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Abstract: 
 

            MapReduce is one among the famous processing model for huge scale information (Big Data) 

processing  in distributed computing. Since there may be a possibility of slot based MapReduce 

framework (eg. Hadoop MRv1) displaying some poor execution as a result of its unoptimized resource 

allocation. To venture on this, this paper finds and further streamlines the data distribution and resource 

allocation from the following three key perspectives. To begin with, because of the pre-configuration of 

the map slots and reduce slots which are not replaceable slots can be extremely under used. Since map 

slots may be completely used while reduce slots are empty and the other way around, considering the slot 

based model we set forth an option strategy called Dynamic Hadoop Slot Allocation. It unwinds the slot 

allocation parameters to permit slots to be reallocated to map or reduce task assignments relying upon their 

needs. Second the speculative execution can handle the straggler issue which sufficiently fit to enhance the 

execution for a job however to determine the expense of cluster proficiency. In context of this we further 

show Speculative Execution Performance Balancing so as to adjust the execution exchange between a 

single job and a batch of jobs. Third, delay scheduling has indicated to enhance the information and data 

locality at the fair cost. On the other hand we propose a method called Slot Pre Scheduling that can 

enhance the data locality yet with no effect on cost. At last by melding all the strategies together we make 

an orderly slot allocation framework called DynMR (Dynamic Map Reduce) which can enhance the 

execution of MapReduce workloads significantly. 

 

Keywords — MapReduce, DynMR, Delay Scheduler, Hadoop Fair Scheduler, Slot Allocation, Slot 

Pre Scheduler. 
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I.    INTRODUCTION 

Despite the fact that, having numerous studies in 

improving MapReduce/Hadoop, there are couple of 

key difficulties for the usage and execution 

challenge of a Hadoop[4] cluster. 

To answer these difficulties, we introduce 

DynMR, an element space allotment structure that 

enhances the execution of a MapReduce cluster 

through upgrading the opening use. Especially, 

Dynamic MR focuses over Hadoop Fair Scheduler 

(HFS). This is on the grounds that the cluster usage 

and execution for MapReduce employments under 

HFS are much poorer (or more genuine) than that 

under FIFO scheduler. Actually side the 

indispensable purpose of our DynMR can be 

utilized for FIFO scheduler also. DynMR comprises 

of three optimization procedures, namely, Dynamic 

Hadoop Slot Allocation (DHSA), Speculative 

Execution Performance Balancing (SEPB) and Slot 

Pre-Scheduling from diverse key perspectives. 
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Dynamic Hadoop Slot Allocation (DHSA) 
Just like YARN [10] which proposes another 

resource model of "container" that both map and 

reduce tasks can run on DHSA keeps the slot based 

resource model here DHSA will break the 

assumption of slot allocation as below 

• slots are nonexclusive and even as it can be 

utilized by either map or reduce slots, although 

there is a pre-configuration for the quantity of 

map and reduced slots at the end of the day, 

when there are lacking map slots the map slots 

can use all the map slots and after that it can use 

the reduced slots available from the reduce slots 

also. 

• Map slots prefer to utilize map slots, likewise 

reduce slots like to utilize reduce slots. The focal 

point is that, the pre-configuration of map and 

reduce slots for every slave node can still be 

used in any case to control the proportion of 

running map and reduced tasks during runtime, 

whic can be better than YARN which has no 

control for the degree of running map and reduce 

tasks. 

Speculative Execution Performance Balancing 

(SEPB) 
Speculative execution is a basic procedure that 

can be utilized to address the issue of moderate 

running assignment's influence on a single job's 

execution time by running a reinforcement task and 

on another machine. In this paper, we propose a 

dynamic technique of slot allocation system   called 

Speculative Execution Performance Balancing 

(SEPB) for the speculative job tasks. It can adjust 

the execution exchange off between a single job's 

execution time and a batch of jobs’ execution time 

by deciding powerfully when it is time designates 

slots for speculative job tasks. 

Slot Pre-Scheduling 
To enhance the data information locality in 

MapReduce [9] delay scheduling has turned out to 

be a powerful approach. In the perspective of this, 

we propose an alternative procedure called named 

Slot Pre-Scheduling that has capacity to enhance 

the data information locality, however it has no 

negative effect on reasonableness. It is 

accomplished to determine the burden of load 

balancing between slave nodes.  

We have coordinated Dynamic MR into Hadoop 

(especially Apache Hadoop 1.2.1). We assess it 

utilizing proving ground workloads.  

The fundamental commitments of this paper are 

abridged as follows: 

• Propose a Dynamic Hadoop Slot Allocation 

(DHSA) strategy to increase the slot allocation 

for Hadoop.  

• Propose a Speculative Execution Performance 

Balancing (SEPB) strategy to adjust the 

execution exchange off between a single jobs 

and a batch of jobs.  

• Propose a Pre-Scheduling strategy to enhance 

the data information locality to the determination 

of load balance across the cluster, which has no 

negative influence on reasonableness.  

• Develop a framework called DynMR by 

consolidating these three methods in Hadoop 

MRv1.  

• Experiments have been performed to validate the 

effectiveness of Dynamic MR and its three step-

by-step techniques. 

