
International Journal of Computer Techniques -– Volume 2 Issue 4, July - Aug Year

ISSN: 2394-2231 http://www.ijctjournal.org Page 32

Evolving a Ultra-Flow Software Development Life Cycle Model

Divya G.R.*, Kavitha S.**
*(Computer Science, Auxilium College, and vellore)

**(Computer Science, Auxilium College, and Vellore)

--************************--

Abstract:
Software development life cycle or simply SDLC (system and software are interchanged frequently in-

accordance to the application scenario) is a step-by-step highly structured technique employed for the development

of any software. In the era of the software development, there exist a large number of models to develop software.

Each model has its own characteristics, limitations, and working environment. According to the requirements,

software industry people use different models to develop different software. There are various models but none of

them are capable to address the issues of client satisfaction fully. Therefore, this paper has proposed a new kind of

software development model called ultra-flow software development life cycle. The ultra-flow SDLC is used for

software development that lays a special emphasis on highly structured lifecycle and defining an output with each

stage, and also tries to fulfill the objective of the software engineering of developing a high-quality product within

schedule and budget. The new proposed model is designed in such a way that it allows a client and a developer to

interact freely with each other in order to understand and implement requirements in a better way.

Keywords—Requirements gathering, software development lifecycle (SDLC) model, software engineering,

testing, ultra-flow model.

--************************--

I. INTRODUCTION

Software engineering is a discipline whose

aim is the production of quality software. Software,

which is delivered on time within the budget, satisfies

its requirements. Software engineering is the area,

which is constantly growing. It is a very interesting

subject to learn as all the software development

industry based on this specified area. There exist the

various models to develop software. But most of the

existing software development models pay less or a

very little attention toward client satisfaction. It

matters not only to the client but also to the

developer, because it costs far less to retain a client

with happy than it does to find a new client.

Satisfying client is an essential element for staying in

this modern world of global competition. Client

satisfaction is so important for the acceptance and

delivery of the software product. Software project

fails due to the absence of client satisfaction.

Software development model must satisfy and even

delight client with the value of the software products

and services [8], [9].

II. SOFTWARE DEVELOPMENT LIFE CYCLE

Software development lifecycle (SDLC) is a

process used by the systems analyst to develop an

information system, including requirement,

validation, training, and user (see Fig. 1). Any SDLC

should result in a high-quality system that meets or

exceeds customer expectations, reaches completion

within time and cost estimates, works efficiently in

the current and planned information technology

infrastructure, is inexpensive to maintain, and is cost-

effective to enhance.

RESEARCH ARTICLE OPEN ACCESS

International Journal of Computer Techniques -– Volume 2 Issue 4, July - Aug Year

ISSN: 2394-2231 http://www.ijctjournal.org Page 33

Fig.1 Lifecycle of SDLC

The steps or phases generally involved in a software

lifecycle model are as follows:

• Customer communication

• Requirement Analysis

• Design

• Implementation

• Testing

• Deployment and Maintenance

A. Requirement Analysis

Requirement analysis is the initial phase of the SDLC.

The goal of this phase is to understand the client’s

requirements and to document them properly. The

emphasis in the requirement analysis is an identifying

what is needed from the system. It is the most crucial

phase in the SDLC. The output of the requirement

analysis is software requirement specification [10].
B. Design

It is the first step to move from the problem domain

toward the solution domain. It is the most creative

phase in the SDLC. The goal of this phase is to

transform the requirement specification into a

structure. The output of this phase is software design

document (SDD).
C. Coding

In this phase, SDD is converted into code using some

programming language. It is the logical phase of the

SDLC. The output of this phase is program code.
D. Testing

This is most important and powerful phase. Effective

testing will contribute to the delivery of high-quality

software products, more satisfied users, lower

maintenance costs, and more accurate and reliable

results [7].
E. Maintenance

This phase is started after the delivery of the product.

If any error occurred or modification needed, it is

implemented in this phase.

