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----------------------------------------------------------*****************************************-------------------------------------------------------- 

ABSTRACT 

 In this paper, we describe the mathematical method we used to model and simulate the dynamics of a subsea umbilical. The 

subsea umbilical dynamics are modelled as a tensioned beam with hydrodynamic forces and other forces acting on it. The forces and 

moments acting on the umbilical were considered in 3-D (three-dimension) numerical form using the Newtonian method so as to 

obtain a model that will predict the motion of the umbilical cable in subsea environment. The derived model consists of three (3) 

uncoupled, non-linear, partial differential equations (i.e., a set of two 4th-order and one 2nd-order non-linear partial differential 

equations). The equations were non-dimensionalized and simulated using Mathematica. The results of the simulations are presented in 

this paper. Based on our simulation of the effect of tension on the subsea umbilical, we conclude that an increase in tension results in 

an increase in the frequency of oscillations of the umbilical cable in the normal and transverse directions keeping the effects of 

current/water forces constant.  

Keywords :- Subsea umbilical, boundary conditions, numerical model, hydrodynamic forces, tension and bending moments  

----------------------------------------------------------*****************************************-------------------------------------------------------- 

NOMECLATURE 
 

FPSO = Floating Production Storage Offloading system 

FSO = Floating Storage Offloading system 

FPU = Floating Production Unit 

PDE = Partial Differential Equation 

p = cable displacement in the tangential (longitudinal) 

direction; 

q = cable displacement in the normal direction; 

z = cable displacement in the transverse direction; 

s = cable length measured from bottom end of cable upwards; 

t = time; 

Vn = sea current velocity component in the cable normal 

direction; 

 

 

 

\ 

Vt = component of sea current velocity in the cable tangential 

direction; 

Vz = component of sea current velocity in the transverse 

direction; 

an = sea current acceleration component in the cable normal 

direction;  

az = sea current acceleration component in the transverse 

direction; 

m = uniform mass per unit length of umbilical cable;  

d =outer diameter of cable; 

di = inner diameter of cable; 

To = tension at bottom end of cable; 

T = tension at any length s of the cable; 

ρc  =  density of umbilical cable; 

ρw  =  density of sea water; 
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ε = strain; 

E = modulus of elasticity of umbilical cable; 

I= second moment of area of cable about its axis; 

g = acceleration due to gravity; 

φ = angle sea current makes with umbilical axis 

ϕ = angle umbilical makes with the horizontal at any length s; 

θ1 = deflection angle of normal cable displacement with 

respect to cable axis; 

θ2 = deflection angle of transverse cable displacement with 

respect to cable axis; 

Cdn = coefficient of normal drag; 

Cdt  = coefficient of tangential drag; 

Cdz  = coefficient of transverse drag; 

Ca   = added mass coefficient; 

c = coefficient of structural damping; 

Mn = bending moment induced in the cable normal direction; 

Mz = bending moment induced in the transverse direction; 

Also, 

Cos ϕ = 
��
�� 

Sin ϕ = 
��
�� 

Where, x and y are horizontal and vertical catenary functions 

of the umbilical length (s). 

I= 
�(��	
	���)


�  

 

1. INTRODUCTION 

 Subsea umbilical is widely used in the deepwater 

offshore operations for transmitting power (hydraulic or 

electrical), fluid/chemical injections and control to subsea well 

[1].Subsea umbilicals in-conjunction with risers connect 

subsea structures (subsea wells and trees, etc.) to floating 

systems (FPSO, FSO, FPU) or shore-basedfacilities. They are 

therefore indispensible components of offshore oil and gas 

production/developments. The stability and reliability of 

subsea umbilicals under different environmental conditions 

(load, forces, tension, pressure, etc.) is thus essential. In spite 

of this, limited articles have been published on the 

dynamics/behavior of subsea umbilicals [2 - 6].  

