
 International Journal of Computer Techniques -– Volume 2 Issue 2, Mar - Apr 2015

ISSN :2394-2231 http://www.ijctjournal.org Page 142

DynMR: A Dynamic Slot Allocation Framework for MapReduce

Clusters in Big Data Management using DHSA and SEPB

Anil Sagar T
1
, Ramakrishna V Moni

2

1
(Mtech, Dept of CSE, VTU, SaIT, Bangalore

2
 (Prof, Dept of CSE, SaIT, Bangalore

--************************----------------------------------

Abstract:

 MapReduce is one among the famous processing model for huge scale information (Big Data)

processing in distributed computing. Since there may be a possibility of slot based MapReduce

framework (eg. Hadoop MRv1) displaying some poor execution as a result of its unoptimized resource

allocation. To venture on this, this paper finds and further streamlines the data distribution and resource

allocation from the following three key perspectives. To begin with, because of the pre-configuration of

the map slots and reduce slots which are not replaceable slots can be extremely under used. Since map

slots may be completely used while reduce slots are empty and the other way around, considering the slot

based model we set forth an option strategy called Dynamic Hadoop Slot Allocation. It unwinds the slot

allocation parameters to permit slots to be reallocated to map or reduce task assignments relying upon their

needs. Second the speculative execution can handle the straggler issue which sufficiently fit to enhance the

execution for a job however to determine the expense of cluster proficiency. In context of this we further

show Speculative Execution Performance Balancing so as to adjust the execution exchange between a

single job and a batch of jobs. Third, delay scheduling has indicated to enhance the information and data

locality at the fair cost. On the other hand we propose a method called Slot Pre Scheduling that can

enhance the data locality yet with no effect on cost. At last by melding all the strategies together we make

an orderly slot allocation framework called DynMR (Dynamic Map Reduce) which can enhance the

execution of MapReduce workloads significantly.

Keywords — MapReduce, DynMR, Delay Scheduler, Hadoop Fair Scheduler, Slot Allocation, Slot

Pre Scheduler.

--************************----------------------------------

I. INTRODUCTION

Despite the fact that, having numerous studies in

improving MapReduce/Hadoop, there are couple of

key difficulties for the usage and execution

challenge of a Hadoop[4] cluster.

To answer these difficulties, we introduce

DynMR, an element space allotment structure that

enhances the execution of a MapReduce cluster

through upgrading the opening use. Especially,

Dynamic MR focuses over Hadoop Fair Scheduler

(HFS). This is on the grounds that the cluster usage

and execution for MapReduce employments under

HFS are much poorer (or more genuine) than that

under FIFO scheduler. Actually side the

indispensable purpose of our DynMR can be

utilized for FIFO scheduler also. DynMR comprises

of three optimization procedures, namely, Dynamic

Hadoop Slot Allocation (DHSA), Speculative

Execution Performance Balancing (SEPB) and Slot

Pre-Scheduling from diverse key perspectives.

RESEARCH ARTICLE OPEN ACCESS

 International Journal of Computer Techniques -– Volume 2 Issue 2, Mar - Apr 2015

ISSN: 2394-2231 http://www.ijctjournal.org Page 143

Dynamic Hadoop Slot Allocation (DHSA)
Just like YARN [10] which proposes another

resource model of "container" that both map and

reduce tasks can run on DHSA keeps the slot based

resource model here DHSA will break the

assumption of slot allocation as below

• slots are nonexclusive and even as it can be

utilized by either map or reduce slots, although

there is a pre-configuration for the quantity of

map and reduced slots at the end of the day,

when there are lacking map slots the map slots

can use all the map slots and after that it can use

the reduced slots available from the reduce slots

also.

• Map slots prefer to utilize map slots, likewise

reduce slots like to utilize reduce slots. The focal

point is that, the pre-configuration of map and

reduce slots for every slave node can still be

used in any case to control the proportion of

running map and reduced tasks during runtime,

whic can be better than YARN which has no

control for the degree of running map and reduce

tasks.

Speculative Execution Performance Balancing

(SEPB)
Speculative execution is a basic procedure that

can be utilized to address the issue of moderate

running assignment's influence on a single job's

execution time by running a reinforcement task and

on another machine. In this paper, we propose a

dynamic technique of slot allocation system called

Speculative Execution Performance Balancing

(SEPB) for the speculative job tasks. It can adjust

the execution exchange off between a single job's

execution time and a batch of jobs’ execution time

by deciding powerfully when it is time designates

slots for speculative job tasks.

Slot Pre-Scheduling
To enhance the data information locality in

MapReduce [9] delay scheduling has turned out to

be a powerful approach. In the perspective of this,

we propose an alternative procedure called named

Slot Pre-Scheduling that has capacity to enhance

the data information locality, however it has no

negative effect on reasonableness. It is

accomplished to determine the burden of load

balancing between slave nodes.

We have coordinated Dynamic MR into Hadoop

(especially Apache Hadoop 1.2.1). We assess it

utilizing proving ground workloads.

The fundamental commitments of this paper are

abridged as follows:

• Propose a Dynamic Hadoop Slot Allocation

(DHSA) strategy to increase the slot allocation

for Hadoop.

• Propose a Speculative Execution Performance

Balancing (SEPB) strategy to adjust the

execution exchange off between a single jobs

and a batch of jobs.

• Propose a Pre-Scheduling strategy to enhance

the data information locality to the determination

of load balance across the cluster, which has no

negative influence on reasonableness.

• Develop a framework called DynMR by

consolidating these three methods in Hadoop

MRv1.

• Experiments have been performed to validate the

effectiveness of Dynamic MR and its three step-

by-step techniques.

