berger code). 
3. The sum V of so called active transitions is calculated.  
4. The least non-negative residue of V value for estab-

lished modulus is calculated: ( ) MVW mod= . 
5. The number W is presented in binary form and record-

ed in check vector. 
To demonstrate the operation of algorithm of formation 

of modified sum code with weighted transitions or 
WTM(m,k)-code, let us use the example of WT8(5,3)-code 
formation. Table I presents the weight ratios of each transi-
tion between the bits of data vector, and Table 2 presents all 

 
 



code words of WT8(5,3)-code. For instance, in <00101> 
data vector transitions are considered active between the bits 
x1 and x2, x2 and x3, x3 and x4. To obtain V value it is neces-
sary to sum up the weight ratios of these transitions: 
V=w1,2+w2,3+w3,4=1+2+3=6. The least non-negative residue 
of V equals to W=(6)mod8=6, that in binary form is present-
ed as <110>. 

 
TABLE I 

WEIGHT RATIOS OF TRANSITIONS IN DATA VECTOR 
w4,5 w3,4 w2,3 w1,2 

4 3 2 1 
 

By analyzing Table II, it is not too difficult to notice that 
V values for data vectors, equidistant form the middle of the 
table (these vectors have opposite values of similar bits), are 
equal. At that the number of repeating V values is unequal 
(Table III). This results in the irregularity in the distribution 
of data vectors of WT(m,k)-code among the check vectors 
(within the test groups). Implementing the modification of 
WT(m,k)-code under Algorithm 2, this disadvantage is elim-
inated, because the calculation is made up to the value M–
1=7: (8)mod8=0, (9)mod8=1 и (10)mod8=2. 
 

TABLE II 
CODE WORDS OF WT8(5,3)-CODE 

№ Data vector bits V W=(V)mod8 Check vector bits 
x5 x4 x3 x2 x1 y3 y2 y1 

0 0 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 1 1 1 0 0 1 
2 0 0 0 1 0 3 3 0 1 1 
3 0 0 0 1 1 2 2 0 1 0 
4 0 0 1 0 0 5 5 1 0 1 
5 0 0 1 0 1 6 6 1 1 0 
6 0 0 1 1 0 4 4 1 0 0 
7 0 0 1 1 1 3 3 0 1 1 
8 0 1 0 0 0 7 7 1 1 1 
9 0 1 0 0 1 8 0 0 0 0 
10 0 1 0 1 0 10 2 0 1 0 
11 0 1 0 1 1 9 1 0 0 1 
12 0 1 1 0 0 6 6 1 1 0 
13 0 1 1 0 1 7 7 1 1 1 
14 0 1 1 1 0 5 5 1 0 1 
15 0 1 1 1 1 4 4 1 0 0 
16 1 0 0 0 0 4 4 1 0 0 
17 1 0 0 0 1 5 5 1 0 1 
18 1 0 0 1 0 7 7 1 1 1 
19 1 0 0 1 1 6 6 1 1 0 
20 1 0 1 0 0 9 1 0 0 1 
21 1 0 1 0 1 10 2 0 1 0 
22 1 0 1 1 0 8 0 0 0 0 
23 1 0 1 1 1 7 7 1 1 1 
24 1 1 0 0 0 3 3 0 1 1 
25 1 1 0 0 1 4 4 1 0 0 
26 1 1 0 1 0 6 6 1 1 0 
27 1 1 0 1 1 5 5 1 0 1 
28 1 1 1 0 0 2 2 0 1 0 
29 1 1 1 0 1 3 3 0 1 1 
30 1 1 1 1 0 1 1 0 0 1 
31 1 1 1 1 1 0 0 0 0 0 
 

TABLE III 
DISTRIBUTION OF V VALUES FOR WT8(5,3)-CODE FORMATION 

V 
0 1 2 3 4 5 6 7 8 9 10 
0 1 2 3 4 5 6 7 8 9 10 
   3 4 5 6 7    
      3 4 5 6 7       

 