Some papers have been published on static analysis 

[7 - 8] due to the fact that once marine cable such as subsea 

umbilicals are installed (simultaneously layed and trenched) 

they operate under static conditions (no waves and current 

induced motions, etc)… and therefore not subject to the 

highest loads of service life at that situations (risk at this 

period is somewhat minimal). 

A few papers have also been published on dynamic 

behaviours of umbilical [9] and its non-linear response [10] 

Other research on umbilical focuses on stress and 

fatigue analysis [11 - 13] to determine how numerical model 

will perform using test bed (test work) as a means of 

verification and calibration of the model results. 

Our focus is on umbilical dynamics because it is 

important to understand the performance of umbilicals during 

loading conditions (as a result of environmental loading and 

host vessel motions during installation operations and/or an 

unexpected delay(s) (such as installation equipment failure, 

adverse weather conditions, etc.) which will go a long way in 

minimizing risks. In addition, it is difficult to design and 

manufacture fully dynamic umbilicals that meet all 

environmental conditions/applications. Thus, we focus on 

umbilical analysis due to motions of the lay vessel and this 

involves hydrostatic & hydrodynamic considerations 

(analysis) on the umbilical (as a result of induced motion). 

This will enable good design and manufacturing of umbilicals 

by understand its performance during deployment and confirm 

its suitability for specific applications (and enhance field 

subsea layout). 

This paper focuses on modeling and simulation of 

subsea umbilical dynamics using a numerical approach.The 

write-up is structured into five sections covering introduction, 

modeling, simulation, results & discussions, and finally 

conclusions. The introduction section presents the rationale 

and context for the work while the second section provides the 

general overview on umbilicals and their linkage to this study.  

The next section discusses modeling of umbilical dynamics by 

considering the forces acting on it in three directions 

(dimensions) and this was used to form the equations of the 

umbilical dynamics. This section was followed by the 

simulation parts, while the results of the simulations are 

presented and discussed in the results & discussions section. 

This paper concludes with the conclusion section based on the 

findings from this work with suggestions on further work. 

 

1.1 Background 

Flowlines, umbilical and risers systems are major 

parts of deepwater structure that links the subsea wells to 

surface structures (offshore platforms, etc.). The length of an 

umbilical that lies on the seabed is referred to as the static 

section. However, the part of the umbilical running from the 

host facility through the water column to the seabed is known 

as the dynamic section if it is free-hanging. This is the case 

when the host facility is a floating system, while for the 

umbilical deployed from a fixed platform at shore; the 

dynamic section is simply the length of the umbilical that is 

free-hanging in water.  The dynamic section is subject to 

substantial forces that do not impinge significantly on the 
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static section, such as the water current, and, in the case of a 

floater host, the motions of the platform or vessel itself. 

If the dynamic section hangs freely between the 

platform and the seabed, the configuration is known as a free-

hanging catenary. Different installation configurations that 

provide support for the umbilical in the water column may 

also be used, such as lazy wave, pliant wave, reverse pliant 

wave and steep wave. In general, the complexity and severity 

of the requirements for a dynamic umbilical increases with 

increasing water depth. 

Tension is applied at the top of the umbilical which 

allows it to resist lateral loads. Its effects on the dynamic 

response of the umbilical have been studied in this project. 

The umbilical is subjected to a time-varying 

distributed load due to the ocean current. This results in 

undesirable transverse and longitudinal flow and vortex 

induced vibrations. These vibrations cause stresses in the cable 

which may result in fatigue problems. Examples of fatigue 

problems include cyclic loads (which may lead to ultimate 

failure), propagation of cracks (which will require inspections 

and costly repairs), and as a worst case, environmental 

pollution due to chemical leakage from damaged areas.  

For the above reasons and also to determine the 

position and the values of the extreme responses of the cable 

and to ensure that the performance of the system is not 

compromised by this dynamic response, it becomes imperative 

to analyze the dynamics of the subsea umbilical cable. 

Two types of umbilical analyses can be employed. 