II. RELATED WORK

Dynamic Split Model of Resource Utilization in

MapReduce
The prominence of MapReduce is expanding step

by step as a parallel programming model for huge

scale information preparing. At the same time in the

long run, we discover some customary MapReduce

stages which have a poor execution in content of

bunch asset use following the conventional multi-

stage parallel model and some current timetable

approaches utilized as a part of the group

environment have a few disadvantages. We address

these issues through our involvement in planning a

Dynamic Split Model of the assets usage which

contains two advances, Dynamic Resource

Allocation considering the stage need and

employment prerequisite when distributing assets

 International Journal of Computer Techniques -– Volume 2 Issue 2, Mar - Apr 2015

ISSN: 2394-2231 http://www.ijctjournal.org Page 144

and Resource Usage Pipeline which can relegate

errands alertly.

The fundamental pipe line of parallel processing

catches the scholastic world consideration. Further

area/circle is an appropriated figuring stage which

is like Google GFS/MapReduce. It comprises of a

parallel runtime Sphere and in addition a conveyed

file framework Sector. Another parallel runtime is

phaser which is a direction build for element

parallelism under the environment of multi-

processors rather than multi-nodes.

The embodiment fundamental of these

parallel programming edge works specified above

is that they are all gotten from multi-stage parallel

model. The customary multi-stage model has poor

execution on the asset use efficiency. This issue has

taken conception from two angles. From one

viewpoint, different stages have different needs and

also distinctive resources use inclination and must

be executed entirely to that need which causes

resource utilization unbalance. A few systems can

release the strict execution request among

distinctive stages by sub-operations cover execution,

for example, phaser aggregator or gushing pipeline

in Hadoop Online model. Anyways, the unbalance

still exists if the resource require in sub-operations'

cover execution is the same.

We came up with an innovation in this

paper to address the above issue which is known as

Dynamic Split Model of Resources Utilization

which embodies two fundamental advances:

Resource Usage Pipeline (RUP) and Dynamic

Resource Allocation (DRA). What's more, to make

the resource pipeline feasible we have to take a few

measures to partition the mixture of different

resources used to partitioned powerfully and

dispatch an undertaking at a legitimate point.

Another technique is that Dynamic Resource

Allocation will number the framework load and the

status of every job keeping in mind the end goal to

partition our resource more efficiently. Also, we

utilize Hadoop to confirm our advancement. Since

our technique is executed on Hadoop, the issue we

address is in no means constrained to Hadoop, even

MapReduce processing model. By and large,

effective resource use we can give a more

significant execution in DISC system

Background
One of the programming models which is

appropriate in DISC system is called as MapReduce.

The transitional yield of another sort of (key,

quality) sets is created further and exchanged to

reduce function. Reduce function will prepare all

qualities fit in with the same key one time and yield

the final (key, worth) sets.

Hadoop is a standout amongst the most well

known open source executions of Google

GFS/MapReduce. It is comprised of two sections

Hadoop Distributed File System (HDFS) and

MapReduce figure structure. MapReduce system is

based on top of HDFS containing a Job Tracker and

Task Tracker.

Map Task

A map task relating to a specific occupation will

read a part which is a segment of the input file from

HDFS. The procedure is explained in the

accompanying step

• MapRunner reads a (key, value) pair from the

assigned split in HDFS using RecordReader and

applies the user-defined map function to the pair.

• After processing one pair, map task outputs the

result to a fixed-size buffer. If the buffer is

overflow it will apply a quick-sort to the full

buffer first and then store the content of the

buffer to a spill file so the buffer becomes empty

and can therefore receive more results. This

process will take place repeatedly until all

records are used up.

• Map task merges all the spills on the disk into a

sort file and stores it to the local file system as

well as a corresponding index file referring to

that data file. Further, task tracker will ask for a

new task from job tracker as soon as the map

task finishes and makes a slot free.

Reduce Task

A reduce task execution comprises three phases.

• In the shuffle phase reduce task fetches a specific

partition of every map task output using HTTP

request and puts them into memory first. If the

memory is full it will apply merge sort to the

memory and output the result to a temp file.

 International Journal of Computer Techniques -– Volume 2 Issue 2, Mar - Apr 2015

ISSN: 2394-2231 http://www.ijctjournal.org Page 145

• After all partition is fetched, reduce task enters

the sort phase where it sorts all sorted files stored

in memory or disk using merge sort grouping all

records to the same key together.

• The reduce phase applies the user-defined reduce

function to each key and the set of values

belonging to the same key.

Dynamic Scheduling Model
The real execution situation on a single node in

the raw version Hadoop, Where the raw version

Hadoop does have several flaws which throws a

major impact on the system resource efficient

utilization.

The genuine execution circumstance on a single

node in the raw version of Hadoop, Where the raw

variant Hadoop has a few flaws which tosses a real

effect on the framework resource utilization

• Single node resource usage unbalance: inside a

round of map task or reduce task different stages

have different resource use predisposition

particularly when homogenous undertakings

execute at the same pace a few resource such as

IO or CPU may be underused while the others

abused.

• Reduce slot hoarding: In MapReduce, every

Reduced tasks it partitions by the aftereffects of

every map tasks, and can just apply the client's

reduce tasks once it has results from all map

tasks. Since, in the event that we present a

difficult task, which will take quite a while to

finish all map tasks. It will hold reduce slots for

quite a while until all the map assignments are

finished, and starve jobs occupations and

underutilize resource.

• Resource allocation unbalance within job:

MapReduce will assign resource by a static

configuration, which does not consider the

framework burden and the jobs necessity. This

will prompt asset designation unbalance.

• We separate resource usage within a phase into

two periods: CPU period and IO period. What's

more, we utilize commercial advanced

scheduling to dispatch a task at a legitimate

point. One assignment's sub-operation can

covered with the other in the event that their

resource use is complimentary.