II. RELATED WORK 

Dynamic Split Model of Resource Utilization in 

MapReduce 
The prominence of MapReduce is expanding step 

by step as a parallel programming model for huge 

scale information preparing. At the same time in the 

long run, we discover some customary MapReduce 

stages which have a poor execution in content of 

bunch asset use following the conventional multi-

stage parallel model and some current timetable 

approaches utilized as a part of the group 

environment have a few disadvantages. We address 

these issues through our involvement in planning a 

Dynamic Split Model of the assets usage which 

contains two advances, Dynamic Resource 

Allocation considering the stage need and 

employment prerequisite when distributing assets 
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and Resource Usage Pipeline which can relegate 

errands alertly. 

The fundamental pipe line of parallel processing 

catches the scholastic world consideration. Further 

area/circle is an appropriated figuring stage which 

is like Google GFS/MapReduce. It comprises of a 

parallel runtime Sphere and in addition a conveyed 

file framework Sector. Another parallel runtime is 

phaser which is a direction build for element 

parallelism under the environment of multi-

processors rather than multi-nodes. 

The embodiment fundamental of these 

parallel programming edge works specified above 

is that they are all gotten from multi-stage parallel 

model. The customary multi-stage model has poor 

execution on the asset use efficiency. This issue has 

taken conception from two angles. From one 

viewpoint, different stages have different needs and 

also distinctive resources use inclination and must 

be executed entirely to that need which causes 

resource utilization unbalance. A few systems can 

release the strict execution request among 

distinctive stages by sub-operations cover execution, 

for example, phaser aggregator or gushing pipeline 

in Hadoop Online model. Anyways, the unbalance 

still exists if the resource require in sub-operations' 

cover execution is the same. 

We came up with an innovation in this 

paper to address the above issue which is known as 

Dynamic Split Model of Resources Utilization 

which embodies two fundamental advances: 

Resource Usage Pipeline (RUP) and Dynamic 

Resource Allocation (DRA). What's more, to make 

the resource pipeline feasible we have to take a few 

measures to partition the mixture of different 

resources used to partitioned powerfully and 

dispatch an undertaking at a legitimate point. 

Another technique is that Dynamic Resource 

Allocation will number the framework load and the 

status of every job keeping in mind the end goal to 

partition our resource more efficiently. Also, we 

utilize Hadoop to confirm our advancement. Since 

our technique is executed on Hadoop, the issue we 

address is in no means constrained to Hadoop, even 

MapReduce processing model. By and large, 

effective resource use we can give a more 

significant execution in DISC system 

Background  
One of the programming models which is 

appropriate in DISC system is called as MapReduce. 

The transitional yield of another sort of (key, 

quality) sets is created further and exchanged to 

reduce function. Reduce function will prepare all 

qualities fit in with the same key one time and yield 

the final (key, worth) sets.  

Hadoop is a standout amongst the most well 

known open source executions of Google 

GFS/MapReduce. It is comprised of two sections 

Hadoop Distributed File System (HDFS) and 

MapReduce figure structure. MapReduce system is 

based on top of HDFS containing a Job Tracker and 

Task Tracker. 

Map Task  

A map task relating to a specific occupation will 

read a part which is a segment of the input file from 

HDFS. The procedure is explained in the 

accompanying step 

• MapRunner reads a (key, value) pair from the 

assigned split in HDFS using RecordReader and 

applies the user-defined map function to the pair. 

• After processing one pair, map task outputs the 

result to a fixed-size buffer. If the buffer is 

overflow it will apply a quick-sort to the full 

buffer first and then store the content of the 

buffer to a spill file so the buffer becomes empty 

and can therefore receive more results. This 

process will take place repeatedly until all 

records are used up. 

• Map task merges all the spills on the disk into a 

sort file and stores it to the local file system as 

well as a corresponding index file referring to 

that data file. Further, task tracker will ask for a 

new task from job tracker as soon as the map 

task finishes and makes a slot free. 
 

Reduce Task  

A reduce task execution comprises three phases. 

• In the shuffle phase reduce task fetches a specific 

partition of every map task output using HTTP 

request and puts them into memory first. If the 

memory is full it will apply merge sort to the 

memory and output the result to a temp file. 
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• After all partition is fetched, reduce task enters 

the sort phase where it sorts all sorted files stored 

in memory or disk using merge sort grouping all 

records to the same key together.  

• The reduce phase applies the user-defined reduce 

function to each key and the set of values 

belonging to the same key. 

 

Dynamic Scheduling Model 
The real execution situation on a single node in 

the raw version Hadoop, Where the raw version 

Hadoop does have several flaws which throws a 

major impact on the system resource efficient 

utilization.  

The genuine execution circumstance on a single 

node in the raw version of Hadoop, Where the raw 

variant Hadoop has a few flaws which tosses a real 

effect on the framework resource utilization 

• Single node resource usage unbalance: inside a 

round of map task or reduce task different stages 

have different resource use predisposition 

particularly when homogenous undertakings 

execute at the same pace a few resource such as 

IO or CPU may be underused while the others 

abused.  

• Reduce slot hoarding: In MapReduce, every 

Reduced tasks it partitions by the aftereffects of 

every map tasks, and can just apply the client's 

reduce tasks once it has results from all map 

tasks. Since, in the event that we present a 

difficult task, which will take quite a while to 

finish all map tasks. It will hold reduce slots for 

quite a while until all the map assignments are 

finished, and starve jobs occupations and 

underutilize resource.  

• Resource allocation unbalance within job: 

MapReduce will assign resource by a static 

configuration, which does not consider the 

framework burden and the jobs necessity. This 

will prompt asset designation unbalance.  