One is the analysis in the frequency domain using spectral 

analysis and the other is the analysis in the time domain using 

numerical simulation method. The first method yields valid 

solutions for linear systems. But the analysis of subsea 

umbilical dynamics requires that the system be modelled in a 

non-linear manner. The non-linearity is introduced by 

Morison’s model of the hydrodynamic force. Thus, the time 

domain modeling and simulation of a subsea umbilical is used 

in this study. Since a fourth-order non-linear PDE is being 

used, analytical means becomes increasingly difficult to apply. 

Therefore, a numerical method is most applicable to generate a 

solution. 

 

2. MODELLING 

 Consider a flexible umbilical cable submerged in a 

sea and subject to a variety of forces (Figure 1). The forces 

acting on it can be classified into hydrostatic, hydrodynamic, 

tension and bending forces (Figures 2 and 3). All these forces 

must be considered in order to effectively describe the motion 

of the umbilical cable as a function of time and the cable 

length. Thus, the problem analyzed is a non-linear dynamics 

problem and its equations have been made uncoupled to avoid 

highly unnecessary complexities in the mathematics of the 

problem in view.  

 

Figure 1: Schematic of an umbilical cable under-sea 

PARAMETERS 

Major parameters that will be considered in this paper include  

• parametric catenary equations of the umbilical 

• mass per unit length of the umbilical 

• density of the umbilical 

• geometry of the umbilical 

• tension in the umbilical 

• elasticity of the umbilical 

• velocity profile of subsea 

• density of subsea 

• drag  and buoyancy 

• acceleration due to gravity 

 

 

Cable normal and tangential directions 
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 Position vector of sea velocity 

Figure 2:Schematic showing the orientation of the  �� , �̂ and 

�� axes 

 
Figure 3: Forces and moments acting on a cable element 

Applying Newton’s second law of motion, the inertia force of 

the cable in each direction is equal to the net sum of the forces 

acting on the cable in that direction. 

2.1 Forces 

2.1.1 Normal Direction 

Hydrostatic Force 

The hydrostatic force is the buoyancy acting on the cable. The 

total buoyancy force acting on a cable segment ∆s is given by: 

−��.� 
�!

.∆s acting in the vertical direction.  This force as all 

other forces that will be considered must be resolved into the 

normal and tangential directions of the cable which are the 

directions in which the dynamic analysis has been resolved. 

Thus, the buoyancy, B  is also given by 

−��.� 
�!

 (cos ϕ�	�+ sin ϕ�	�). ∆s 

Weight: The weight per unit length is given by mg.ds. And 

resolving also, gives 

mg(-cos ϕ�	�– sin ϕ�	�). ∆s 

So, the net hydro static force on the cable element is 

��	(�!−� )
�!

 (-cos ϕ�	�– sin ϕ�	�). ∆s 

The net hydrostatic force in the normal direction is thus given 

as: 

��	(� −�!)
�!

 Cos ϕ. ∆s            �	�  

 

 

Drag Force 

The drag force is also has components in the cable normal and 

tangential directions. 

The normal drag forces according to Morison [14] are directly 

proportional to the square of the corresponding relative normal 

velocity. 

Thus, the normal drag on a cable segment ∆s  is given by: 

Fdn = - 0.5"#�. $. %&. '(�|'(�| . ∆s          �	�  

where Vr n is the relative velocity of the flow with respect to 

the cable velocity in the  �� direction given by  : 

Vr n  = Vn + 
)*
)�  

And       Vn = (V. +,-	.). Sin ϕ = V. +,-	.. 
/0
/- 

Hydrodynamic Inertia Forces
 

The hydrodynamic inertia force exists only in the normal 

directions and is given by Morisonas 

- 0.25	"1. 2	. $. %&. 1(� . ∆s          �	�  

 

� 
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Where, ar n  is the relative acceleration of the flow with respect 

to the cable acceleration in the  ��  direction which is 

ar n  = an + 
)?*
)�?  