• We gather the framework load and the status of

every occupation at run time to dispense

resource alertly. Further at the three subjective

time point the quantity of slot is not the same

and can be modified as per framework load.

Dynamic Resource Allocation
Reduce Slot Hoarding Problem. MapReduce

typically dispatches reduce tasks for a vocation

when its first couple of maps finish, so these

reduces can start replicating map yields while the

remaining maps are running. In any case, in a

substantial jobs, the map phase may take quite a

while to finish. The employment will hold any

reduce slots it gets amid this until its maps finish.

So alternate occupations, which submitted later,

will starve until the vast occupation finishes. This is

called "reduce slot hoarding" issue, which will

squander resource and deferral the divider time of

jobs.

We may recognize that this issue can be explained

by beginning Reduce tasks later or making them

suspended, however called attention to that this

arrangement is not achievable. And their answer is

to part decrease undertakings into two intelligently

particular sorts of tasks, duplicate assignments and

process tasks, with partitioned types of control.

Resources Allocation unbalance Problem

Another issue we meet in MapReduce is that

the MapReduce will distribute the most extreme

number of slots by a static configuration, for

example, the parameters: mapred.tasktracker.

maptasks.maximum and mapred.tasktracker.

reduce.tasks. most extreme, and will never be

changed when the batch is running. Then again, the

necessity for openings shifts alongside occupation

continuing.

Solution
Dynamic Resource Allocation, Our proposed

answer for these issues is dynamic resource

allotment. We will assign resource as indicated by

the group load and all occupations run-time status.

As said before, amid the execution of an occupation,

the resource prerequisite is changing without a

 International Journal of Computer Techniques -– Volume 2 Issue 2, Mar - Apr 2015

ISSN: 2394-2231 http://www.ijctjournal.org Page 146

doubt. We oblige more map slots toward the

starting; with the map tasks obliged map tasks is bit

by bit reduced, yet the prerequisite to reduce slots

expanded; And more Reduced slots are required

when all map tasks are finished. Thus, for a

vocation, the resource prerequisite is changing with

occupation status evolving. So we define the

element weight of the guide stage and the reduce

phase as indicated by the occupation status to

recreate the element prerequisite for resources.

III. OVER VIEW

Further, to enhance the execution of a

MapReduce cluster through optimizing the slot

usage fundamentally from two points of view. In

the first place, there are two separate slots, to be

specific, busy slots (i.e., with running tasks) and

idle slots (i.e., no running tasks). Given the

aggregate number of map and reduce slots

configured by clients, one optimizing methodology

(i.e., macro-level advancement) is to enhance the

slot used by amplifying the quantity of occupied

slots and decreasing the quantity of idle slots.

Second, it is important that not every occupied

opening can be efficiently used. Consequently, our

optimization approach (i.e., micro-level

enhancement) coordinates towards the effecient use

of busy slots occupied after the macro- level

optimization. We propose Dynamic MR, an

element usage optimization structure for

MapReduce, to enhance the execution of an

imparted Hadoop cluster under a fair scheduling

between clients

Fig. 1: DynamicMR Framework.

Figure 1 gives an overview of DynamicMR.

It consists of three slot allocation techniques, i.e.,

Dynamic Hadoop Slot Allocation (DHSA),

Speculative Execution Performance Balancing

(SEPB), and Slot PreScheduling.

Every single system considers the execution

performance from diverse perspectives. DHSA

endeavor to minimize slots useage while keeping up

the fairness, when there are pending tasks (e.g.,

map tasks or reduced tasks). SEPB recognizes the

slot resource in-efficiency issue for a Hadoop

cluster, brought about by speculative tasks. slot Pre-

Scheduling enhances the slot utilization efficiency

and execution performance by enhancing the data

locality for map tasks while keeping the fairness.

By fusing the three systems, it empowers

DynamicMR to upgrade the use and execution of a

Hadoop cluster significantly with the accompanying

regulated procedures

• Whenever there is an idel slot accessible,

DynamicMR will first try to enhance the slot

used with DHSA. It chooses alertly whether to

allocate it or not, subject to the various

constraints, e.g., fairness and load balancing.

• If the distribution is true, Dynamic MR will

further enhance the execution by enhancing the

effectiveness of slot utilization with SEPB. Since

the speculative execution can enhance the

 International Journal of Computer Techniques -– Volume 2 Issue 2, Mar - Apr 2015

ISSN: 2394-2231 http://www.ijctjournal.org Page 147

execution of a single job however to the

detriment of cluster effectiveness, SEPB goes

about as a productivity balance between a single

job and a cluster efficiency. It takes a shot at top

of Hadoop speculative scheduler to focus rapidly

whether allocating the idle slots to the pending

tasks or speculative tasks.

• When allocating the idle slots for

pending/speculative map tasks, Dynamic MR

will have the capacity to further enhance the slot

utilization efficiency from the data locality

optimization aspects with Slot Pre-Scheduling.

Besides, we need to specify that the three

procedures are at diverse levels, i.e., they can be

connected together or independently.

DynamicMR components can be explained in

detail in the further discussions.

Dynamic Hadoop Slot Allocation (DHSA)

The current configuration of MapReduce

experiences an under-usage of the slots as the

quantity of map and reduce tasks shifts over the

long run. Our dynamic slot allocation approach is

taking into account the perception that at distinctive

time there may be idle map(or reduce) slots, as the

jobs continues from map stage to reduce stage. We

can utilize the unused map slots for those over-

burden reduce tasks to enhance the execution of the

MapReduce workload, and the other way around.

We further make utilization of idle reduce slots for

running map tasks. That is, we break the certain

presumption for current MapReduce structure that

the map tasks can just run on map slots and reduced

tasks can just run on reduce slots.