• We separate resource usage within a phase into 

two periods: CPU period and IO period. What's 

more, we utilize commercial advanced 

scheduling to dispatch a task at a legitimate 

point. One assignment's sub-operation can 

covered with the other in the event that their 

resource use is complimentary.  

• We gather the framework load and the status of 

every occupation at run time to dispense 

resource alertly. Further at the three subjective 

time point the quantity of slot is not the same 

and can be modified as per framework load. 

Dynamic Resource Allocation 
Reduce Slot Hoarding Problem. MapReduce 

typically dispatches reduce tasks for a vocation 

when its first couple of maps finish, so these 

reduces can start replicating map yields while the 

remaining maps are running. In any case, in a 

substantial jobs, the map phase may take quite a 

while to finish. The employment will hold any 

reduce slots it gets amid this until its maps finish. 

So alternate occupations, which submitted later, 

will starve until the vast occupation finishes. This is 

called "reduce slot hoarding" issue, which will 

squander resource and deferral the divider time of 

jobs.  

We may recognize that this issue can be explained 

by beginning Reduce tasks later or making them 

suspended, however called attention to that this 

arrangement is not achievable. And their answer is 

to part decrease undertakings into two intelligently 

particular sorts of tasks, duplicate assignments and 

process tasks, with partitioned types of control. 

Resources Allocation unbalance Problem  

Another issue we meet in MapReduce is that 

the MapReduce will distribute the most extreme 

number of slots by a static configuration, for 

example, the parameters: mapred.tasktracker. 

maptasks.maximum and mapred.tasktracker. 

reduce.tasks. most extreme, and will never be 

changed when the batch is running. Then again, the 

necessity for openings shifts alongside occupation 

continuing.  

Solution 
Dynamic Resource Allocation, Our proposed 

answer for these issues is dynamic resource 

allotment. We will assign resource as indicated by 

the group load and all occupations run-time status. 

As said before, amid the execution of an occupation, 

the resource prerequisite is changing without a 
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doubt. We oblige more map slots toward the 

starting; with the map tasks obliged map tasks is bit 

by bit reduced, yet the prerequisite to reduce slots 

expanded; And more Reduced slots are required 

when all map tasks are finished. Thus, for a 

vocation, the resource prerequisite is changing with 

occupation status evolving. So we define the 

element weight of the guide stage and the reduce 

phase as indicated by the occupation status to 

recreate the element prerequisite for resources. 

III. OVER VIEW 

Further, to enhance the execution of a 

MapReduce cluster through optimizing the slot 

usage fundamentally from two points of view. In 

the first place, there are two separate slots, to be 

specific, busy slots (i.e., with running tasks) and 

idle slots (i.e., no running tasks). Given the 

aggregate number of map and reduce slots 

configured by clients, one optimizing methodology 

(i.e., macro-level advancement) is to enhance the 

slot used by amplifying the quantity of occupied 

slots and decreasing the quantity of idle slots. 

Second, it is important that not every occupied 

opening can be efficiently used. Consequently, our 

optimization approach (i.e., micro-level 

enhancement) coordinates towards the effecient use 

of busy slots occupied after the macro- level 

optimization. We propose Dynamic MR, an 

element usage optimization structure for 

MapReduce, to enhance the execution of an 

imparted Hadoop cluster under a fair scheduling 

between clients 

 
Fig. 1: DynamicMR Framework. 

Figure 1 gives an overview of DynamicMR. 

It consists of three slot allocation techniques, i.e., 

Dynamic Hadoop Slot Allocation (DHSA), 

Speculative Execution Performance Balancing 

(SEPB), and Slot PreScheduling. 

Every single system considers the execution 

performance from diverse perspectives. DHSA 

endeavor to minimize slots useage while keeping up 

the fairness, when there are pending tasks (e.g., 

map tasks or reduced tasks). SEPB recognizes the 

slot resource in-efficiency issue for a Hadoop 

cluster, brought about by speculative tasks. slot Pre-

Scheduling enhances the slot utilization efficiency 

and execution performance by enhancing the data 

locality for map tasks while keeping the fairness.  

 

By fusing the three systems, it empowers 

DynamicMR to upgrade the use and execution of a 

Hadoop cluster significantly with the accompanying 

regulated procedures 

• Whenever there is an idel slot accessible, 

DynamicMR will first try to enhance the slot 

used with DHSA. It chooses alertly whether to 

allocate it or not, subject to the various 

constraints, e.g., fairness and load balancing.  

• If the distribution is true, Dynamic MR will 

further enhance the execution by enhancing the 

effectiveness of slot utilization with SEPB. Since 

the speculative execution can enhance the 
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execution of a single job however to the 

detriment of cluster effectiveness, SEPB goes 

about as a productivity balance between a single 

job and a cluster efficiency. It takes a shot at top 

of Hadoop speculative scheduler to focus rapidly 

whether allocating the idle slots to the pending 

tasks or speculative tasks.  

• When allocating the idle slots for 

pending/speculative map tasks, Dynamic MR 

will have the capacity to further enhance the slot 

utilization efficiency from the data locality 

optimization aspects with Slot Pre-Scheduling.  

Besides, we need to specify that the three 

procedures are at diverse levels, i.e., they can be 

connected together or independently. 

DynamicMR components can be explained in 

detail in the further discussions.   