And       an = a. Sin ϕ = a. 
/0
/- 

Structural Damping Force 

The structural damping force is modelled as a linear function 

of the local velocity of the cable. 

Fsn = - c.
)*
)� . ∆s                     �	�  

Tension 

In specifying tension, the spatially varying effects of buoyancy 

and weight should be considered. This results in a spatially 

varying tension T(s) whose vertical component is: 

T(s) = To + m.g.s 

Where, s is the length along the cable with its origin at the 

cable bottom. 

The normal direction*	�  is a radial coordinate that is always 

perpendicular to the static cable axis at any length s.  

Therefore, the force in this direction due to tension at a length 

s of the cable is given from trigonometry as T. sin θ1 where θ1 

is the angle of deflection of the cable in the *	�direction with 

respect to the cable axis and T is the tension along the cable. 

But as ∆- →0, sin θ → tan θ1; and tan θ1 = 
@A
@-. Therefore, at a 

length s, this normal force is T.
@A
@- . The total normal force on a 

cable element,∆- due to tension is thus given by the difference 

in this force at length s and at length s+∆- which is given by:  

[T CDCE|s+∆- − T CDCE|s] = ∆(T.
)*
)F) 

Therefore, normal force due to tension on an element ∆- of the 

cable becomes ∆(T.
)*
)F). 

Bending Moment Force 

For displacements in a direction normal to a cable, there is a 

bending moment which can be gotten from the Euler-

Bernoulli’s relation for straight beams. Though the cable is 

curved in the static mode, the Euler-Bernoulli’s relation will 

still apply since its cross-sectional dimensions are quite small 

compared to the static curvature of the cable. The deflection 

angle is inversely proportional to the curvature (κn) introduced 

to a flexible cable due to the normal displacements, the 

constant of proportionality being the cable’s flexural rigidity 

EI. The curvature introduced   can also be approximated as a 

derivative of the deflection angle with respect to the cable 

length while this deflection angle is the angle of the normal 

displacement with respect to the cable axis which as stated 

previously is the partial derivative of normal displacement 

with respect to the cable length. So, the bending moment (Mn) 

in the normal direction imposed on the cable at length s by a 

deflection ∆q is given as:             

Mn = −EI CIJCE But θ1 = 
@A
@- , 

 Mn = −EI	 CKDCEK  

The force due to bending moment at length s is given by Fbn = 
@:�
@- . 

Now, the net force ∆(Fbn) on a cable element ∆s, due to this 

moment is given by: 

[EI CNOCE |s+∆- − EI CNOCE |s] = ∆(EI.
)P�
)F ) 

2.1.2 Tangential Direction 

Hydrostatic Force  

Since the total net hydrostatic force on the cable is  

��	(�!−� )
�!

 . (-cos ϕ�	�– sin ϕ�	�) . ∆s 

The component of this force resolved in the direction 

tangential to the cable is seen to be: 

��	(� −�!)
�!

 Sin ϕ . ∆s                 �	� 

Drag Force 

The tangential drag is proportional to the square of the relative 

tangential velocity.  The drag force in the tangential direction 

is thus given as: 

Fdt = 0.5"#�. Q	. $. %&. '(�|'(�|. ∆s               �	� 

where Vr t  is the relative velocity of the flow with respect to 

the cable velocity in the  �̂  direction which is:  

Vr t  = Vt-
)R
)�  

And       Vt = (V. +,-	.). Cos ϕ = V. +,-	.. 
/S
/- 

Elastic Force 
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This force applies only in the tangential direction. In this 

direction, the displacement of the cable elements in this 

direction results in an elastic force since the umbilical cable is 

elastic. This force is directly proportional to the negative 

displacement according to Hooke’s law. 

So,	∆ Fe =∆(EAε) 

Now strain (ε) = 
∆T
∆- 

Thus, for an element ∆s	as ∆s→0; 

[EA
@T
@-|s+∆- − 	EA CVCE|s] = ∆(EA.