There are two challenges specified below that must

be considered:

(C1): Fairness is an imperative metric in Hadoop

Fair Scheduler (HFS). We proclaim it as reasonable

when all pools have been designated with the same

amount of resource. In HFS, task slots are first

allocated over the pools [8], and later then the slots

are distributed to the jobs inside the pool. Also, a

MapReduce job computation embodies two sections:

map-phase task computation and reduce-phase task

computation.

(C2): The resource requirement between the map

slots and reduced slots are especially diverse. The

purpose for this is the map tasks and reduced tasks

regularly show totally different execution designs.

reduce task has a tendency to expend considerably

more resources, for example, memory and system

network speed. Basically permitting reduce tasks to

utilize map slots configuring every map slots to take

more resources, which will therefore lessen the

powerful number of slots on every node, creating

resources under-used amid runtime.

With a due appreciation towards (C1), we

set forth a Dynamic Hadoop Slot Allocation

(DHSA). It contains two choices, to be specific,

pool- free DHSA(PI-DHSA)

pool-Independent DHSA (PI-DHSA)
HFS utilizes max-min fairness [5] to

allocate slots crosswise over pools with least

ensures at the map-phase and reduce-phase,

individually. Pool-Independent DHSA (PI-DHSA)

extends the HFS by dispensing slots from the

clusters of worldwide level and free of pools.

The allocation procedure is comprised of two

sections:

• Intra-phase dynamic slot allocation: Each pool is

part into two sub-pools, i.e., map phase pool and

reduce phase pool. At every stage, every pool

will get its share of slots.

• Inter-phase dynamic slot allocation: After the

intra-phase dynamic slot allocation for both the

map-phase and reduced phase, next we can

perform the dynamic slot allocation crosswise

over typed phase.

Fig. 2: fairness-based slot allocation flow for

PIDHSA.

 International Journal of Computer Techniques -– Volume 2 Issue 2, Mar - Apr 2015

ISSN: 2394-2231 http://www.ijctjournal.org Page 148

The entire dynamic slot allocation flow is

that, at whatever point a pulse is gotten from a

computing node, at first we process the aggregate

demand for map slots and reduce slots for the

current MapReduce workload. At that point we

focus alertly the need to acquire map (or reduce)

slots for reduce (or map) tasks in light of the

interest for map and reduce slots, with respect to

these four situations. The specific number of map

(or reduce) slots to be obtained is based on the

account of quantity of unused reduced (or map)

slots and its map (or reduce) slots needed.

To accomplish the reservation usefulness,

we give two variables rate Of Borrowed Map Slots

and rate Of- Borrowed Reduce Slots, defined as the

rate of unused map and reduced slots that can be

obtained, separately. Thus, we can restrict the

quantity of unused map and reduced slots that ought

to be distributed for map and reduced tasks at every

pulse of that task tracker. With these two

parameters, clients can flexibly adjust the exchange

off between the performance execution

optimization and the starvation minimization.

In addition, Challenge (C2) makes us to

review that we can't treat map and reduce slots as

same, and just obtain unused slots for map and

reduce tasks. Rather, we should be mindful of

shifted resource sizes of map and reduce slots. A

slot weight- based methodology is therefore

proposed to address the issue. We allot the map and

reduce slots with distinctive weight values,

regarding the asset configurations. Particular to the

weights, we can alterably decide the amount of map

and reduce tasks which has to be generate in the

length of runtime.

Pool-Dependent DHSA (PD-DHSA)

As an opposite point on checking towards

PI-DHSA Pool-Dependent DHSA (PD-DHSA)

considers fairness for the dynamic slot allocation

across pools. Accepting that every pool, includes

two sections: Map phase pool and Dynamic Phase

pool, is selfish. It is considered fair when aggregate

quantities of map and reduce slots allocated across

pools are the same with one another. PD-DHSA

will be performed with the accompanying two

courses of actions:

 (1). Intra-pool dynamic slot allocation. At a

early stage, each typed- phase pool will receive its

share of typed-slots based on max-min fairness at

each phase. There are four possible relationships

cases for every pool regarding its demand (denoted

as mapSlots Demand, reduceSlots Demand) and its

workload (marked as mapShare, reduceShare)

between two phases:

 Case (a). mapSlotsDemand < reduceShare, and

reduceSlots-Demand > reduceShare. We can use

some of the unused map slots for its overloaded

reduce tasks from its reduce-phase pool first before

using other pools.

 Case (b). mapSlotsDemand > mapShare, and

reduceSlots- Demand < reduceShare. we can use

some unused reduce slots for its map tasks from its

map-phase pool first before using pools.

 Case (c). mapSlotsDemand < mapShare, and

reduceSlots- Demand < reduceShare. Both map

slots and reduce slots are enough for its use. It can

give some unused map slots and reduce slots to

other pools.

 Case (d). mapSlotsDemand > mapShare, and

reduceSlots- Demand > reduceShare. If both map

slots and reduce slots of a pool have become

insufficient. It may have to borrow some unused

map or reduce slots from other pools through inter-

Pool dynamic slot allocation is shown below.

Fig. 3: Example of the fairness-based slot allocation

flow for PD-DHSA.The black arrow line and dash

line show the borrow flow for slots across pools.

(2). Inter-pool dynamic slot allocation. It is obvious

that,

 (i). if a pool, has mapSlotsDemand +

reduceSlotsDemand < mapShare + reduceShare.

The slots are enough for the pool and there is no

 International Journal of Computer Techniques -– Volume 2 Issue 2, Mar - Apr 2015

ISSN: 2394-2231 http://www.ijctjournal.org Page 149

need to get some map or reduce slots from other

pools

 (ii). On the contrary, when mapSlotsDemand +

reduceSlotsDemand mapShare + reduceShare, the

slots are not enough even after Intra-pool dynamic

slot allocation.