Table IV provides the distribution of data vectors within 
the test groups for the WT8(5,3)-code of interest. Within 
each test group there are 4 data vectors. What is more, in 
virtue of the equality of V values for equidistant from the 
middle of Table II data vectors within each test group there 
are always two data vectors minimum, that differ from each 
other in all bits. This induces the undetectable errors of max-
imum multiplicity d=m in WT8(5,3)-code. Undetectable 
errors of lower multiplicities appear in WT8(5,3)-codes in 
case of distortions, that transfer data vectors of one test 
group into data vectors, not-equidistant from the middle of 
Table II. This type of distribution of data vectors among the 
test groups remains unchanged and for all WTM(m,k)-codes. 
The only exclusion is WTM(m,k)-codes with the number of 
data bits tm 2=  (t=1, 2, …). For these codes there is no fill-
ing the last test group, because the number of data bits is 
that the value 12 −= kW  does not form. Actually, where 
m=4, for example, maximum data vector weight is 
W=w1,2+w2,3+w3,4=1+2+3=6. 

Apropos WTM(m,k)-codes with data vectors lengths 
tm 2≠  (t=1, 2, …), it should be noticed that within each test 

group there are transitions for them similar by multiplicity. 
These transitions determine the number of distortions with 
different multiplicity within each test group. For example, 
Fig. 2 shows the graph of all possible transitions within 
<111> test group of WT8(5,3)-code. 
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Fig. 2. Transitions within  <111> test group of WT8(5,3)-code 

 
The total number of undetectable errors in WTM(m,k)-

codes is obtained by multiplying the number of errors within 
one test group by M.  

Table V5 provides the distribution of undetectable errors 
in data vectors of WTM(m,k)-codes for several m values. 
Analysis of such table allowed to establish the features of a 
new class of sum codes based on error detection in data vec-
tors: 

− any WTM(m,k)-code detects 100% of single distor-
tions (is a fault-tolerant code);  

− WTM(m,k)-codes with data vector lengths tm 2≠  
(t=1, 2, …) are optimum; 

− WTM(m,k)-codes with data vector lengths tm 2=  
(t=1, 2, …) are close to optimum, but not such codes; 

− WTM(m,k)-codes with even values of m detect 100% 
of errors of odd multiplicities in data vectors (any 
Berger codes have this feature); 

− WTM(m,k)-codes detect 100% of errors of multiplici-
ty d=m–1 in data vectors; 

− WTM(m,k)-codes do not detect 100% of errors of 
maximum multiplicity d=m in data vectors; 

− the number of undetectable errors of each multiplici-
ty (as well as the total number of undetectable errors) 
is multiple of modulus M. 

 

 
 



The properties of WTM(m,k)-codes are explained by the 
rules of its formation. For example, fault-tolerance is ex-
plained by the fact, that for weight ratios the sequence of 
positive integers from 1 to m–1 is used, and modulus for 
residue determination is always bigger than the maximum 
transition weight in data vector: wm–1,m=m–1, 

( ) 1log22 += mM  and M>m–1. If modulus M will be equal to 

the weight of transition between the highest bits wm,m–1, so 
the residue of this value would be 0:                                  
(wm–1,m)modM=(M)modM=0. And this would mean that 
even with activation of transition the weight values in total 
sum W would always be 0, and the bit would be uncon-
trolled. 

 
 TABLE IV 

DISTRIBUTION OF DATA VECTORS OF WT8(5,3)-CODE WITHIN TEST GROUPS 
W=(V)mod8 

0 1 2 3 4 5 6 7 
Check vector 

000 001 010 011 100 101 110 111 
00000 00001 00011 00010 00110 00100 00101 01000 
01001 01011 01010 00111 01111 01110 01100 01101 
10110 10100 10101 11000 10000 10001 10011 10010 
11111 11110 11000 11101 11001 11011 11010 10111 

 
TABLE V  

DISTRIBUTION OF UNDETECTABLE ERRORS IN DATA VECTORS OF SOME WTM(M,K)-CODES 

m k M Distribution of undetectable errors by multiplicities, Nm,d Nm 1 2 3 4 5 6 7 8 9 10 11 12 
2 2 4 0 4                     4 
3 2 4 0 0 8                   8 
4 3 8 0 8 0 16                 24 
5 3 8 0 32 32 0 32               96 
6 3 8 0 192 0 192 0 64             448 
7 3 8 0 448 448 448 448 0 128           1920 
8 4 16 0 832 0 1936 0 832 0 256         3856 
9 4 16 0 2304 1280 4096 4096 1280 2304 0 512       15872 
10 4 16 0 7680 0 24064 0 24064 0 7680 0 1024     64512 
11 4 16 0 17408 7424 58496 45696 45696 58496 7424 17408 0 2048   260096 
12 4 16 0 44032 0 242688 0 466944 0 242688 0 44032 0 4096 1044480 
 