)R
)F) 

∆ (Fe)= ∆(WX	. )R)F) 
2.1.3 Transverse Direction 

Drag Force 

The transverse drag force according to Morrison’s model is 

also proportional to the square of the relative velocity of the 

flow with respect to the local velocity of the cable in the 

transverse direction.  On a cable segment ∆s, it is given by: 

0.5"#�. $. %&. '(�|'(�|. ∆s                    �	� 

Where, Vr z  is the relative velocity of the flow with respect to 

the cable velocity in the  ��  direction which is:  

Vr z  = Vz-
)�
)� 

And       Vz = V. Y3�	. 

Hydrodynamic Inertia Forces 

In the transverse direction (�� ), the hydrodynamic inertia force 

is directly related to the relative acceleration of sea current 

flow with respect to cable local velocity in this direction and it 

is given as: 

0.25"1. Q. $. %&. 1(�. ∆s               �	� 

where ar z  is the relative acceleration of the flow with respect 

to the cable acceleration in the  ��  direction which is: 

ar z  = az + 
)?�
)�? 

And       az = a. Sin . 

Structural Damping Force 

Just as in the normal direction, the structural damping force in 

this direction is directly proportional to the local transverse 

velocity of the cable and is given by: 

Fsz = -c .
)�
)�. ∆s                 �	� 

Tension 

The tension as previously described is T(s) = To +m.g.s 

where s is the length along the cable with its origin at the cable 

bottom. 

Now, the transverse direction�	� is perpendicular to the static 

cable axis. So, the transverse force at a length s of the cable is 

given from trigonometry as T. sin θ2 where θ2 is the angle of 

deflection of the cable in the �	�direction with respect to the 

cable axis and T is the tension along the cable. The transverse 

force on a cable element,∆- due to tension is thus given by the 

difference in this force at length s and at length s+∆- which is 

equal to	∆(T. sin θ2). But as ∆- →0,sin θ2→ tan θ2; and tan θ2  

=  
@;
@-. 

[T
@;
@-|s+∆- − 	T CZCE|s] = ∆(T.

)�
)F) 

Therefore, force due to tension on an element ∆- of the cable 

in the �	�direction becomes ∆(T.
)�
)F).  

Bending Moment Force 

Just as in the normal direction, to a cable, there is a bending 

moment which according to Euler and Bernoulli is inversely 

proportional to the curvature  (κz) introduced to a flexible 

cable due to a deflection in the transverse direction �	�, the 

constant of proportionality being the cable’s flexural rigidity 

EI. The curvature itself can be approximated as a derivative of 

the deflection angle with respect to the cable length while this 

deflection angle is the angle of the second cable normal 

displacement with respect to the cable axis when tension was 

being considered  is the partial derivative of the transverse 

displacement with respect to the cable length. So, the bending 

moment (Mz) imposed on the cable at length s by a deflection 

∆z in the �	�direction, is given as:             

Mz = −EI CIKCE   and θ2 =  
@;
@- , 

So, Mz = −EI	 CKZCEK. The force in the �	�direction due to this 

bending moment at length s is given by Fbz =
@:;
@- . 

Now, the net force ∆(Fbz) on a cable element ∆s, due to this 

moment is given by: 
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 [EI CN[CE |s+∆- − EI CN[CE |s] = ∆(EI.
)P�
)F ) 

2.2 Equations of Umbilical Dynamics 

Summing up all forces according in the normal direction, 

\ )?*
)�? . ∆F = 	−^ )*)� . ∆F	 − ∆(W_	 )

`*
)F` 	)+	∆(a )*)F	)+(bdn+b mn + 

bgn). ∆F 
where b#� = 0.5"#�. $. %&. '(�|'(�|  

b�� = 0.25"1. Q	. $. %&. 1(� 

b��= 
��	(� −�!)