The overall slot allocation process for PD-DHSA

is as sketched down below in figure 4.

Fig. 4: The slot allocation flow for each pool under

PD-DHSA.The numbers labeled in the graph

corresponds to Case (1)-(4) in Section 2.1.2,

respectively.

At first, it computes the maximum number of free

slots that can be allocated at each round of heartbeat

for the tasktracker. Next it starts the slot allocation

for pools. For every pool, there are four possible

slot allocations as illustrated in Figure 4 above.

Case(1): We try the map tasks allocation, if

there are idle map slots for the task tracker, and

there are pending map tasks for the pool.

 Case(2): If the attempt of Case(1) fails, the

condition does not hold good, and it cannot find a

map task satisfying the valid data-locality level, we

continue to try reduce tasks allocation when there

are pending reduce tasks and idle reduce slots.

Case(3): If Case(2) fails due to the required

conditions does not hold, we try for map task

allocation again. If Case(1) fails then there might

not have to be any idle map slots available. In

contrast, if Case(2) fails then there are no pending

reduce tasks. In this case, we can relay on reduce

slots for map tasks of the pool.

Case(4): If Case(3) fails, we try for reduce

task allocation once again. Case(1) and Case(3) fail

might be because of no valid locality-level pending

and map tasks available, but there are idle map slots.

In contrast, Case(2) maight not have any idle reduce

slots available. At such cases, we can allocate map

slots for reduce tasks for the pool.

 Furthermore, there is a special scenario that

needs to be considered particularly. Note, it is

possible that all the above four possible slot

allocation attempts fail for all pools, due to the data

locality consideration for map tasks.

Speculative Execution Performance Balancing

(SEPB)
 MapReduce job’s execution time is very sensitive

to slow- running tasks (namely straggler) [6], [7].

We divide the stragglers into two types, namely

Hard Straggler and Soft Straggler, as defined below:
• Hard Straggler: A task that gets into deadlock status due

to the endless waiting for some resources. It cannot stop

and complete unless we stop it manually.

• Soft Straggler: A task that can complete its task

successfully, but will take much longer time than that of

common tasks.

For the hard straggler, we should stop it and run

another task, or called a backup task, immediately

once it was detected. In contrast, there are two

possible cases between the soft straggler and its

backup task:

(S1). Soft straggler finishes first or at the same

time as its backup task. For this case, there is no

need to run backup task.

(S2). If Soft straggler finishes later than the

backup task. We should stop it and run a backup

task immediately.

 Further to deal with the straggler problem,

speculative execution is used in Hadoop. Instead of

diagnosing and fixing straggling tasks, it finds the

straggling task dynamically using heuristic

algorithms such as LATE [7]. Once detected,

 International Journal of Computer Techniques -– Volume 2 Issue 2, Mar - Apr 2015

ISSN: 2394-2231 http://www.ijctjournal.org Page 150

however, it can- not simply kill the straggler

immediately due to the following facts:

• Hadoop does not have a way or methodology to

distinguish between the hard straggler and the

soft straggler.

• But for the soft straggler, it’s also difficult to

judge whether it belongs to (S1) or (S2) before

running. Simply stopping the straggler will harm

the case of (S1).

Rather, it produces a backup task and permits it

to run simultaneously with the straggler, i.e., there

is a processing cover between the straggler and the

backup undertaking. The task killing operation will

happens when both of the two tasks are finished. It

merits specifying that, despite the fact that the

speculative execution can reduce a single work's

execution time, however it has a go at the expense

of cluster effectiveness.

Along these lines, it raises a test issue for

speculative tasks on the best way to relieve its

negative effect for the execution of batch jobs. To

expand the execution for a group of jobs, an

instinctive arrangement is that, given accessible

task slots, we should fulfil pending tasks first before

considering speculative tasks. That is, the point at

which a node has an idle map slots , we have to

pick pending map tasks first before searching for

speculative map tasks for a cluster of jobs.

We further propose a dynamic task

allocation mechanism called Speculative Execution

Performance Balancing (SEPB) for a batch of jobs

with speculative execution tasks on top of Hadoop's

current task selection strategy. Hadoop picks a task

from a job in view of the accompanying need: first,

any failed task is given the most highest priority.

Second, the pending tasks are considered. For map,

tasks with data local to the process node are picked

first. At last, Hadoop searches for a straggling

assignment to execute speculatively. In our task

scheduling component, we define a variable rate Of

Jobs Checked- For Pending Tasks with domain

somewhere around 0.0 and 1.0, configurable by

clients, to control max Num Of Jobs Checked For-

Pending Tasks, which is the greatest number of

occupations that are checked for pending map and

reduced taskd for a batch of jobs.

Then again, we can perceive another

challenging issue if there is a delay in the planning

of speculative task. To defeat this issue, at present

we utilize a basic heuristic algorithm: We evaluate

the execution time for every task. When it took

twice more than the normal execution time of tasks,

we kill it specifically to yield the slot. Since

failed/executed tasks have the most elevated need to

run in Hadoop, a reinforcement undertaking will be

made to supplant it rapidly, enhancing the

execution of a single job and moderating the

negative effect on the cluster effectiveness.

Discussion on SEPB VS LATE
The benefit of SEPB over LATE lies in its

arrangement for slot allocation to speculative tasks.

Conversely, SEPB performs the resource allocation

for speculative tasks from a worldwide view by

considering various occupations (controlled by the

argument max Num of Jobs Checked for Pending

Tasks). Further postpones the slot allocation to

speculative tasks at whatever point there are

pending tasks for the different jobs. The SEPB

figures out if to make a speculative task to re-figure

information or not from a global view by checking

various jobs. On the off chance that SEPB

recognizes pending tasks, it will assign the idel slots

to a pending tasks. If not, another speculative task

will then be made to have the idle slots.