Dynamic Hadoop Slot Allocation (DHSA) 

The current configuration of MapReduce 

experiences an under-usage of the slots as the 

quantity of map and reduce tasks shifts over the 

long run. Our dynamic slot allocation approach is 

taking into account the perception that at distinctive 

time there may be idle map(or reduce) slots, as the 

jobs continues from map stage to reduce stage. We 

can utilize the unused map slots for those over-

burden reduce tasks to enhance the execution of the 

MapReduce workload, and the other way around. 

We further make utilization of idle reduce slots for 

running map tasks. That is, we break the certain 

presumption for current MapReduce structure that 

the map tasks can just run on map slots and reduced 

tasks can just run on reduce slots. 

There are two challenges specified below that must 

be considered:  

(C1): Fairness is an imperative metric in Hadoop 

Fair Scheduler (HFS). We proclaim it as reasonable 

when all pools have been designated with the same 

amount of resource. In HFS, task slots are first 

allocated over the pools [8], and later then the slots 

are distributed to the jobs inside the pool. Also, a 

MapReduce job computation embodies two sections: 

map-phase task computation and  reduce-phase task 

computation. 

(C2): The resource requirement between the map 

slots and reduced slots are especially diverse. The 

purpose for this is the map tasks and reduced tasks 

regularly show totally different execution designs. 

reduce task has a tendency to expend considerably 

more resources, for example, memory and system 

network speed. Basically permitting reduce tasks to 

utilize map slots configuring every map slots to take 

more resources, which will therefore lessen the 

powerful number of slots on every node, creating 

resources under-used amid runtime.  

With a due appreciation towards (C1), we 

set forth a Dynamic Hadoop Slot Allocation 

(DHSA). It contains two choices, to be specific, 

pool- free DHSA(PI-DHSA) 

pool-Independent DHSA (PI-DHSA) 
HFS utilizes max-min fairness [5] to 

allocate slots crosswise over pools with least 

ensures at the map-phase and reduce-phase, 

individually. Pool-Independent DHSA (PI-DHSA) 

extends the HFS by dispensing slots from the 

clusters of worldwide level and free of pools.  

The allocation procedure is comprised of two 

sections:  

• Intra-phase dynamic slot allocation: Each pool is 

part into two sub-pools, i.e., map phase pool and 

reduce phase pool. At every stage, every pool 

will get its share of slots.  

• Inter-phase dynamic slot allocation: After the 

intra-phase dynamic slot allocation for both the 

map-phase and reduced phase, next we can 

perform the dynamic slot allocation crosswise 

over typed phase.  

 
Fig. 2: fairness-based slot allocation flow for 

PIDHSA. 
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The entire dynamic slot allocation flow is 

that, at whatever point a pulse is gotten from a 

computing node, at first we process the aggregate 

demand for map slots and reduce slots for the 

current MapReduce workload. At that point we 

focus alertly the need to acquire map (or reduce) 

slots for reduce (or map) tasks in light of the 

interest for map and reduce slots, with respect to 

these four situations. The specific number of map 

(or reduce) slots to be obtained is based on the 

account of quantity  of unused reduced (or map) 

slots and its map (or reduce) slots needed.  

To accomplish the reservation usefulness, 

we give two variables rate Of Borrowed Map Slots 

and rate Of- Borrowed Reduce Slots, defined as the 

rate of unused map and reduced slots that can be 

obtained, separately. Thus, we can restrict the 

quantity of unused map and reduced slots that ought 

to be distributed for map and reduced tasks at every 

pulse of that task tracker. With these two 

parameters, clients can flexibly adjust the exchange 

off between the performance execution 

optimization and the starvation minimization.  

In addition, Challenge (C2) makes us to 

review that we can't treat map and reduce slots as 

same, and just obtain unused slots for map and 

reduce tasks. Rather, we should be mindful of 

shifted resource sizes of map and reduce slots. A 

slot weight- based methodology is therefore 

proposed to address the issue. We allot the map and 

reduce slots with distinctive weight values, 

regarding the asset configurations. Particular to the 

weights, we can alterably decide the amount of map 

and reduce tasks which has to be generate in the 

length of runtime. 

Pool-Dependent DHSA (PD-DHSA) 

As an opposite point on checking towards 

PI-DHSA Pool-Dependent DHSA (PD-DHSA) 

considers fairness for the dynamic slot allocation 

across pools. Accepting that every pool, includes 

two sections: Map phase pool and Dynamic Phase 

pool, is selfish. It is considered fair when aggregate 

quantities of map and reduce slots allocated across 

pools are the same with one another. PD-DHSA 

will be performed with the accompanying two 

courses of actions: 

     (1). Intra-pool dynamic slot allocation. At a 

early stage, each typed- phase pool will receive its 

share of typed-slots based on max-min fairness at 

each phase. There are four possible relationships 

cases for every pool regarding its demand (denoted 

as mapSlots Demand, reduceSlots Demand) and its 

workload (marked as mapShare, reduceShare) 

between two phases:  

   Case (a). mapSlotsDemand < reduceShare, and 

reduceSlots-Demand > reduceShare. We can use 

some of the unused map slots for its overloaded 

reduce tasks from its reduce-phase pool first before 

using other pools.  

   Case (b). mapSlotsDemand > mapShare, and 

reduceSlots- Demand < reduceShare. we can use 

some unused reduce slots for its map tasks from its 

map-phase pool first before using pools. 