�!
. cos ϕ       

Dividing all through by ∆s  and as ∆s→0; the equation above 

becomes 

\ )?*
)�? =	−^ )*)� − W_	 )

c*
)Fc+

)
)F da	 )*)Fe+(bdn+bmn + bgn)  

Thus, the equation governing the umbilical cable dynamics in 

the normal direction becomes: 

\ )?*
)�? + 	^ )*)� + W_	 )

c*
)Fc = 

)
)F da	 )*)Fe+bdn+bmn+bgn�	�  

In deriving the governing equations above, the tension induced 

strain has been neglected as this strain value is very small 

(usually smaller than 10
-6

) 

In the direction tangential to the cable, the hydrodynamic and 

hydrostatic forces have already been stated. 

Thus, the equation governing the umbilical cable dynamics in 

the tangential direction is given by: 

� )?R
)�? . ∆F		 = ∆(WX	. )R)F)	+ (bdt + bgt).	∆F		 

where  bdt= - 0.5"#�. 2. $. %&. '(�|'(�| 
andbgt  =   

��	(� −�!)
�!

. sin ϕ 

Dividing through by ∆- and as∆- → 0; 

The equation governing the dynamics of the umbilical cable in 

its tangential direction is: 

� )?R
)�?  = WX	 )?R)F? + bdt + bgt  �	� 

In the transverse direction, weight and buoyancy do not have a 

component this direction since it is a horizontal direction. But 

all other type of forces acting on the cable in the normal 

direction except are also at play in this direction as has been 

shown previously. Therefore the equation of the umbilical 

dynamics in this direction is given by: 

\ )?�
)�? . ∆F	 = 	−^ )�)� . ∆F		 − ∆(W_	 )

`�
)F`)	+∆(a )�)F	)+(bdz +b mz). 

∆F 
where bdz=  0.5.	"#�. $. %&. '(�|'(�| 
bmz =0.25"1. Q. $. %&. 1(� 
Dividing all through by ∆s and as∆s→0 ;  

\ )?�
)�? =	−^ )�)� − W_	 )

c�
)Fc+

)
)F da	 )�)Fe+bdz +bmz                        

This results in the equation below for the transverse direction: 

\ )?�
)�? 	+ ^ )�)� 	+ W_	 )

c�
)Fc = 

)
)F da	 )�)Fe+bdz +bmz                       �	� 

 

Thus, the complete model of the subsea umbilical dynamics 

goes thus: 

2.2.1 Cable Normal Direction  

\ )?*
)�? + 	^ )*)� + W_	 )

c*
)Fc = 

)
)F da	 )*)Fe+bdn+bmn+bgn �	�  

with the following initial and boundary conditions 

Boundary conditions 

q (0, t) = 0 

EI 
@2A
@-2 (0, t) = 0  

q (L, t) = 0 

EI 
@2A
@-2 (L, t) = 0 

Initial conditions 

q (s, 0) = 0 

@A
@� (s, 0) = 0 

2.2.2 Cable Tangential Direction 

� )?R
)�?  = WX	 )?R)F? + bdt + bgt  �	� 

with the following initial and boundary conditions 
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Boundary conditions 

p(0, t) = 0 

p(L, t) = 0 

Initial conditions 

p (s, 0) = 0 

@T
@� (s, 0) = 0 

2.2.3 Cable Transverse Direction 

\ )?�
)�? 	+ ^ )�)� 	+ W_	 )

c�
)Fc = 

)
)F da	 )�)Fe+bdz +bmz                       �	� 

with the following initial and boundary conditions: 

Boundary conditions 

z(0, t) = 0 

EI 
@2;
@-2 (0, t) = 0  

z(L, t) = 0 

EI 
@2;
@-2 (L, t) = 0  

Initial conditions 

z (s, 0) = 0 

@;
@� (s, 0) = 0 

 

 

3. SIMULATION 
 Before the simulation, the non-dimensionalizing of 

the partial differential equations was done. This is to ensure 

that errors due to units do not arise in the simulation. More 

importantly, a computer simulation takes a longer time with 

increasing values of parameters involved in the simulation. 