Slot PreScheduling

 We propose a Slot Pre-Scheduling technique that

holds ability to improve the data locality while

having no negative impact on the fairness of

MapReduce jobs. The basic level idea is that, in

light of the fact that there are often some idle slots

which cannot be allocated due to the load balancing

constrain during runtime, we can pre-allocate those

slots of the node to jobs to maximize the data

locality.

We propose a Slot Pre-Scheduling system

that holds capacity to enhance the data locality

while having no negative effect on the fairness of

MapReduce jobs. The essential level idea is that, in

a way there are regularly some idle slots which can't

be dispensed because of the load balancing during

runtime, we can preallocate those slots of the node

to allocate and amplify the data locality

 International Journal of Computer Techniques -– Volume 2 Issue 2, Mar - Apr 2015

ISSN: 2394-2231 http://www.ijctjournal.org Page 151

Preliminary

Prior to presenting Slot PreScheduling, we start

with two definitions:

Definition 1. The allowable idle map (or reduce)

slots will relate to the maximum number of idle

map (or reduce) slots that can be allocated for a task

tracker, considering the load balancing between

machines.

Definition 2. The extra idle map (or reduce) slots

will relate to the remaining idle map (or reduce)

slots by subtracting the maximum value of used

map (or reduce) slots and allowable idle map (or

reduce) slots from the total number of map slots for

a task tracker, considering the load balancing

between machines.

Observation and Optimization
For a MapReduce cluster, the computing

workloads of running map (or reduce) tasks

between task trackers (i.e., machines) are generally

modified, because of the following facts.

 (1) In practical world, Lots of MapReduce

clusters comprises of heterogeneous machines (i.e.,

different computing powers between machines).

 (2) There are often varied computing loads (i.e.,

execution time) for map and reduce tasks from

different jobs, due to the varied input data sizes as

well as applications.

 (3) Even for a single job under the homogenous

environment, the execution time for map (or reduce)

tasks will not be the same.

 In order to balance the workload, Hadoop

comes up with a methodology that can dynamically

control the number of allowable idle map (or reduce)

slots (See Definition 1) for a task tracker in a

heartbeat as the following three steps.

 Step 1#: Compute the load factor

mapSlotsLoadFactor as the sum of pending map

tasks and running map tasks from all jobs divided

by the cluster map slot capacity.

 Step 2#: Compute the current maximum number

of usable map slots by multiplying

min{mapSlotsLoadFactor,1} with the number of

map slots in a task tracker.

 Step 3#: Finally, we can compute the current

allowable idle map (or reduce) slots for a task

tracker, by subtracting the current number of used

map (or reduce) slots from the current maximum

number of usable map slots.

 To make use of Slot Pre-Scheduling there are two

different cases. The first case considers a task

tracker slot on which there are extra idle map slots

available, but no allowable idle map slots. For a

headed job following the fair-share priority order,

when it has local map tasks with block data on the

task tracker slot, instead of skipping it by the

default Hadoop scheduler, we can proactively

allocate extra map slots to the job.

 The second case is for DHSA. When there are

no idle map slots but some idle reduce slots

available, for a connected task tracker slot in a

heartbeat, we can proactively borrow idle reduce

slots for local pending map tasks and restore them

later, in order to maximize the data locality.

Advantages

• Improves the performance of MapReduce

workloads write maintaining the fairness.

• Can be used for any kinds of MapReduce jobs

(independent or dependent ones).

• Balances the performance trade-off between a

single job & a batch of jobs dynamically.

• Slot pre-scheduling improves the efficiency of

slot utilization by further maximizing its data

locality.

• Dynamic MR improves the performance of the

Hadoop system significantly.

• SEPB identify the slot inefficiency problem of

speculative execution.

• Dynamic MR consistently outperforms YARN.

Disadvantages

• On comparison with YARN, the experiments

show that, for single jobs, the result is

inconclusive.

• The proposed Dynamic MR doesn’t considers

the implementation on cloud computing

environment which is a gateway for further

research.

 International Journal of Computer Techniques -– Volume 2 Issue 2, Mar - Apr 2015

ISSN: 2394-2231 http://www.ijctjournal.org Page 152

IV. RESULTS AND ANALYSIS

Experimental Set up
We ran our experiments in a group

comprising of 10 process hubs, each with two Intel

CPUs (4 CPU centres every CPU with 3.07 GHz),

24GB memory and 56GB hard disk. We arrange

one node as master and namenode, and the other 9

nodes as slaves and datanodes. The most recent

rendition of Hadoop 1.2.1 is picked in our

experiment.

Performance improvement for DynMR
In this segment, we first demonstrate the

execution forms for PI-DHSA and PD-DHSA. At

that point we assess and look at the execution

change by PI-DHSA and PDDHSA under

distinctive slot setup. Third, we make a dialog on

the execution impact of the contentions of the rate

of map and reduce slots that can be obtained for our

DHSA in Appendix F of the supplemental material.

To show distinctive levels of fairness for the

dynamic task allocation calculations, PI-DHSA and

PD-DHSA, we perform an analysis by considering

three pools, each with one task submitted. Figure 5

demonstrates the execution stream for the two

DHSAs, with 10 sec every time step. The quantity

of running map and reduce task for every pool at

every time step is recorded. For PI-DHSA, as

delineated in Figure 5(a), we can see that, toward

the starting, there are just map tasks, with all slots

utilized by map slots under PI-DHSA.

Fig. 5: The execution flow for the two DHSAs.

There are three pools, with one running job each.