   Case (c). mapSlotsDemand < mapShare, and 

reduceSlots- Demand < reduceShare. Both map 

slots and reduce slots are enough for its use. It can 

give some unused map slots and reduce slots to 

other pools.  

   Case (d). mapSlotsDemand > mapShare, and 

reduceSlots- Demand > reduceShare. If both map 

slots and reduce slots of a pool have become 

insufficient. It may have to borrow some unused 

map or reduce slots from other pools through inter-

Pool dynamic slot allocation is shown below. 

 
Fig. 3: Example of the fairness-based slot allocation 

flow for PD-DHSA.The black arrow line and dash 

line show the borrow flow for slots across pools. 

(2). Inter-pool dynamic slot allocation. It is obvious 

that,  

   (i). if a pool, has mapSlotsDemand + 

reduceSlotsDemand < mapShare + reduceShare. 

The slots are enough for the pool and there is no 
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need to get some map or reduce slots from other 

pools 

    (ii). On the contrary, when mapSlotsDemand + 

reduceSlotsDemand mapShare + reduceShare, the 

slots are not enough even after Intra-pool dynamic 

slot allocation. 

The overall slot allocation process for PD-DHSA 

is as sketched down below in figure 4. 

 
Fig. 4: The slot allocation flow for each pool under 

PD-DHSA.The numbers labeled in the graph 

corresponds to Case (1)-(4) in Section 2.1.2, 

respectively. 

At first, it computes the maximum number of free 

slots that can be allocated at each round of heartbeat 

for the tasktracker. Next it starts the slot allocation 

for pools. For every pool, there are four possible 

slot allocations as illustrated in Figure 4 above. 

Case(1): We try the map tasks allocation, if 

there are idle map slots for the task tracker, and 

there are pending map tasks for the pool. 

 Case(2): If the attempt of Case(1) fails, the 

condition does not hold good, and it cannot find a 

map task satisfying the valid data-locality level, we 

continue to try reduce tasks allocation when there 

are pending reduce tasks and idle reduce slots.  

Case(3): If Case(2) fails due to the required 

conditions does not hold, we try for map task 

allocation again. If Case(1) fails then there might 

not have to be any idle map slots available. In 

contrast, if Case(2) fails then there are no pending 

reduce tasks. In this case, we can relay on reduce 

slots for map tasks of the pool.  

Case(4): If Case(3) fails, we try for reduce 

task allocation once again. Case(1) and Case(3) fail 

might be because of no valid locality-level pending 

and map tasks available, but there are idle map slots. 

In contrast, Case(2) maight not have any idle reduce 

slots available. At such cases, we can allocate map 

slots for reduce tasks for the pool.  

     Furthermore, there is a special scenario that 

needs to be considered particularly. Note, it is 

possible that all the above four possible slot 

allocation attempts fail for all pools, due to the data 

locality consideration for map tasks. 

Speculative Execution Performance Balancing 

(SEPB) 
   MapReduce job’s execution time is very sensitive 

to slow- running tasks (namely straggler) [6], [7]. 

We divide the stragglers into two types, namely 

Hard Straggler and Soft Straggler, as defined below: 
• Hard Straggler: A task that gets into deadlock status due 

to the endless waiting for some resources. It cannot stop 

and complete unless we stop it manually.  

• Soft Straggler: A task that can complete its task 

successfully, but will take much longer time than that of 

common tasks. 

For the hard straggler, we should stop it and run 

another task, or called a backup task, immediately 

once it was detected. In contrast, there are two 

possible cases between the soft straggler and its 

backup task: 

(S1). Soft straggler finishes first or at the same 

time as its backup task. For this case, there is no 

need to run backup task. 

(S2). If Soft straggler finishes later than the 

backup task. We should stop it and run a backup 

task immediately. 

     Further to deal with the straggler problem, 

speculative execution is used in Hadoop. Instead of 

diagnosing and fixing straggling tasks, it finds the 

straggling task dynamically using heuristic 

algorithms such as LATE [7]. Once detected, 
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however, it can- not simply kill the straggler 

immediately due to the following facts:  

• Hadoop does not have a way or methodology to 

distinguish between the hard straggler and the 

soft straggler. 

• But for the soft straggler, it’s also difficult to 

judge whether it belongs to (S1) or (S2) before 

running. Simply stopping the straggler will harm 

the case of (S1).  

Rather, it produces a backup task and permits it 

to run simultaneously with the straggler, i.e., there 

is a processing cover between the straggler and the 

backup undertaking. The task killing operation will 

happens when both of the two tasks are finished. It 

merits specifying that, despite the fact that the 

speculative execution can reduce a single work's 

execution time, however it has a go at the expense 

of cluster effectiveness. 

Along these lines, it raises a test issue for 

speculative tasks on the best way to relieve its 

negative effect for the execution of batch jobs. To 

expand the execution for a group of jobs, an 

instinctive arrangement is that, given accessible 

task slots, we should fulfil pending tasks first before 

considering speculative tasks. That is, the point at 

which a node has an idle map slots , we have to 

pick pending map tasks first before searching for 

speculative map tasks for a cluster of jobs. 

We further propose a dynamic task 

allocation mechanism called Speculative Execution 

Performance Balancing (SEPB) for a batch of jobs 

with speculative execution tasks on top of Hadoop's 

current task selection strategy. Hadoop picks a task 

from a job in view of the accompanying need: first, 

any failed task is given the most highest priority. 