The non-dimensionalization of the equations effectively puts 

away the delay that would have arisen as a result of these large 

values during a computer simulation.  

In the equations governing the normal directions,  

s= L; 

the scale for time was gotten by equating the overall inertia 

term to the tension force term. 

The scale for sea velocity was gotten by equating the overall 

inertia term to the drag force. 

The scale for sea acceleration was gotten by equating the 

overall inertia term to the hydrodynamic inertia force. 

In the tangential direction, the scale for time was gotten by 

equating the overall inertia term to the elasticity modulus force 

term while the scale for sea velocity and acceleration followed 

the same procedure as in the dynamics equation in the normal 

direction. 

The non-dimensionalized form of the umbilical dynamics 

model is as follows: 

)?*′
)�′? +	^′

)*′
)�′ +

W_
j?.ak

)c*′
)F′c= 

)
)F′ da′ )*

′
)F′e+ b′dn+b′mn+ b′gn �	�  

)?�′
)�′? +	^′

)�′
)�′ +

W_
j?.ak

)c�′
)F′c = 

)
)F′ da′ )�

′
)F′e+b′dz+b′mz�	� 

)?R′
)�′′?  = 

)?R′
)F′?+ b′dt + b′gt   �	� 

where 

A′ =   

2m
ρw./

. q 

T′ =   

2m
ρw./

. p 

;′ =   

2m
ρw./

. z 

-′ =   

s
L 

�′ =  

1
L .q4,8 . t 

�′′  =  

1
L .qrs8  . t 

4′ =   

T
To 

9′ =   9	. u.q4,8  

<v�	=′ w4,.8
0.5ρw./.u   .<�    +     

@A′
@�′  

<v;	=′ w4,.8
0.5ρw./.u   .<;      -     

@;′
@�′ 
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<v;	=′ √r.s.8
0.5ρw./.u   .<�       -     @T

′
@�′′ 

z�′ =   

ρw2.d3.π.L2
To.m . an 

z;′ =   

ρw2.d3.π.L2
To.m . az 

~′dn  = - Cdn   <′r n |<′r n|     
~′dz  =  Cdz   <′r z |<′r z|     
~′dt  =  Cdt .	π. <�r t |<′r t|     

~′mn = - Ca .[ z�′ + 
ρw.π.d3
8m .

@2A′
@�′2] 

~′mz =  Ca .[ z;′ -  ρw.π.d
3

8m .
@2;′
@�′2] 

~′gn =  ~gn .
ρw.d.m.L2
2To  

~′gt = ~gt .
ρw.d.m.L2
2EA  

The Mathematica software from Wolfram Research Inc. was 

used for the simulation. The software works on the PDEs by 

reducing them to several ODEs and then solving them. 

Details of a particular steel umbilical and environmental 

conditions in West Africa Deepwater Operations are used in 

simulating the dynamic response in 300s was simulated is 

provided in Table 1. 

Table 1: Typical data for a Steel Umbilical Cable 

PARAMETER VALUE 

Mass per unit length 1500kgm
-1 

Length 10 000m 

Bottom tension 10KN 

Outer diameter 0.8m 

Inner diameter 0.6m 

Elastic modulus 2.1 x 10
11

Nm
-2

 

Structural damping coefficient 0.003 

Gravity
 

9.81ms
-2

 

Velocity of Sea 1000ms
-1

 

Water depth 1200m 

Cdt 0.03 

Cdn 0.7 

Ca 1 

. 50° 

 

 

4. RESULTS & DISCUSSIONS 

 In the study, we varied the water depth to see the 

effect on tension from 350m (for shallow water), 1000m -

1500m (for deepwater depth in West Africa (such as in 

Cameroun, Malabo, Bonga, Akpo) which are typically within 

that water depth range, and for ultra-deepwater (with water 

depth in the vicinity of 2600m (in Gulf of Mexico) so as to 

verify our numerical simulation results To do this, the  

The umbilical is tuned to meet any water depth or 

environmental condition by increasing the umbilical mass (i.e., 

which in real-life can be achieved by adding weight elements 

or stiffness elements into the cross section of the umbilicals). 