Every pool imparts 1/3 of the aggregate

openings (i.e., 36 spaces out of 108 openings), until

the 5th time step. The map slots interest for Pool 1

starts to therapist and the unused map slots of its

impart are respected Pool 2 and Pool 3 from the 6th

time step. Next from 6th to 10th time step, the

guide assignments from Pool 2 and Pool 3 just as

impart all guide openings and the reduced tasks

from Pool 1 have all reduced tasks, taking into

account the write stage level fairness approach of

PI-DHSA(i.e., intraphase element space

distribution). From 11th to 18th time venture, there

are some unused map slots from Pool 2 and they are

controlled by map tasks from Pool 3 (i.e., intra-

stage element opening portion). Later, there are

some unused map slots from Pool 3 and they are

utilized by reduced tasks from Pool 1 and Pool 2

from 22st to 25th time step (i.e., between stage

dynamic space portion). For PD-DHSA, like PI-

DHSA toward the starting, every pool gets 1/3 of

the aggregate spaces from the 1th to 5rd time

venture, as indicated in Figure 5(b). Some unused

map slots from Pool 1 are respected Pool 2 and

Pool 3 from 6th to the 7th time step. Be that as it

may, from the 8th to 12th, the map tasks from Pool

2 and Pool 3 and the decrease assignments from

Pool 1 takes 1/3 of the total slots, subject to the

pool-level reasonableness strategy of PD-DHSA

(i.e., intra-pool element space allotment). At long

last, the unused slots from Pool 1 starts to respect

Pool 2 and Pool 3 since 13th time step (i.e.,

between pool element space portion).

Speculative Execution Control for Performance
we expressed that theoretical assignment

execution can defeat the issue of straggler (i.e., the

moderate running errand) for an occupation,

however it is at the expense of cluster use. We

characterize a client's configurable variable.

percentageOfJobsCheckedForPendingTasks to

focus the time to calendar speculative tasks. To

accept the adequacy of our element speculative

execution control arrangement, we perform an

investigation with 5 employments, 10 occupations

and 20 occupations by fluctuating the estimations of

percentageOfJobsCheckedForPendingTasks.

 International Journal of Computer Techniques -– Volume 2 Issue 2, Mar - Apr 2015

ISSN: 2394-2231 http://www.ijctjournal.org Page 153

Fig. 6: The performance results with SEPB.

Note that LATE [35] has been actualized in 1.2.1.

Figure 6 give the execution results SEPB in

examination to LATE. All speedups are processed

regarding the case that

percentageOfJobsCheckedForPendingTasks is

equivalent to zero.

We have the accompanying discoveries:

First and foremost, SEPB can enhance the

execution of Hadoop from 3%-10%, indicated in

Figure 6(a). As the estimation of

percentageOfJobsCheckedForPendingTasks

expands, the pattern of execution change has a

tendency to be huge and the ideal setups could be

unmistakable for diverse workloads. For instance,

the ideal setup for 5 occupations is 80%, yet for 10

employments is 100%. The reason is that, huge

estimation of rate-OfJobsCheckedForPendingTasks

will let more quantities of employments be checked

for pending assignments before considering

speculative execution for every space assignment,

i.e., It is more inclined to allot an opening to a

pending tasks first and foremost, instead of a

theoretical tasks, which advantages more for the

entire jobs. Notwithstanding, extensive estimation

of percentageOfJobsCheckedForPendingTasks will

defer the speculative execution for straggled jobs,

harming their execution. For a few workloads, too

vast estimation of

percentageOfJobsCheckedForPendingTasks will

corrupt the execution for straggled jobs a great deal

and thus influence the general occupations,

clarifying why the ideal design is not generally

100%. We prescribe clients to design

percentageOfJobsCheckedForPendingTasks at

60%-100% for their workloads.

Second, there is an execution trade-off

between an individual job and the entire jobs with

SEPB. We demonstrate a case for the workload of 5

occupations when setting

percentageOfJobsChecked- ForPendingTasks to be

0 and 100%, separately. As results indicated in

Figure 6(b), Job 2 and 4 are negative influenced

because of the oblige on speculative execution from

SEPB, though it supports the execution for entire

jobs (i.e., the most extreme execution time of jobs)

Data Locality Improvement Evaluation for Slot

PreScheduling

Fig. 7: The data locality improvement by Slot

PreScheduling for Sort benchmark.

Fig. 8: The performance improvement under Slot

PreScheduling.