Second, the pending tasks are considered. For map, 

tasks with data local to the process node are picked 

first. At last, Hadoop searches for a straggling 

assignment to execute speculatively. In our task 

scheduling component, we define a variable rate Of 

Jobs Checked- For Pending Tasks with domain 

somewhere around 0.0 and 1.0, configurable by 

clients, to control max Num Of Jobs Checked For- 

Pending Tasks, which is the greatest number of 

occupations that are checked for pending map and 

reduced taskd for a batch of jobs. 

Then again, we can perceive another 

challenging issue if there is a delay in the planning 

of speculative task. To defeat this issue, at present 

we utilize a basic heuristic algorithm: We evaluate 

the execution time for every task. When it took 

twice more than the normal execution time of tasks, 

we kill it specifically to yield the slot. Since 

failed/executed tasks have the most elevated need to 

run in Hadoop, a reinforcement undertaking will be 

made to supplant it rapidly, enhancing the 

execution of a single job and moderating the 

negative effect on the cluster effectiveness. 

Discussion on SEPB VS LATE 
The benefit of SEPB over LATE lies in its 

arrangement for slot allocation to speculative tasks. 

Conversely, SEPB performs the resource allocation 

for speculative tasks from a worldwide view by 

considering various occupations (controlled by the 

argument max Num of Jobs Checked for Pending 

Tasks). Further postpones the slot allocation to 

speculative tasks at whatever point there are 

pending tasks for the different jobs. The SEPB 

figures out if to make a speculative task to re-figure 

information or not from a global view by checking 

various jobs. On the off chance that SEPB 

recognizes pending tasks, it will assign the idel slots 

to a pending tasks. If not, another speculative task 

will then be made to have the idle slots. 

Slot PreScheduling 

   We propose a Slot Pre-Scheduling technique that 

holds ability to improve the data locality while 

having no negative impact on the fairness of 

MapReduce jobs. The basic level idea is that, in 

light of the fact that there are often some idle slots 

which cannot be allocated due to the load balancing 

constrain during runtime, we can pre-allocate those 

slots of the node to jobs to maximize the data 

locality. 

We propose a Slot Pre-Scheduling system 

that holds capacity to enhance the data locality  

while having no negative effect on the fairness of 

MapReduce jobs. The essential level idea is that, in 

a way there are regularly some idle slots which can't 

be dispensed because of the load balancing during 

runtime, we can preallocate those slots of the node 

to allocate and amplify the data locality 
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Preliminary 

Prior to presenting Slot PreScheduling, we start 

with two definitions: 

Definition 1. The allowable idle map (or reduce) 

slots will relate to the maximum number of idle 

map (or reduce) slots that can be allocated for a task 

tracker, considering the load balancing between 

machines.  

Definition 2. The extra idle map (or reduce) slots 

will relate to the remaining idle map (or reduce) 

slots by subtracting the maximum value of used 

map (or reduce) slots and allowable idle map (or 

reduce) slots from the total number of map slots for 

a task tracker, considering the load balancing 

between machines. 

Observation and Optimization  
For a MapReduce cluster, the computing 

workloads of running map (or reduce) tasks 

between task trackers (i.e., machines) are generally 

modified, because of the following facts.  

   (1) In practical world, Lots of MapReduce 

clusters comprises of heterogeneous machines (i.e., 

different computing powers between machines). 

   (2)  There are often varied computing loads (i.e., 

execution time) for map and reduce tasks from 

different jobs, due to the varied input data sizes as 

well as applications. 

   (3) Even for a single job under the homogenous 

environment, the execution time for map (or reduce) 

tasks will not be the same. 

  In order to balance the workload, Hadoop 

comes up with a methodology that can dynamically 

control the number of allowable idle map (or reduce) 

slots (See Definition 1) for a task tracker in a 

heartbeat as the following three steps.  

   Step 1#: Compute the load factor 

mapSlotsLoadFactor as the sum of pending map 

tasks and running map tasks from all jobs divided 

by the cluster map slot capacity.  

  Step 2#: Compute the current maximum number 

of usable map slots by multiplying 

min{mapSlotsLoadFactor,1} with the number of 

map slots in a task tracker.  

  Step 3#: Finally, we can compute the current 

allowable idle map (or reduce) slots for a task 

tracker, by subtracting the current number of used 

map (or reduce) slots from the current maximum 

number of usable map slots. 

  To make use of Slot Pre-Scheduling there are two 

different cases. The first case considers a task 

tracker slot on which there are extra idle map slots 

available, but no allowable idle map slots. For a 

headed job following the fair-share priority order, 

when it has local map tasks with block data on the 

task tracker slot, instead of skipping it by the 

default Hadoop scheduler, we can proactively 

allocate extra map slots to the job.  

     The second case is for DHSA. When there are 

no idle map slots but some idle reduce slots 

available, for a connected task tracker slot in a 

heartbeat, we can proactively borrow idle reduce 

slots for local pending map tasks and restore them 

later, in order to maximize the data locality. 

Advantages 

• Improves the performance of MapReduce 

workloads write maintaining the fairness. 

• Can be used for any kinds of MapReduce jobs 

(independent or dependent ones). 

• Balances the performance trade-off between a 

single job & a batch of jobs dynamically. 

• Slot pre-scheduling improves the efficiency of 

slot utilization by further maximizing its data 

locality. 

• Dynamic MR improves the performance of the 

Hadoop system significantly. 

• SEPB identify the slot inefficiency problem of 

speculative execution. 