The resulting graph of the normal displacement plotted against 

umbilical length and time is shown in Figure 4. 

 

Figure4: Graph of normal displacement against time and 

length 

From Figure 4, it can be seen that the highest normal response 

occurs at 1500m. The period of oscillation is about 

200seconds.  
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Figure5: Graph of normal velocity against time and length 

The amplitude of the normal velocity is highest at 1000m 

(Figure 5).  

The graph of the normal response (in Figure 5), show 

conformity with the expected oscillatory motion of a vibrating 

tensioned beam in the transverse direction.   

Figure 6illustrates a graph of the tangential displacement 

against cable length and time. 

 

Figure 6: Graph of tangential displacement against time and 

length 

In the tangential direction, the  mid-point of the  umbilical 

cable is  the most responsive. 

 Also, the graph of the tangential velocity of the cable is 

shown in Figure 7. 

 

Figure 7: Graph of tangential velocity against time and 

length 

The tangential velocity just like the tangential displacement 

has the highest amplitude at the mid-length of the umbilical 

cable. 

Figure 8 depicts a graph of the transverse displacement against 

time and length. 

 

Figure 8: Graph of transversedisplacement against time and 

length 

The response of the cable in the transverse displacement (��) is 

uniform along its length from about 500m to 9500m. This 

response is quite fast as can be seen in the graph above. The 

period of oscillation is about 5 seconds. 

The effects of tension on the frequency of oscillations of the 

normal and transverse directions for a water depth of 1200m 

are presented in Figures 9 and 10 respectively. 

 

Figure 9: Graph of frequency against tension in normal 

direction 
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Figure 10: Graph of frequency against tension in transverse 

direction 

When we tuned the umbilicals (by increasing the mass, i.e. 

30kg/m and 60kg/m) we observed the same pattern in Figures 

11 and 12 as in Figure 10. The polynomial equation fit was of 

higher orders (i.e., increasing the mass results in an increase in 

frequency of oscillation in the umbilical cable in the normal 

and transverse directions). Thus, the plots show that umbilicals 

filled with heavier materials will adjust its tension to 

compensate for the non-linearity of the umbilical dynamics. 

 

Figure 11: Graph of frequency against tension in transverse 

direction based on 30kg/m  

 

Figure 12: Graph of frequency against tension in transverse 

direction based on 60kg/m 

 

 

5. CONCLUSIONS 
 The reliability of the subsea umbilical is quite critical 

to oil production in terms of control, quality and flow 

assurance. The subsea umbilical’s dynamics is modelled as a 

set of two 4
th

 order and one 2
nd

 order non-linear PDEs. It is 

seen from Figure 8 that the response of the umbilical cable in 

the transverse direction is almost uniform along its length and 

indeed it is a fast response. The response of the umbilical 

cable in the normal direction shown in Figure 4 is not as fast 

as that of the transverse direction. It takes a period of about 

200 seconds as against 5 seconds of the 

transversedisplacement. The tangential displacement also has 

a fast response as seen from Figure 6. 

 

In the normal direction, the displacement amplitude is highest 

around s = 1500m as seen from Figure 4, while the amplitude 

of the velocity (Figure 5) is highest at about s =1000m. In the 

tangential direction, the highest dynamic response occurs at 

mid-length. It is interesting to note that the amplitude of the 

tangential velocity of the cable reduces with time (Figure 7). 

Based on the results, we can conclude that an increase in 

tension leads to an increase in the frequency of oscillations of 

the umbilical cable in the normal and transverse directions 

keeping the effects of current/water forces constant. Similar 

effect is observed when the umbilical is tuned to meet any 

water depth or environmental condition by increasing the 

umbilical mass. 

 

Lastly, vortex induced vibration (VIV) and control of subsea 

umbilicals is an area where a lot still needs to be done in 

future. 
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