 

 
Fig. 3. Part of double undetectable errors in total number of double errors in S(m,k) and WTM(m,k)-codes 

 
 



Fig. 3 gives the comparison of WTM(m,k)-codes and 
S(m,k)-codes by its ability of detection of double errors in 
data vectors – there is a function of the number of double 
undetectable errors in data vectors to the total number of 
double errors in data vectors (βd) by the data vector 
length. Based on Fig. 3 it follows that WTM(m,k)-codes 
more than twice as effective in double errors detection, as 
S(m,k)-codes. Such improvement is true and for errors of 
any even multiplicities (Table VI). Diagrams of Fig. 4 
show the function of ηm, which equals to the number of 
undetectable errors of given multiplicity in Berger codes 

and in weight-based codes of interest, to the data vector 
length m. The value ηm demonstrates what fold decrease 
the number of undetectable errors of given multiplicity in 
WTM(m,k)-codes in comparison with S(m,k)-codes with 
the specified m value. 

For odd m values the efficiency of detection of errors 
of even multiplicities in WTM(m,k)-codes, in comparison 
with m±1, increases, that happens due to the presence of 
errors of odd multiplicities within the class of undetecta-
ble errors in codes with odd m values. 

 

 
Fig. 4. Improving the characteristic of  double errors detection of WTM(m,k)-codes in comparison with S(m,k)-codes 

 
 

TABLE VI 
VALUE ΒD FOR EACH MULTIPLICITY FOR CLASSIC AND WEIGHT-BASED SUM CODES 

m Part of undetectable errors of multiplicity d in total number of errors of given multiplicity, % 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

WTM(m,k)-code 
2 0 100                                     
3 0 0 100                                   
4 0 8.33 0 100                                 
5 0 10 10 0 100                               
6 0 20 0 20 0 100                             
7 0 16.67 10 10 16.67 0 100                           
8 0 11.61 0 10.8 0 11.61 0 100                         
9 0 12.5 2.98 6.35 6.35 2.98 12.5 0 100                       
10 0 16.67 0 11.19 0 11.19 0 16.67 0 100                     
11 0 15.45 2.2 8.66 4.83 4.83 8.66 2.2 15.45 0 100                   
12 0 16.29 0 11.97 0 12.34 0 11.97 0 16.29 0 100                 
13 0 15.54 2.05 8.89 4.75 6.54 6.54 4.75 8.89 2.05 15.54 0 100               
14 0 16.35 0 12.76 0 12.27 0 12.27 0 12.76 0 16.35 0 100             
15 0 15.6 3.1 9.23 4.26 7.32 5.79 5.79 7.32 4.26 9.23 3.1 15.6 0 100           
16 0 11.88 0 6.61 0 6.15 0 6.15 0 6.15 0 6.61 0 11.88 0 100         
17 0 12.87 0.81 5.65 1.7 4.09 2.49 3.27 3.27 2.49 4.09 1.7 5.65 0.81 12.87 0 100       
18 0 14.71 0 7.25 0 6.26 0 6.15 0 6.15 0 6.26 0 7.25 0 14.71 0 100     
19 0 14.33 0.68 6.47 1.46 4.5 2.2 3.61 2.9 2.9 3.61 2.2 4.5 1.46 6.47 0.68 14.33 0 100   
20 0 14.61 0 7.47 0 6.43 0 6.2 0 6.16 0 6.2 0 6.43 0 7.47 0 14.61 0 100 

S(m,k)-code 
2÷20 0 50 0 37.5 0 31.25 0 27.34 0 24.61 0 22.56 0 20.95 0 19.64 0 18.55 0 17.62 

 



III. CONCLUSION 
 

This paper suggests the method for formation of a sum 
code with minimum total number of undetectable errors 
in data vectors. Moreover, this new sum code more effec-
tively detects the errors of low multiplicities in data vec-
tors, than the classic Berger code. These advantages of 
WTM(m,k)-code can be considered while CED systems 
design with 100% detection of single faults in controlled 
logic units. 
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