 International Journal of Computer Techniques -– Volume 2 Issue 2, Mar - Apr 2015

ISSN: 2394-2231 http://www.ijctjournal.org Page 154

To test the impact of Slot PreScheduling on data

locality improvement, we ran MapReduce

employments with 16, 32, and 160 map tasks on the

Hadoop cluster. We contrast reasonable imparting

results and without Slot PreScheduling under the

default HFS. It merits saying that Delay Scheduler

has been added to the default HFS for the

customary Hadoop and continues working

dependably. Subsequently, our work turns to be the

correlation between the case with Delay Scheduler

just and the case with Delay Scheduler in addition

to Slot PreScheduling. Figure 7 demonstrates the

data locality results with and without Slot

PreScheduling for Sort benchmark. With Slot

PreScheduling, there are around 2% ~25% region

change on top of Delay Scheduler for Sort

benchmark. Figure 8 exhibits the comparing

execution results profiting from the information

area change made by Slot PreScheduling. There are

around 1% ~ 9% execution change concerning the

first Hadoop for the previously stated 9 benchmarks

separately. Also, we measure and analyse the heap

uneven degree and shamefulness degree for Hadoop

cluster with and without Slot PreScheduling in

Appendix E of the supplemental material

Performance Improvement for DynamicMR
In this segment, we assess DynamicMR

framework in general by empowering all its three

sub-schedulers with the goal that they can work

corporately to augment the execution however

much as could reasonably be expected. For DHSA

part, we subjectively pick PI-DHSA, taking note of

that PI-DHSA and PD-DHSA have fundamentally

the same execution change (See Section 3.2.2). For

the first Hadoop, we pick the ideal space design for

MapReduce occupations by counting all the

conceivable slot setups. We intend to contrast the

execution for DynamicMR and the first Hadoop

under the ideal map/reduce slot design for

MapReduce jobs. Figure 9 exhibits the assessment

results for a single MapReduce work and

additionally MapReduce workloads comprising of

numerous jobs. Especially, for different jobs, we

consider 5 jobs, 10 jobs, 20 jobs, and 30 jobs under

a clump accommodation, i.e., all jobs submitted in

the meantime. All speedups are computed as for the

first Hadoop. We can see that, even under the

advanced map/reduce slot arrangement for the first

Hadoop, our DynamicMR framework can at present

further enhance the execution of MapReduce jobs

altogether, i.e., there are around 46% ~ 115% for a

single jobs and 49% ~ 112% for MapReduce

workloads with numerous jobs. Also, we likewise

actualize our DynamicMR for Hadoop FIFO

scheduler. To approve the adequacy of our

DynamicMR, we perform explores different

avenues regarding the previously stated MapReduce

workloads.

(a) A single MapReduce job

(b) MapReduce workloads with multiple jobs

Fig. 9: The performance improvement with our

DynamicMR system for MapReduce workloads.

 International Journal of Computer Techniques -– Volume 2 Issue 2, Mar - Apr 2015

ISSN: 2394-2231 http://www.ijctjournal.org Page 155

Fig. 10: The performance improvement with our

DynamicMR system for MapReduce workloads

under Hadoop FIFO scheduler.

V. CONCLUSION

This paper proposes a DynamicMR Technique can

be used to enhance the execution of MapReduce

workloads while keeping up the fairness. It

comprises of three methods, in particular, DHSA,

SEPB, Slot PreScheduling, all of which concentrate

on the slot use optimization for MapReduce group

from alternate points of view. DHSA concentrates

on the slot use expansion by distributing map or

reduce slots to map and reduce tasks alterably.

Especially, it doesn't have any presumption or

require any earlier learning and can be utilized for

any sorts of MapReduce jobs (e.g., autonomous or

subordinate ones). Two sorts of DHSA are

introduced, in particular, PI-DHSA and PD-DHSA,

in view of distinctive levels of fairness. Client can

pick both of them likewise. Rather than DHSA,

SEPB and Slot PreScheduling consider the

effectiveness advancement for a given slot usage.

SEPB recognizes the slot unused issue of

speculative execution. It can adjust the execution

tradeoff between a single job and a batch of job

alterably. Slot PreScheduling enhances the

proficiency of slot use by expanding its data

locality. By empowering the over three systems to

work helpfully, the exploratory results demonstrate

that our proposed DynamicMR can enhance the

execution of the Hadoop framework altogether (i.e.,

46% ~ 115% for single occupations and 49% ~ 112%

for various employments). In future, we plan to

consider executing DynamicMR for distributed

computing environment with more measurements

(e.g., plan, due date) considered and distinctive

stages by assessing some current works, [7],

[10],[6].

REFERENCES

[1] F. Ahmad, S. Y. Lee, M. Thottethodi+, T. N. Vijaykumar.

PUMA: Purdue MapReduce Benchmarks Suite. ECE Technical

Reports, 2012.

[2] G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Stoica, Y.

Lu, B. Saha, and E. Harris, Reining in the outliers in map-

reduce clusters using mantri, in OSDI’10, pp. 1-16, 2010.

[3] J. Dean and S. Ghemawat. MapReduce: Simplified Data

Processing on Large Clusters, In OSDI’04, pp. 107-113, 2004.

[4] Hadoop. http://hadoop.apache.org.

[5] Max-Min Fairness (Wikipedia).

http://en.wikipedia.org/wiki/Max-min fairness.

[6] T. White. Hadoop: The Definitive Guide, 3rd Version. O’Reilly

Media, 2012.

[7] M. Zaharia, A. Konwinski , A.D. Joseph , R. Katz , I. Stoica,

Improving MapReduceperformance in heterogeneous

environments. In OSDI’08, pp.29-42, 2008.

[8] M. Zaharia, D. Borthakur, J. Sarma, K. Elmeleegy,S.

Schenker,I. Stoica, Job Scheduling for Multi-user Mapreduce

Clusters. Technical Report EECS-2009-55, UC Berkeley

Technical Report (2009).

[9] M. Zaharia, D. Borthakur, J. Sarma, K. Elmeleegy,S.

Schenker,I. Stoica, Delay scheduling: A simple technique for

achieving locality and fairness in cluster scheduling. In

EuroSys’10, pp. 265-278, 2010.

[10] Shanjiang Tang, Bu-Sung Lee, Bingsheng He, DynamicMR: A

Dynamic Slot Allocation Optimization Framework for

MapReduce Clusters, IEEE Transactions On Cloud Computing

Anil Sagar T
*
 received his BE

degree in Computer science and

Engineering from Visveswaraya

Technological University, Belgam, in

2013. Currently working towards the

MTech degree in computer science at

Sambhram Institute of Technology,

Bangalore. His research interests are Big

Data and Cloud Computing.

Ramakrishna V Moni
**

 currently

working as prof in Department of CSE,

Sambhram Institute of Technology,

Bangalore. He received his B.Tech

degree in 1986, M.S in 2000, Aero

EnggC and PhD degree in the year 2007.

His research interests are Big Data and

Cloud Computing.