III. SDLC MODELS

A programming process model is an abstract

representation to describe the process from a

particular perspective. There are a number of general

models for the software process, such as waterfall

model, evolutionary development, formal systems

development, and reuse-based development. This

research will view the following models:

• Waterfall model

• Prototyping model

• V-shaped model

• Spiral model

A. Waterfall Model

This model is one of the oldest models and is widely

used in government projects and in many major

companies. As this model emphasizes planning in

early stages, it ensures design flaws before they

develop. The model begins with establishing the

system requirements and the software requirements

and continues with an architectural design, detailed

design, coding, testing, and maintenance [3]. The

waterfall model serves as a baseline for many other

lifecycle models, as shown in Fig. 2.

Fig. 2 Waterfall model

International Journal of Computer Techniques -– Volume 2 Issue 4, July - Aug Year

ISSN: 2394-2231 http://www.ijctjournal.org Page 34

B. Prototyping Model

 The prototyping methodology makes the use

of: 1) developments in information technology,

namely, advanced application generators that allow

for fast and easy development of the software

prototypes and 2) active participation in the

development process by customers and users capable

of examining and evaluating prototypes.

When applying the prototyping methodology,

the future users of the system are required to

comment on the various versions of the software

prototypes prepared by the developers. In response to

customer and user comments, the developers correct

the prototype and add parts to the system on the way

to presenting the next generation of the software for

user evaluation. This process is repeated till the

prototyping goal is achieved or the software system is

completed [3]. A typical application of the

prototyping methodology is shown in Fig. 3.

 Fig. 3 Prototype model

C. Spiral Model

 The spiral model, as revised by Boehm (1988,

1998), offers an improved methodology for

overseeing the large and more complex development

projects displaying higher prospects for failure,

typical of many projects begun in the last two

decades. It combines an iterative model that

introduces and emphasizes risk analysis and customer

participation into the major elements of the SDLC and

the prototyping methodologies. According to the

spiral model, software development is perceived to be

an iterative process [3]. At each iteration, the

following activities are performed:

• Planning

• Risk analysis and resolution

• Engineering activities according to the stage

of the project: design, coding, testing,

installation, and release

• Customer evaluation, including comments,

changes, and additional requirements.

Fig. 4 Spiral model

D. V-Shaped Model

 This model is like as the waterfall model, the

V-shaped lifecycle is a sequential path of an

execution of processes. Each phase must be

completed before the next phase begins. Testing is

emphasized in this model more than the waterfall

model. The testing procedures are developed early in

the lifecycle before any coding is done, during each of

the phases preceding implementation. The test plan

focuses on meeting the functionality specified in

requirements gathering. The high-level design phase

focuses on the system architecture and design. An

integration test plan is created in this phase in order to

test the pieces of the software systems ability to work

together. However, the low-level design phase lies

where the actual software components are designed,

and unit tests are created in this phase as well. The

implementation phase is again, where all coding takes

place. Once coding is complete, the path of execution

continues up to the right side of the V, where the test

plans developed earlier are now put to use (see Fig.

5).

International Journal of Computer Techniques -– Volume 2 Issue 4, July - Aug Year

ISSN: 2394-2231 http://www.ijctjournal.org Page 35

Fig. 5 V-shaped model

IV. WORKING OF ULTRA-FLOW MODEL

This model is used to overcome the limitation of the

waterfall model. In this model, instead of freezing the

requirements before coding or testing or design, a

prototype is built to clearly understand the

requirements. This prototype is built based on the

current requirements. Through examining this

prototype, the clients get better understanding of the

features of the final product. The prototype may be a

usable program, but is not suitable as the final

software product, as shown in Fig. 6.

The following processes are involved in this

approach:

• First, it stores the initial requirements for the

customer’s specification. Then, the next

process it start the design of the product.
• After completing the design of the process, it will

check the design using the ultra-flow module and

also check the customer evaluation. If any changes

are occurring in will change or modify using

review and updating process.

• After the customer satisfaction, the document will

be developed. After the development of coding, it

must check the coding and evaluating from the

customer. If any changes will modifying by the

developers of customer needs.

• Then, the product is tested. Finally, it will

maintain the product using an ultra-flow model.