• Dynamic MR consistently outperforms YARN. 

Disadvantages 

• On comparison with YARN, the experiments 

show that, for single jobs, the result is 

inconclusive. 

• The proposed Dynamic MR doesn’t considers 

the implementation on cloud computing 

environment which is a gateway for further 

research. 
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IV. RESULTS AND ANALYSIS 

Experimental Set up 
We ran our experiments in a group 

comprising of 10 process hubs, each with two Intel 

CPUs (4 CPU centres every CPU with 3.07 GHz), 

24GB memory and 56GB hard disk. We arrange 

one node as master and namenode, and the other 9 

nodes as slaves and datanodes. The most recent 

rendition of Hadoop 1.2.1 is picked in our 

experiment. 

Performance improvement for DynMR 
In this segment, we first demonstrate the 

execution forms for PI-DHSA and PD-DHSA. At 

that point we assess and look at the execution 

change by PI-DHSA and PDDHSA under 

distinctive slot setup. Third, we make a dialog on 

the execution impact of the contentions of the rate 

of map and reduce slots that can be obtained for our 

DHSA in Appendix F of the supplemental material.  

To show distinctive levels of fairness for the 

dynamic task allocation calculations, PI-DHSA and 

PD-DHSA, we perform an analysis by considering 

three pools, each with one task submitted. Figure 5 

demonstrates the execution stream for the two 

DHSAs, with 10 sec every time step. The quantity 

of running map and reduce task for every pool at 

every time step is recorded. For PI-DHSA, as 

delineated in Figure 5(a), we can see that, toward 

the starting, there are just map tasks, with all slots 

utilized by map slots under PI-DHSA. 

 
Fig. 5: The execution flow for the two DHSAs. 

There are three pools, with one running job each. 

Every pool imparts 1/3 of the aggregate 

openings (i.e., 36 spaces out of 108 openings), until 

the 5th time step. The map slots interest for Pool 1 

starts to therapist and the unused map slots of its 

impart are respected Pool 2 and Pool 3 from the 6th 

time step. Next from 6th to 10th time step, the 

guide assignments from Pool 2 and Pool 3 just as 

impart all guide openings and the reduced tasks 

from Pool 1 have all reduced tasks, taking into 

account the write stage level fairness approach of 

PI-DHSA(i.e., intraphase element space 

distribution). From 11th to 18th time venture, there 

are some unused map slots from Pool 2 and they are 

controlled by map tasks from Pool 3 (i.e., intra-

stage element opening portion). Later, there are 

some unused map slots from Pool 3 and they are 

utilized by reduced tasks from Pool 1 and Pool 2 

from 22st to 25th time step (i.e., between stage 

dynamic space portion). For PD-DHSA, like PI-

DHSA toward the starting, every pool gets 1/3 of 

the aggregate spaces from the 1th to 5rd time 

venture, as indicated in Figure 5(b). Some unused 

map slots from Pool 1 are respected Pool 2 and 

Pool 3 from 6th to the 7th time step. Be that as it 

may, from the 8th to 12th, the map tasks from Pool 

2 and Pool 3 and the decrease assignments from 

Pool 1 takes 1/3 of the total slots, subject to the 

pool-level reasonableness strategy of PD-DHSA 

(i.e., intra-pool element space allotment). At long 

last, the unused slots from Pool 1 starts to respect 

Pool 2 and Pool 3 since 13th time step (i.e., 

between pool element space portion). 

 

Speculative Execution Control for Performance 
we expressed that theoretical assignment 

execution can defeat the issue of straggler (i.e., the 

moderate running errand) for an occupation, 

however it is at the expense of cluster use. We 

characterize a client's configurable  variable.   

percentageOfJobsCheckedForPendingTasks to 

focus the time to calendar speculative tasks. To 

accept the adequacy of our element speculative 

execution control arrangement, we perform an 

investigation with 5 employments, 10 occupations 

and 20 occupations by fluctuating the estimations of 

percentageOfJobsCheckedForPendingTasks.  
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Fig. 6: The performance results with SEPB. 

 

Note that LATE [35] has been actualized in  1.2.1. 

Figure 6 give the execution results SEPB in 

examination to LATE. All speedups are processed 

regarding the case that 

percentageOfJobsCheckedForPendingTasks is 

equivalent to zero.  

We have the accompanying discoveries:  

First and foremost, SEPB can enhance the 

execution of Hadoop from 3%-10%, indicated in 

Figure 6(a). As the estimation of 

percentageOfJobsCheckedForPendingTasks 

expands, the pattern of execution change has a 

tendency to be huge and the ideal setups could be 

unmistakable for diverse workloads. For instance, 

the ideal setup for 5 occupations is 80%, yet for 10 

employments is 100%. The reason is that, huge 

estimation of rate-OfJobsCheckedForPendingTasks 

will let more quantities of employments be checked 

for pending assignments before considering 

speculative execution for every space assignment, 

i.e., It is more inclined to allot an opening to a 

pending tasks first and foremost, instead of a 

theoretical tasks, which advantages more for the 

entire jobs. Notwithstanding, extensive estimation 

of percentageOfJobsCheckedForPendingTasks will 

defer the speculative execution for straggled jobs, 

harming their execution. For a few workloads, too 

vast estimation of 

percentageOfJobsCheckedForPendingTasks will 

corrupt the execution for straggled jobs a great deal 

and thus influence the general occupations, 

clarifying why the ideal design is not generally 

100%. We prescribe clients to design 

percentageOfJobsCheckedForPendingTasks at 

60%-100% for their workloads.  