Requirements System Test Planning System Testing

High Level

Design

Integration Test

Planning

Integration

Testing

Low Level

Design

Unit Test

Planning

Unit

Testing

Implementation

International Journal of Computer Techniques -– Volume 2 Issue 4, July - Aug Year

ISSN: 2394-2231 http://www.ijctjournal.org Page 36

 YES NO

 YES

 NO

Fig. 6 Architecture of ultra-flow SDLC model

V. DIFFERENCE BETWEEN ULTRA and OTHER

MODELS

This section tells how ultra-model is different from its base

models.

A. Ultra Versus Spiral Model

• The main difference between the proposed

model and spiral model is the size of

products. The spiral model concentrates only

on the large size products but the proposed

model can develop product of any size.

• There were times when the spiral model was

not able to provide a clear-cut picture of how

software looks to the user. Ultra-model gives

a picture for the user, and creates an interface

that allows the user to work with.

• In the spiral model, prototyping was used

only for risk management, but here it plays

equally important role as the spiral model.

B. Ultra Versus Prototype Model

In the prototype model, we create a prototype, which

is shown to the user if the user is satisfied the

prototype, is thrown away and the software is created.

Thus, the time taken for creating the prototype

becomes a prime factor. But it is not the case in the

proposed model.

C. Ultra

Ultra is the name of the model that here create a

model that takes all the advantages of these models

and leaves the negatives by doing this landed into a

model, which we call as ultra. Ultra, if needed,

considered as a solution for the flaws of the model.

The basic definition of the spiral model said that it is

suitable for creating large-sized products. Therefore,

we decided to create a model that looked like the

ultra-model but can be used to create even small-sized

product. Ultra also concentrates mainly on changing

desires of the user, so it uses the prototype technique

to communicate with the user after each and every

stage or phase of the software development.

VI. COMPARISON of DIFFERENT SDLC

MODELS WITH NEW ULTRA-FLOW SDLC

MODEL

As there are various models of the SDLC, each has its

own advantages and disadvantages depending upon

REQUIREMENTS GATHERING FROM

CUSTOMER

ULTRA FLOW ANALYSIS

ULTRA FLOW DESIGN

ULTRA FLOW IMPLEMENTATION

CUSTOMERS EVALUATION

NEED

FULFILL

CODING

CUSTOMERS EVALUATION

NEEDS

FULFILL

DEMAND FOR CORRECTIONS CHANGE

AND ADDITIONS

SYSTEM TESTING AND ACCEPTANCE TEST

INSTALLATION AND CONVERSION

OPERATION AND MAINTENANCE

International Journal of Computer Techniques -– Volume 2 Issue 4, July - Aug Year

ISSN: 2394-2231 http://www.ijctjournal.org Page 37

which have to decide, which model should have to

choose, as shown in Fig. 7. For instance, if the

requirements are known before hand and well-

understood and want a full control over the project at

all time, we can use the waterfall model. The V-

shaped model has a higher chance of success over the

waterfall model due to the development of test plans

during the lifecycle. It works well for small projects

where requirements are easily understood. An

incremental model is the heart of a cyclic software

development process. It is easy to test and debug

during a smaller iteration. The spiral model is good

for large and mission critical projects where a high

amount of risk analysis is required like launching of

satellite.

RAD model is flexible and adaptable to

changes as it incorporates the short development

cycles, i.e., users see the RAD product quickly. It also

involves user participation, thereby increasing the

chances of early user community acceptance and

realizes an overall reduction in project risk. Each

model has different stages of planning and

development. Finally, here, the proposed ultra-flow

SDLC model is works good for a large number of

projects and high risk analysed. . And it is easier to

manage risk, because risky pieces are identified and

handled during a process. It tries to fulfill the

objective of the software engineering of developing a

high-quality product within schedule and budget. The

comparison of the different models is represented in

Table 1 on the basis of certain features (see Fig. 7).

TABLE I

COMPARISON OF SDLC WITH ULTRA-FLOW SDLC

Features Waterfall Prototyping Spiral V-Shaped Ultra-Flow

Requirements

Specifications

Beginning Frequently

Changed

Beginning Beginning At Beginning

Cost Low High Expensive Expensive Very Low

Guarantee Of

Success

Less Good High Good High

Simplicity Simple Simple Intermediate Intermediate Very Simple

Risk Involvement High Low Medium Low Easily manage

Changes

Incorporated

Difficult Easy Easy Difficult Very Easy

User Involvement At Beginning High High At the Beginning At Beginning and

Intermediate

Flexibility Rigid Flexible Flexible Little Flexible Highly Flexible

Maintenance Least

Glamorous

Routine

Maintenance

Typical Least Easily Maintained

Integrity &

Security

Least Weak High Robust High

Documentation

&Training

Required

Vital Weak Yes Yes Well Documented

Time Frame Long Short Long According to

project size

Very short

Reusability Limited Weak High Yes High

International Journal of Computer Techniques -– Volume 2 Issue 4, July - Aug Year

ISSN: 2394-2231 http://www.ijctjournal.org Page 38

0 2 4 6 8 10 12 14

Waterfall

Prototype

V shaped

Ultra Flow

Cost

Changes Incorporated

User Involvement

Fig. 7 Comparison graph of SDLC and ultra-flow SDLC

VII. CONCLUSION

SDLC is a methodology that governs the entire

development process. In this paper, the various SDLC

models are studied, such as waterfall, spiral,

incremental, prototyping, and V-shaped models. The

waterfall model provides the base for other

development models. Here, comparing the top most

five SDLC models and new ultra-flow SDLC model.

In this paper, we show that the comparison between

both the SDLC model and the ultra-flow SDLC

model. The proposed work can be summarized as the

creation of an approach, ultra-flow SDLC, to develop

software more efficiently. The aim of software

engineering is to develop software with a high quality

within budget and schedule. The proposed plan tries

to fulfil the objective of software engineering by

showing the existing matching software as the

prototype to the client for discovering the

requirements efficiently from the client in order to

estimate cost, schedule, and effort more accurately.

Applying the suggested model to many projects is to

ensure of its suitability and documentation to explain

its mechanical work.

ACKNOWLEDGMENT
The authors would like to thank the anonymous

referees for their valuable comments, which greatly

improved the readability of this paper. G. R. Divya

would also like to thank S. Kavitha, Assistant

Professor, Department of Computer Science, who

guided for my work, and also express my whole

hearted thanks to my parents and friends for their

encouragements to bring this work to a successful

completion.

REFERENCES
[1] Sema, SonaMalhotra. “Analysis and tabular

comparison of popular SDLC models”, International

Journal of Advance in Computer and Information

Technology (IJACIT), July 2012.

[2] Vishwas Massey, Prof. K. J Satao.

“Comparing various SDLC models and the new

proposed model on the basis of available

methodology”, International Journal of Advanced

Research in Computer Science and Software

Engineering (IJARCSSE), volume 2, April 2012.

[3] Daniel Galin, “Software Quality Assurance

From Theory to Implementation”.

[4] Laura C. Rodriguez Martinez, Manuel Mora,

Francisco, J.Alvarez, “A Descriptive/Comparative

Study of the Evolution of Process Models of Software

Development Life Cycles”, Proceedings of the 2009

Mexican International Conference on Computer

Science IEEE Computer Society Washington,DC,

USA, 2009.

[5] Sanjana Taya, Shaveta Gupta, “Comparative

Analysis of Software Development Life Cycle

Models.”

[6] Kushwaha ety.al, “Software Development

Process and Associated Metrics - A Framework”,

IEEE CNF.

International Journal of Computer Techniques -– Volume 2 Issue 4, July - Aug Year

ISSN: 2394-2231 http://www.ijctjournal.org Page 39

[7] K. K. Aggarwal, Yogesh Singh, “Software

Engineering”, 3rd Edition.

[8] “Software Development Life Cycle (SDLC)

“– the five common principles.htm

[9] “Software Methodologies Advantages &

disadvantages of various SDLC models”.mht

[10] Naresh Kumar, A. S. Zadgaonkar, Abhinav

Shukla “Evolving a New Software Development Life

Cycle Model SDLC-2013 with Client Satisfaction”

International Journal of Soft Computing and

Engineering (IJSCE).