Second, there is an execution trade-off 

between an individual job and the entire jobs with 

SEPB. We demonstrate a case for the workload of 5 

occupations when setting 

percentageOfJobsChecked- ForPendingTasks to be 

0 and 100%, separately. As results indicated in 

Figure 6(b), Job 2 and 4 are negative influenced 

because of the oblige on speculative execution from 

SEPB, though it supports the execution for entire 

jobs (i.e., the most extreme execution time of jobs) 

Data Locality Improvement Evaluation for Slot 

PreScheduling 

 
Fig. 7: The data locality improvement by Slot 

PreScheduling for Sort benchmark. 

 
Fig. 8: The performance improvement under Slot 

PreScheduling. 
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To test the impact of Slot PreScheduling on data 

locality improvement, we ran MapReduce 

employments with 16, 32, and 160 map tasks on the 

Hadoop cluster. We contrast reasonable imparting 

results and without Slot PreScheduling under the 

default HFS. It merits saying that Delay Scheduler 

has been added to the default HFS for the 

customary Hadoop and continues working 

dependably. Subsequently, our work turns to be the 

correlation between the case with Delay Scheduler 

just and the case with Delay Scheduler in addition 

to Slot PreScheduling. Figure 7 demonstrates the 

data locality results with and without Slot 

PreScheduling for Sort benchmark. With Slot 

PreScheduling, there are around 2% ~25% region 

change on top of Delay Scheduler for Sort 

benchmark. Figure 8 exhibits the comparing 

execution results profiting from the information 

area change made by Slot PreScheduling. There are 

around 1% ~ 9% execution change concerning the 

first Hadoop for the previously stated 9 benchmarks 

separately. Also, we measure and analyse the heap 

uneven degree and shamefulness degree for Hadoop 

cluster with and without Slot PreScheduling in 

Appendix E of the supplemental material 

Performance Improvement for DynamicMR 
In this segment, we assess DynamicMR 

framework in general by empowering all its three 

sub-schedulers with the goal that they can work 

corporately to augment the execution however 

much as could reasonably be expected. For DHSA 

part, we subjectively pick PI-DHSA, taking note of 

that PI-DHSA and PD-DHSA have fundamentally 

the same execution change (See Section 3.2.2). For 

the first Hadoop, we pick the ideal space design for 

MapReduce occupations by counting all the 

conceivable slot setups. We intend to contrast the 

execution for DynamicMR and the first Hadoop 

under the ideal map/reduce slot design for 

MapReduce jobs. Figure 9 exhibits the assessment 

results for a single MapReduce work and 

additionally MapReduce workloads comprising of 

numerous jobs. Especially, for different jobs, we 

consider 5 jobs, 10 jobs, 20 jobs, and 30 jobs under 

a clump accommodation, i.e., all jobs submitted in 

the meantime. All speedups are computed as for the 

first Hadoop. We can see that, even under the 

advanced map/reduce slot arrangement for the first 

Hadoop, our DynamicMR framework can at present 

further enhance the execution of MapReduce jobs 

altogether, i.e., there are around 46% ~ 115% for a 

single jobs and 49% ~ 112% for MapReduce 

workloads with numerous jobs. Also, we likewise 

actualize our DynamicMR for Hadoop FIFO 

scheduler. To approve the adequacy of our 

DynamicMR, we perform explores different 

avenues regarding the previously stated MapReduce 

workloads.  

 
(a) A single MapReduce job 

 
(b) MapReduce workloads with multiple jobs 

 

Fig. 9: The performance improvement with our 

DynamicMR system for MapReduce workloads. 
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Fig. 10: The performance improvement with our  

DynamicMR system for MapReduce workloads 

under Hadoop FIFO scheduler. 

 

V. CONCLUSION 

This paper proposes a DynamicMR Technique can 

be used to enhance the execution of MapReduce 

workloads while keeping up the fairness. It 

comprises of three methods, in particular, DHSA, 

SEPB, Slot PreScheduling, all of which concentrate 

on the slot use optimization for MapReduce group 

from alternate points of view. DHSA concentrates 

on the slot use expansion by distributing map or 

reduce slots to map and reduce tasks alterably. 

Especially, it doesn't have any presumption or 

require any earlier learning and can be utilized for 

any sorts of MapReduce jobs (e.g., autonomous or 

subordinate ones). Two sorts of DHSA are 

introduced, in particular, PI-DHSA and PD-DHSA, 

in view of distinctive levels of fairness. Client can 

pick both of them likewise. Rather than DHSA, 

SEPB and Slot PreScheduling consider the 

effectiveness advancement for a given slot usage. 

SEPB recognizes the slot unused issue of 

speculative execution. It can adjust the execution 

tradeoff between a single job and a batch of job 

alterably. Slot PreScheduling enhances the 

proficiency of slot use by expanding its data 

locality. By empowering the over three systems to 

work helpfully, the exploratory results demonstrate 

that our proposed DynamicMR can enhance the 

execution of the Hadoop framework altogether (i.e., 

46% ~ 115% for single occupations and 49% ~ 112% 

for various employments). In future, we plan to 

consider executing DynamicMR for distributed 

computing environment with more measurements 

(e.g., plan, due date) considered and distinctive 

stages by assessing some current works, [7], 

[10],[6]. 
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